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The prognosis of skin cutaneous melanoma (SKCM) remains poor, and patients with SKCM show a poor response to
immunotherapy. Thus, we aimed to identify necroptosis-related biomarkers, which can help predict the prognosis of SKCM
and improve the effectiveness of precision medicine. Data of SKCM were obtained from The Cancer Genome Atlas (TCGA)
and GEO databases. TCGA samples were classified into two clusters by consensus clustering of necroptosis-related genes.
Univariate Cox and least absolute shrinkage and selection operator regression analyses led to the identification of 11 genes,
which were used to construct a prognostic model. GSE65904 was used as the test set. Principal component, t-distributed
stochastic neighbor embedding, and Kaplan–Meier survival analyses indicated that samples in the train and test sets could be
divided into two groups, with the high-risk group showing a worse prognosis. Univariate and multivariate Cox regression
analyses were performed, and a nomogram, calibration curve, and time-dependent receiver operating characteristic curve were
constructed to verify the efficacy of our model. The 1-, 3-, and 5-year areas under the receiver operating characteristic curves
for the train set were 0.702, 0.663, and 0.701 and for the test set were 0.613, 0.627, and 0.637, respectively. Moreover, we
performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses between the high-
and low-risk groups. Single sample gene set enrichment analysis, immune cell infiltration analysis, tumor microenvironment
scores, immune checkpoint analysis, and half-maximal inhibitory concentration prediction indicated that the high-risk group
showed weaker antitumor immunity; further, the response to immune checkpoint inhibitors was worse, and the high-risk
group was sensitive to fewer antitumor drugs. Tumor mutational burden analysis, Kaplan–Meier survival analysis, and
correlation analysis between risk score and RNA stemness score revealed that the high-risk group with low tumor mutational
burden and high RNA stemness score was potentially associated with poor prognosis. To conclude, our model, which was
based on 11 necroptosis-related genes, could predict the prognosis of SKCM; in addition, it has guiding significance for the
selection of clinical treatment and provides new research directions to enhance necroptosis against SKCM.

1. Introduction

Skin cutaneous melanoma (SKCM) is the most life-threatening
skin cancer [1–5]. Its incidence continues to increase across the
world, particularly in western countries [6]. The occurrence of
SKCM is related to the environment and diverse intrinsic
factors. UV radiation is one of the main extrinsic risk factors
of SKCM [7]. Under the influence of various factors, melanin
switches its role from antioxidant to prooxidant, and the level
of intracellular oxygen free radicals increases, resulting in
damage to DNA molecules; overactivation of many cell signal-
ing pathways; and uncontrolled proliferation, dedifferentiation,

and immortality of specific cells, eventually leading to cancer
[8, 9]. Among the intrinsic factors, the number of melanocytic
nevi, genetic susceptibility, and family history play a key role in
SKCM occurrence [4].

At present, the treatment strategy of melanoma has
changed greatly: surgical resection is still the most important
treatment for patients with early melanoma, while immune
regulation focuses on the activation of tumor-infiltrating lym-
phocytes in patients with advanced or metastatic melanoma.
Therapies are gradually taking shape [10, 11]. In a variety of
cancers, miRNAs and circRNAs have been found to be associ-
ated with tumor resistance and chemoradiotherapy sensitivity
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[12]. In uveal melanoma, miR-125b, miR-20a, miR-146a, miR-
181a, miR-155, miR-223, and other miRNAs have been found
to be in disorder [13]. lncRNAs were significantly associated
with clinicopathological features [14]. Although drugs
targeting miRNA or circRNA have not been widely used, var-
ious monoclonal antibody drugs targeting PD-1 and CTLA-4
are gradually used in clinical practice. Although monoclonal
antibody therapy has significantly improved patient outcomes,
not all patients respond to treatment with immune checkpoint
inhibitors [15]. Therefore, more effective stratification of
tumor patients with the help of bioinformatics will help us to
screen patients who may respond to immunotherapy.

