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Single-cell RNA sequencing (scRNA-seq) is increasingly used in studies on gastrointestinal cancers. This study investigated the
prognostic value of epithelial cell-associated biomarkers in colorectal cancer (CRC) using scRNA-seq data. We downloaded
and analysed scRNA-seq data from four CRC samples from the Gene Expression Omnibus (GEO), and we identified
marker genes of malignant epithelial cells (MECs) using CRC transcriptome and clinical data downloaded from The
Cancer Genome Atlas (TCGA) and GEO as training and validation cohorts, respectively. In the TCGA training cohort,
weighted gene correlation network analysis, univariate Cox proportional hazard model (Cox) analysis, and least absolute
shrinkage and selection operator regression analysis were performed on the marker genes of MEC subsets to identify a
signature of nine prognostic MEC-related genes (MECRGs) and calculate a risk score based on the signature. CRC patients
were divided into high- and low-risk groups according to the median risk score. We found that the MECRG risk score
was significantly correlated with the clinical features and overall survival of CRC patients, and that CRC patients in the
high-risk group showed a significantly shorter survival time. The univariate and multivariate Cox regression analyses
showed that the MECRG risk score can serve as an independent prognostic factor for CRC patients. Gene set enrichment
analysis revealed that the MECRG signature genes are involved in fatty acid metabolism, p53 signalling, and other
pathways. To increase the clinical application value, we constructed a MECRG nomogram by combining the MECRG risk
score with other independent prognostic factors. The validity of the nomogram is based on receiver operating
characteristics and calibration curves. The MECRG signature and nomogram models were well validated in the GEO
dataset. In conclusion, we established an epithelial cell marker gene-based risk assessment model based on scRNA-seq
analysis of CRC samples for predicting the prognosis of CRC patients.

1. Introduction

Colorectal cancer (CRC) is among the most common malig-
nant tumours of the digestive system worldwide, and its high
incidence and mortality are second only to those of lung
cancer and breast cancer [1, 2]. Unhealthy lifestyle habits,
such as smoking, drinking, and consuming a high-fat diet,
have led to an increase in CRC incidence [3], with 1.5%
annual increase reported in people aged 30 to 39 years from
2007 to 2016 [4]. At present, tumour node metastasis

(TNM) staging, histopathology, and completion of surgical
resection are mainly evaluated to determine CRC prognosis,
and molecular markers are widely used for CRC diagnosis
and treatment. Various medical treatments, including sur-
gery, postoperative adjuvant chemoradiotherapy, and
molecular targeted therapy, have been used to treat CRC
[5]. CRC symptoms are generally minor in early disease
stages, and therefore, patients are often at an advanced stage
of the disease by the time they seek medical attention. Fur-
thermore, the optimal treatment timing can easily be missed
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in cases of advanced, metastatic, and recurrent CRC, and the
effects of conventional treatment are usually inconsistent,
resulting in variable prognoses.

As a malignant tumour of epithelial origin, the develop-
ment and progression of CRC are closely related to epithelial
tissue [6, 7]. Normal epithelial cells have antitumor activities
and are able to eliminate oncogenic transformed cells by reg-
ulating cytoskeletal proteins [8]. According to Lv et al., epi-
thelial cells secrete periostin, which inhibits the growth of
gastric cancer cells by stabilising P53 and E-cadherin pro-
teins [9]. Epithelial cells exhibit apical-basal polarity and
cell–cell adhesion. Correct regulation of polarity is essential
to inhibit tumour growth [10]. Royer and Lu suggested that
the malignant transformation of epithelial cells in the pres-
ence of oncogene activation is generally closely associated
with the loss of cell polarity and disorganisation and that
the disruption of epithelial cell polarity promotes
epithelial-mesenchymal transition (EMT), which is a key
step in the invasion of the surrounding stroma by epithelial
tumour cells [11]. In addition, under hypoxic conditions,
pulmonary epithelial cells can downregulate connexin
(CX)26 and CX43 via the P53 signalling pathway to promote
lung carcinogenesis [12]. Epithelial cells are both the struc-
tural basis of most organ tissues in the body and the source
of most human tumours [13]. With the progressive research
on epithelial cells, epithelial cell-related biomarkers have
become a research hotspot in recent years. Keratins are
widely used as epithelial cell biomarkers in the pathological
diagnosis of tumours and in predicting survival prognosis.
In CRC patients, decreased expression of keratin (K)8 and
K20 is closely related to EMT and suggestive of poor survival
and high tumour invasion [14]. Increased serum levels of a
cleaved K18 fragment produced by apoptotic epithelial cells
suggest a high risk of CRC recurrence within 3 years [15].
However, because of the uncontrollable pathological types,
stages, and metastases of CRC [16], using conventional bio-
markers to predict prognosis does not achieve adequate
results. Therefore, to explore more epithelial cell-related bio-
markers with clinical application potential, we used high-
resolution omics tools to perform a more accurate analysis
of CRC epithelial cells.