Bioinformatics analysis is a fundamental pillar of the
precision treatment of diseases, including tumors. Bioinfor-
matics analysis processes analyze massive sample data
through algorithms, so as to effectively analyze the complex
mechanisms (including genetic and epigenetic regulation)
behind diseases. Candido et al. revealed the relationship
between epigenetic regulation of IL6 signaling in tumors
[16]. In nonneoplastic diseases, researchers have used bioin-
formatics to identify key genetic and epigenetic changes
associated with pesticide exposure [17]. In melanoma, new
markers are continuously exposed through bioinformatics
technologies, and multiple markers including IL27, CXCL8,
THBS1, and KIT have been identified to be associated with
melanoma metastasis and treatment outcomes [18, 19]. Bio-
informatics analysis plays an increasingly important role in
the exploration of new disease diagnosis and treatment and
prognostic markers.

Apoptosis resistance poses a major threat to the suc-
cess of cancer treatment [20]. Circumventing the apoptotic
pathway to induce cell death is an effective solution. Adju-
vant high-dose interferon and ipilimumab are associated
with survival benefits, but they are highly toxic. In com-
parison with traditional therapy, programmed cell death
protein-1 inhibitor and BRAF/MEK-targeted therapies
were recently reported to significantly improve patient
survival, but several patients were found to develop pri-
mary or acquired resistance after initial response [21].
Necroptosis, a programmed cell death mechanism, is an
efficient way to induce cell death and is crucial to patient
prognosis [22]. TNF-α and its receptors promote the
assembly of the receptor-interacting protein kinase 1-
(RIPK1-) RIPK3-mixed lineage kinase-like (MLKL) signal-
ing complex, and RIPK3-mediated phosphorylation of
MLKL leads to its translocation to the plasma membrane
to initiate membrane damage, which induces necroptosis
[23]. Although necroptosis shares some similarities with
apoptosis, it exhibits morphological features similar to
those of necrosis [24]. Necroptosis resistance in SKCM is
evidently associated with the loss of RIPK3 [25]. P65/RelA
and NF-κB fragments generated by active RIPK3 regulate
tumorigenicity, cellular metabolism, and stemness charac-
teristics [26]. Necroptosis, defined by the release of inflam-
matory mediators, alters the inflammatory state of the
tumor microenvironment (TME) and influences the
response to drug sensitivity in cancer [27]. A previous
study reported that the topoisomerase inhibitor SN38
induces colon adenocarcinoma cell death by enhancing

necroptosis [28]. Furthermore, bufalin has been found to
inhibit human breast cancer tumorigenesis through
necroptosis [29].

This study was conducted using data obtained from The
Cancer Genome Atlas (TCGA) and the GEO databases. We
constructed a prediction model comprising 11 necroptosis-
related genes, and the efficiency of this model as an indepen-
dent predictor was verified by time-dependent receiver operat-
ing characteristic (ROC) analysis. The single sample gene set
enrichment analysis (ssGSEA), immune cell infiltration,
immune checkpoint analysis, and prediction of the half-
maximal inhibitory concentration (IC50) have guiding signifi-
cance for immunotherapy. The high-risk group showed a high
RNA stemness score (RNAss) implying the ability to progress,
metastasize, and drug resistance. We believe that our findings
will guide treatment selection and provide a new research
direction to enhance necroptosis against SKCM.

2. Materials and Methods

2.1. Data Collection. RNA sequencing data and relevant clin-
ical information of SKCM were downloaded from TCGA
(https://portal.gdc.cancer.gov/). To reduce statistical bias,
we excluded SKCM samples with missing and/or short
(<30 days) overall survival (OS) values, which led to the iden-
tification of 447 samples.

The test set GSE65904 was obtained from the GEO data-
base; on excluding SKCM samples with missing and/or short
(<30 days) OS values, we attained 207 samples.

Figure 1(a) describes which samples were used at each
stage of statistical analyses. The “maftools” package was
applied to analyze copy number variations.

2.2. Selection of Necroptosis-Related Genes. The necroptosis
gene set M24779.gmt, which contains eight genes, was
downloaded from the Gene Set Enrichment Analysis website
(http://www.gsea-msigdb.org/gsea/index.jsp). By searching
necroptosis-related literature, we identified a total of 67
necroptosis-related genes (Appendix T1) [20, 30].

2.3. Consensus Clustering. Consensus clustering was used to
identify distinct necroptosis-related patterns relating to the
expression of necroptosis-related genes. The number of
clusters and their stability were determined by a consensus
clustering algorithm, which was executed using the “Consen-
suClusterPlus” package.

2.4. Establishment and Validation of the Risk Signature.
Based on the clinical data for SKCM samples in TCGA, uni-
variate Cox (uni-Cox), fold cross-validation, and least
absolute shrinkage and selection operator (LASSO) regres-
sion analyses were conducted to choose model genes
(p < 0:001). We performed 1,000 times repetitions to guaran-
tee the stability of our classification. Principal component
analysis (PCA), t-distributed stochastic neighbor embedding
(t-SNE), and Kaplan–Meier survival analyses were per-
formed using the “Rtsne” R package.

2.5. Nomogram and Calibration. uni-Cox and multivariate
Cox (multi-Cox) regression analyses were applied to assess
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Figure 1: Continued.
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whether risk score and clinical characteristics were indepen-
dent variable factors. A ROC curve was constructed to
compare varied factors in predicting outcome. Finally, with
the “rms” R package, risk score, age, and tumor stage were
used to construct a nomogram to predict 1-, 3-, and 5-year
OS, and correction curves were generated based on the Hos-
mer–Lemeshow test.

2.6. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway Enrichment Analyses. We
used the “limma” package to identify differentially expressed
genes (DEGs) (q < 0:05 and jlogFCj > 1), and subsequently,
they were subjected to GO and KEGG pathway enrichment
analyses with the R package “clusterProfiler.”

2.7. Immune-Related Analysis. ssGSEA was performed with
the “GSVA” R package. The “CIBERSORT” R package was
used to analyze the correlation in immune cell infiltration
among 11 necroptosis-related genes. The “ggpubr” R pack-
age was applied to assess TME scores and immune check-
point activation between the low- and high-risk groups,
and “maftools” was used to analyze tumor mutational bur-
den (TMB) of necroptosis-related genes in these groups.

2.8. Exploration of the Model in Clinical Treatment. To
determine the therapy response of patients with SKCM, we
used the R package “pRRophetic” to evaluate IC50, as per
the Genomics of Drug Sensitivity in Cancer database
(GDSC) (https://www.cancerrxgene.org/).

(c)

Figure 1: Global changes in necroptosis-related genes. (a) Flow chart. (b) CNV frequency of necroptosis-related genes. (c) The location of
CNVs of necroptosis-related genes on chromosomes.
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2.9. Correlation Analysis of Risk Score with RNA Stemness
Score. A correlation analysis between risk score and RNAss
was performed by Spearman’s method using the “cor. Test”
command and the R package “limma,” followed by visualiza-
tion with the R package “corrplot.”

3. Results

3.1. Necroptosis-Related Genes in Patients with SKCM.
Figure 1(a) shows the research flow. First, we explored the
mutational status of 67 necroptosis-related genes (i.e., regu-
lators) in TCGA samples. CDKN2A deletions were found to
be the most prevalent (Figure 1(b)). Alterations in these reg-
ulators characterized by copy number variations on the
chromosome were identified (Figure 1(c)).

3.2. Identification of Subtypes and Their Distinct Necroptosis
Patterns. SKCM samples were divided into two clusters (cluster
1 and cluster 2) by consensus clustering. In cancer research,
consensus clustering classifies groups with common biological
characteristics potentially existing but unknown inner. When
k = 2, the classification is the clearest on the consensus matrix
heatmap, the cumulative distribution function (CDF) reaches
an approximate maximum, and the growth rate of the area
under the CDF curve is close to 0, indicating that clusters have
the highest concordance at this point (Figures 2(a)–2(c) and
Supplementary Figure S1A). Herein, the survival curves
showed significant differences between cluster 1 and 2, and
the survival advantage of cluster 2 was higher than that of
cluster 1 (Figure 2(d)). The heatmap depicted the expression
of necroptosis-related genes between these clusters
(Figure 2(e)).

3.3. Model Construction and Verification. Through uni-Cox
regression analysis, 13 necroptosis-related genes were found
to be significantly associated with OS (p < 0:001), playing a
protective role (Figure 3(a)). To avoid overfitting the prog-
nostic signature, we performed a LASSO regression analysis
on these genes; consequently, we extracted 11 genes when
the first-rank value of LogðλÞ was the minimum likelihood
of deviance (Figures 3(b) and 3(c)).