Single-cell RNA sequencing (scRNA-seq) allows the
construction of a gene-regulatory network at the cellular
level [17]. Analysis of the genome, transcriptome, or epige-
nome of single cells individually or simultaneously enables
the detection of gene expression profiles and tracking of cell
development at the single-cell level [18]. The RNA-seq tech-
nology has been widely used to evaluate the tumour immune
microenvironment [19, 20]; however, few studies have
applied this method to CRC epithelial cells to predict CRC
prognosis.

In this study, we identified marker genes of CRC epithe-
lial cell subsets using scRNA-seq analysis, determined the
prognostic significance of nine malignant epithelial cell-
(MEC-) related genes (MECRGs) using data from The Can-
cer Genome Atlas (TCGA) and the Gene Expression Omni-
bus (GEO), and integrated the MECRG-based risk score and
clinical traits to construct a nomogram for the prediction of
CRC patient prognosis.

2. Materials and Methods

2.1. Data Availability. ScRNA-seq data of four CRC samples
were downloaded from the GEO database (https://www.ncbi
.nlm.nih.gov/geo/) (GSE161277). Relevant clinical informa-
tion related to the CRC samples is provided in Supplemen-
tary Table S1. The dataset comprises four CRC samples,
four adenoma samples, three normal tissue samples, one
paracancer sample, and one blood sample [21]. Tissue
samples other than the CRC samples were not considered
in this study. Transcriptome data of 473 CRC samples and
41 nontumour tissues were obtained from the TCGA
database (https://portal.gdc.cancer.gov/), including 435
CRC samples with matched clinical data. The extracted
clinical information included sex, age, and stage. TCGA-
CRC samples with complete clinical information were used
to construct the training set used to develop a prediction
score. A total of 232 CRC samples with complete clinical
information obtained from the GEO database (GSE17538)
were used as the external validation set.

2.2. scRNA-seq Data Processing. The scRNA-seq data of the
four CRC samples were processed using the R language
(v4.1.0; https://www.r-project.org/) and the “Seurat” package
[22] (https://cran.r-project.org/web/packages/Seurat/index
.html). The “harmony” package was used to remove batch
effects from the scRNA-seq data of the four CRC samples.
First, we determined the percentage of mitochondrial genes
in each cell using the “PercentageFeatureSet” function with
the parameter set to pattern = “^MT-”. Subsequently,
using the “subset” function, genes expressed in <10 cells
and cells expressing <200 genes were eliminated. Further,
we excluded noncells and cell aggregates. Cell samples
with a mitochondrial gene proportion < 15% were included
in the subsequent analysis and logarithmically normalized.
Principal component analysis (PCA) was used for unsu-
pervised clustering, and the “JackStraw” function was used
to determine and visualise the number of principal com-
ponents. We used nonlinear dimension reduction (t-dis-
tributed stochastic neighbour embedding; t-SNE)
clustering and the “FindAllMarkers” function (parameters:
minimum% = 0:3, log function threshold = 0:25) to identify
marker genes based on between-cluster differences. The
cell clusters were then annotated based on reported cell-
specific marker genes [23–29].