Risk score was calculated using this formula: ½FAS × ð−
0:102814625730389Þ +MLKL × ð−0:0186470527508156Þ +
RIPK3 × 0:117717056112214 + TLR3 × ð−
0:227081489914472Þ + CASP8 × ð−0:131637762064241Þ +
ZBP1 × ð−0:279134792483509Þ + AXL × ð−
0:139002477382656Þ + GATA3 × 0:0483383170281774 +
CD40 × ð−0:109447476720426Þ + EGFR ×
0:225336554991422 + DDX58 × ð−0:00389392183935227Þ�.

Heatmap depicted the distribution of the 11 genes in the
high- and low-risk groups (Figure 3(d)).

Using the aforementioned formula and based on the
median, the TCGA dataset, i.e., the training set, and
GSE65904, i.e., the test set, were classified into low- and
high-risk groups. Moreover, using the risk score formula,
we compared the distribution of risk score, survival status,
survival time, PCA, and t-SNE analysis data between the
high- and low-risk groups in the training and test sets
(Figures 3(e)–3(l)). A clear distributional difference was

found between the high- and low-risk groups. The high-
risk group showed worse prognoses in both the training
and test sets (Figures 3(m) and 3(n)).

3.4. Nomogram Construction. The hazard ratio of risk score
and 95% confidence interval were 3.253 and 2.308–4.585
(p < 0:001), respectively, in uni-Cox regression and 2.650
and 1.863−3.768 (p < 0:001), respectively, in multi-Cox
regression (Figures 4(a) and 4(b)). In addition, we found
two independent prognostic factors: T stage (1.350, 1.159
−1.572, p < 0:001) and N stage (1.514, 1.296−1.770, p <
0:001) (Figure 4(b)).

Based on the three independent prognostic factors,
namely, risk score, T stage, and N stage (all p < 0:001 in
multi-Cox regression), we constructed a nomogram to pre-
dict 1-, 3-, and 5-year OS incidence among patients with
SKCM (Figure 4(c)). We also plotted a calibration curve to
demonstrate that the nomogram was in good agreement
with the 1-, 3-, and 5-year OS predictions (Figure 4(d)).

3.5. Risk Model Assessment. ROC analysis was performed to
assess the sensitivity and specificity of the model for progno-
sis, with the area under the ROC curve (AUC) serving as the
outcome. The 1-, 3-, and 5-year AUCs for the training set
were 0.702, 0.663, and 0.701, respectively, and the 1-, 3-,
and 5-year AUCs for the test set were 0.613, 0.627, and
0.637, respectively, indicating that our prognostic model
had good predictive performance (Figures 4(e) and 4(f)).
In the 1-year ROC of the training set, in comparison with
the five clinically independent prognostic factors, the model
was found to be more predictive (Figure 4(g)).

3.6. Enrichment Analysis. To assess differences in biological
functions between the different risk groups, DEGs were sub-
jected to GO and KEGG pathway enrichment analyses
(Figures 5(a) and 5(b) and Supplementary Figure S1B). The
most abundant biological processes included T cell activation,
leukocyte cell adhesion, regulation of cell-cell adhesion,
leukocyte-mediated immunity, monocyte differentiation, and
regulation, among others. In terms of molecular functions,
DEGs were primarily enriched in immune receptor activity,
MHC protein complex binding, MHC class II protein
complex binding, cytokine activity, and cytokine binding,
among others. KEGG pathway enrichment analysis revealed
that the different risk group was highly correlated with the
cytokine-cytokine receptor interaction pathway.

3.7. Investigation of Immunity Factors and Clinical
Treatment in the Risk Groups. We analyzed differences in
immune cells and immune function between the high- and
low-risk groups (Figures 6(a) and 6(b)). In comparison with
the high-risk group, the low-risk group showed higher
scores of various immune cells and immune functions. The
correlation analysis between immune cells and the 11 genes
in the model revealed that M1 macrophages, memory B
cells, plasma cells, T cells CD4 memory activated, T cells
CD8, and T cells gamma delta were negatively correlated
with the 11 genes, whereas M0 macrophages, M2 macro-
phages, monocytes, and NK cells resting were positively
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Figure 3: Selection of necroptosis genes associated with prognosis. (a) Univariate Cox analysis of the candidate necroptosis-related gene set.
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correlated with the 11 genes (Figure 6(c) and Supplementary
Figure S2).