2.3. Analysis of Chromosome Copy Number Variation (CNV)
and Screening of MEC Marker Genes. To distinguish epithe-
lial cell malignancy, we identified chromosome CNV in each
sample using the “infercnv” package [30] (https://
github.com/broadinstitute/inferCNV; default parameters).
Using immune cells as a reference [31], we calculated CNV
scores for epithelial cell subsets and defined the epithelial cell
subset showing a median CNV score > 1,000 as the MEC
subset, which was used for subsequent analysis. Differences
in CNV scores between epithelial cell clusters were com-
pared using the Kruskal–Wallis test. We then identified
marker genes in the MEC subset based on a jlog 2ð f old cha
ngeÞj > 0:5 and a false discovery rate ðFDRÞ < 0:01.
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2.4. Analysis of Differential Gene Enrichment of Epithelial
Cell Subsets. The potential biological mechanisms of the
MEC marker genes were determined using the “cluster-
Profiler” (https://bioconductor.org/packages/release/bioc/
html/clusterProfiler.html) and “org.Hs.eg.db” (https://
www.bioconductor.org/packages/release/data/annotation/
html/org.Hs.eg.db.html) packages. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were performed, using a q value <
0.05 to determine statistically significant enrichment.

2.5. MEC Marker Gene Analysis Using Weighted Gene
Correlation Network Analysis (WGCNA). WGCNA can be
used to find modules of correlated genes and identify
disease-related biomarkers. We used the WGCNA R
package [32] (https://horvath.genetics.ucla.edu/html/Coex-
pressionNetwork/Rpackages/WGCNA/) to identify MEC
marker genes related to CRC. We generated a similarity
matrix between MEC marker genes using the Pearson corre-
lation analysis and then calculated an adjacency matrix and
constructed a topological overlap matrix. Next, we plotted a
tree diagram of modules and clustered closely related MEC
marker genes within the modules using hierarchical cluster-
ing. The MEC marker genes in the final correlation module
(P < 0:05) were used for subsequent analysis.

2.6. Construction and Validation of the MECRG Signature.
The univariate Cox analysis was used to find MECRGs sig-
nificantly related to overall survival (OS) in the TCGA-
CRC cohort, and a forest map was plotted. MECRGs were
identified using least absolute shrinkage and selection oper-
ator (LASSO) analysis, using 10-fold cross-validation and
1,000 iterations to determine the minimum value of the pen-
alty parameter (λ) and construct a MECRG signature. The
regression coefficients of the nine MECRGs thus identified
were calculated using the “predict” function. The following
formula was used to calculate the risk score:

MECRG risk score =〠X,G ∗ coef G, ð1Þ

where “coef G” is the regression coefficient and “X G” describes
the expression levels of the MECRGs. Patients from the TCGA-
CRC training cohort were divided into high- and low-risk
groups according to themedian value of theMECRG risk score.
A Kaplan–Meier survival curve was used to explore differences
in survival and prognosis between the two groups. We then
used a receiver operating characteristic (ROC) curve to evaluate
the predictive value of theMECRG signature. Finally, the signa-
ture was validated using the GSE17538 GEO dataset.

2.7. Analysis of the Prognostic Accuracy of the MECRG Risk
Score. Combining the MECRG risk score with clinical fea-
tures, we used univariate and multivariate Cox analyses to
assess whether the risk score could serve as an independent
prognostic factor. Using the training and validation sets,
we then performed a survival analysis of the MECRG signa-
ture for patients of different clinical subgroups. Additionally,
we identified the relationships between MECRG risk groups

and clinical traits (including sex, age, and TNM stage) and
generated a heat map.

2.8. Gene Set Enrichment Analysis (GSEA) of the MECRG
Signature. Patients in the TCGA-CRC training cohort were
grouped according to the median value of the risk score
and we used GSEA to evaluate the functions of and signal-
ling pathways associated with MECRGs in the high- and
low-risk groups, using P < 0:05 as a threshold. The
“AUCell” package (https://www.rdocumentation.org/pack-
ages/msigdbr/versions/7.4.1) was used to present the
results of enrichment analysis according to cell subsets.