The high-risk group showed lower stromal, immune,
and estimate scores and exhibited a different TME than the
low-risk group (Figure 6(d)). Further, most immune check-
points in the low-risk group were highly expressed, while
in the high-risk group, highly expressed immune check-
points (such as TNFRSF14 and CD276) were rare, indicating
that targeted therapy might not be effective in the high-risk
group (Figure 6(e)). Immune checkpoint inhibitors can be
chosen depending on different risk groups. Drug sensitivity
analysis revealed that the high-risk group showed a lower
IC50 for 25 cancer treatment drugs (Supplementary
Figure S3A).

Patients with higher TMB showed an enhanced
response, long-term survival, and durable clinical benefit
when treated with immunotherapy [31]. Herein, we found
that the low-risk group had higher TMB, demonstrating bet-
ter immunotherapy response, and higher survival advantage
(Figures 6(f)–6(i) and Supplementary Figure S3B).

3.8. Cancer Stem Cell Correlation Analysis. The risk score is
proportional to the stemness of tumor cells. Patients with a
high-risk score showed relatively stronger stemness charac-
teristics of tumor cells and poor prognosis (Figure 7).

4. Discussion

The high mortality rate of SKCM has driven several
advancements in treatment techniques. In comparison with
traditional methods such as chemotherapy and radiother-
apy, immunotherapy is a new treatment method for patients
with SKCM; however, its response is not the same. SKCM

stimulates an immunogenic response, and the production
of specific cytotoxic T lymphocytes (CTLs) is induced, which
kill SKCM cells via the Fas/FasL-independent and particle-
dependent lytic pathway; however, SKCM cells often evade
immune destruction [32].

Herein, the established prognostic model comprised 11
necroptosis-related genes (FAS, MLKL, RIPK3, TLR3,
CASP8, ZBP1, AXL, GATA3, CD40, EGFR, and DDX58).
The risk score could predict immune status, response to
immunotherapy, and prognosis. In clinical practice, risk
scores can help individualize treatment for patients, select
appropriate drugs, and improve the success rate and effi-
ciency of treatment.

Necroptosis is a regulated, caspase-independent, immu-
nogenic mode of cell death and is primarily mediated by
RIP1, RIP3, and MLKL. It is evidently induced by Toll-like
receptors (TLRs), tumor necrosis factor receptors, inter-
ferons, and intracellular RNA and DNA sensors [20, 33,
34]. RIP1 defines cell survival or death; it recruits and acti-
vates RIPK3, which interacts with RIPK1 to form necro-
somes. RIPK3 then phosphorylates MLKL, which in turn
oligomerizes and translocates to the plasma membrane,
leading to membrane permeabilization and necroptosis; for
this reason, MLKL modification is critical [34, 35].
Caspase-8 cleaves RIPK1 as well as RIPK3 and activates apo-
ptosis [20]. Necrosomes, composed of RIP1, RIP3, and Fas-
related death domain proteins, activate pseudokinase-mixed
lineage kinases. Necroptosis has been reported to play a vital
role in tumorigenesis, antitumor immunity activation, and
cancer therapy. Targeting necrosomes has been suggested
to cause immunogenic reprogramming in the TME [36]. A
cytoplasmic death-inducing signaling complex, comprising
RIPK1, TRADD, caspase-8, and FADD (FAS-associated
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Figure 4: Nomogram and assessment of the risk model. (a) uni-Cox analyses of clinical factors and risk score with OS. (b) multi-Cox
analyses of clinical factors and risk score with OS. (c) The nomogram that integrated the risk score and tumor stage predicted the
probability of the 1-, 3-, and 5-year OS. (d) The calibration curves for 1-, 3-, and 5-year OS. (e, f) The 1-, 3-, and 5-year ROC curves of
the train and test, respectively. (g) The 1-year ROC curves of risk score and clinical characteristics.
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death domain protein), called complex II, induces caspase-8
activation and participates in necroptosis pathway activation.
RIPK1mediates signaling downstream of tumor necrosis fac-
tor receptor 1, TLR3, TLR4, retinoic acid-inducible gene 1,
melanoma differentiation-associated protein 5, and Z-
binding protein 1 (ZBP1). FAS regulates ligand-induced apo-
ptosis, and downregulation of its expression results in resis-
tance to FasL-mediated cell death [37, 38]. TAM (Tyro3,
Axl, and Mer) kinases phosphorylate MLKL to promote
necroptosis and mediate MLKL oligomerization to promote
cleavage pore formation [39]. The innate immune sensor
ZBP1 and the essential cell survival kinase TAK1 regulate
the assembly and function of the RIPK1/RIPK3-FADD-cas-
pase-8 cell death complex. GATA3 participates in driving
tumor growth and metastasis and is thus closely associated
with SKCM survival [40, 41]. EGFR regulates epithelial tissue
development and homeostasis and drives tumorigenesis, and
it has been recognized as a biomarker of tumor resistance
(Sigismund et al., 2018).

SKCM cells evade the immune system in many ways.
One such major approach is immunotherapy that activates
antitumor T cells. The extent of T cell infiltration into

tumors depends on innate immune activation and Batf3-
dependent CD103+ dendritic cell recruitment in the TME.
The relative lack of CD8+ T cells results in a poor response
to immune checkpoint inhibitors. The intratumoral delivery
of mRNA encoding MLKL arouses T cell antitumor
response [35]. Therefore, MLKL–mRNA therapy appears
promising for patients with a higher risk score.

In this study, based on risk scores, we classified all samples
into high- and low-risk groups. The differences in enrichment
analyses between these groups were primarily reflected in terms
of T cell activation, leukocyte cell-cell adhesion, regulation of
cell-cell adhesion, and leukocyte-mediated immunity, among
others. SKCM induces melanoma cell death via the perforin-
granzyme and Fas-Fas ligand pathways, but tumor cells are
often able to evade this immune destruction [32, 42]. Cell adhe-
sion molecules reportedly influence SKCM progression.
Embryonic antigen-related cell adhesion molecule 1 (CEA-
CAM1), a widely expressed cell-cell adhesion protein, mediates
direct interactions between tumors and immune cells [43].
CEACAM1-3S is associated with enhanced immunogenicity
and contributes to improved OS of patients with advanced
melanoma; in contrast, CEACAM1-4L promotes tumor
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progression by downregulating the cell surface expression of
the NKG2D ligands MICA and ULBP [44].

A more potent and durable antitumor immune response
requires not only CD8+ cytotoxic T lymphocytes but also
CD4+ T helper cells [45]. CD8+ CTLs induce tumor cell
lysis by recognizing tumor MHC class I molecules. CD40

is a costimulatory receptor molecule involved in humoral
and cellular immunity regulation [46]. Differences between
the high- and low-risk groups also focused on MHC
(MHC class II) protein complex binding. Most melanoma
cells do not express MHC class II molecules, the main func-
tion of which is to present processed antigens, mainly
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Figure 6: Immune-related analysis. (a) The ssGSEA scores of immune cells between high- and low-risk groups. (b) The ssGSEA scores of
immune functions between high- and low-risk groups. (c) The correlation of 11 model genes with immune cells. (d) The comparison of
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(f) The top 20 mutated genes in the high-risk group. (g) The top 20 mutated genes in the low-risk group. (h) Kaplan–Meier survival
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derived from foreign sources, to CD4+ T lymphocytes; they
are therefore essential for the initiation of antigen-specific
immune responses [47]. MHC expression can guide the
choice of immunotherapy for patients with SKCM [48].
Mutations identified by exome sequencing can serve as vac-
cine targets solely through bioinformatics prioritization
based on their expression levels and MHC class II-binding
capacity for rapid production as synthetic poly-neo-epitope
mRNA vaccines [49]. We believe that for patients with a
high-risk score, inactive necroptosis, and insufficient CD8+
and CD4+ T cell effects, a comprehensive treatment plan
should ideally include the following: surgical resection with
immune checkpoint inhibitor therapy and mRNA vaccines
for MLKL as well as MHC class II.

Although we used many methods to evaluate our model,
some limitations persist. The retrospective nature of this study
makes it susceptible to various inherent biases. Furthermore,
our study has no experimental validation and thus has a severe
limitation. Our model is promising. In the future, samples can
be collected by surgery for immunofluorescence staining to test
the predictive ability of the model [50]. At the same time, more
clinical data can be collected to further explore the significance
of necroptosis-related genes in the treatment of SKCM. In con-
clusion, our experiment established a patient stratification
model composed of 11 genes derived from necroptosis-
related genes. This model can effectively distinguish the
prognosis of SKCM patients and play a role in the precise treat-
ment of SKCM patients in the future.
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