2.9. Construction of a MECRG Nomogram. Using the train-
ing set, we integrated the three independent prognostic fac-
tors of age, stage, and MECRG risk group to plot a MECRG
nomogram capable of predicting the 1-, 3-, and 5-year OS of
CRC patients for clinical application. ROC and calibration
curves were used to evaluate the predictive value of the
MECRG nomogram, and feasibility was confirmed by exter-
nal validation using the GSE17538 GEO dataset.

2.10. Statistical Analysis. The “survival” (https://cran.r-pro-
ject.org/web/packages/survival/index.html) and “survmi-
ner” (https://cran.r-project.org/web/packages/survminer/
index.html) packages were used to construct Kaplan–
Meier survival curves. The log-rank test was used to deter-
mine significant differences in survival between the high-
and low-risk groups according to the training and validation
datasets. LASSO regression was performed using the “glmnet”
package (https://cran.r-project.org/web/packages/glmnet/
index.html), and the “timeROC” package (https://cran.r-pro-
ject.org/web/packages/timeROC/index.html) was used to gen-
erate the ROC curve to evaluate model accuracy. The
univariate and multivariate Cox regression analyses were used
to determine the independent predictors of OS outcomes in
CRC patients. The “rms” package (https://cran.r-project.org/
web/packages/rms/) was used to construct the nomogram
model. Comparisons between two groups were made using
the Wilcoxon rank sum test, and comparisons between multi-
ple groups were made using the Kruskal–Wallis test. Correla-
tion analysis was conducted using the Pearson method.
P < 0:05 was considered significant.

3. Results

3.1. CRC scRNA-seq Data Analysis.We obtained 15,465 cells
from the four CRC samples. After applying the screening
criteria, 8,798 high-quality cell samples were obtained. Gene
numbers (nFeature_RNA), sequencing depth (nCount_
RNA), and mitochondrial gene percentage (percent.mt) are
shown in Supplementary Figure S1. The Pearson
correlation coefficient between gene count and sequencing
depth was 0.92 (Supplementary Figure S2), suggesting a
positive correlation. PCA used to classify the high-quality
cells identified 40 principal components (Supplementary
Figure S3), and t-SNE of the first 11 principal components
(P < 0:05) (Supplementary Figure S4) allowed visualisation
of the high-dimensional CRC scRNA-seq data and the
distribution of the cell subsets, as well as classification of
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the cells into 18 subclasses (Figures 1(a) and 1(b)). Among
the 18 subclasses, clusters 0, 4, 7, 9, 10, and 11 were
identified as epithelial cell subtypes 1, 2, 3, 4, 5, and 6,
respectively, based on the presence of epithelial cell marker
genes (EPCAM, KRT19, and CDH1), clusters 2, 12, 13, 15,
and 17 were identified as B cell subsets (CD79A, MS4A1,
and CD19), clusters 1, 3, 6, and 8 were identified as T cell
subsets (CD3D, CD8A, and CD3E), clusters 5 and 16 were
identified as macrophage subsets (CD14, CD68, and
CD163), and cluster 14 was identified as an endothelial cell
subset (IL3RA, SERPINF1, and CCDC88A). For the
purpose of selecting epithelial cell subsets with high
malignancy, we did not merge the epithelial cell subsets.
Based on the above annotation effects, we summarised the
final cell subpopulation annotations in Figure 2(a). In
addition, we calculated the proportions of the five cell
types in the four CRC samples, which revealed that the
epithelial cell subpopulation accounted for a relatively large
fraction (Figure 2(b)). The five most strongly expressed
marker genes in each cell subset are shown in Figure 2(c).

3.2. Evaluation of Chromosome CNV in the Epithelial Cell
Subsets. We next determined the chromosome CNV in each
sample based on the transcriptome data to evaluate the
degree of malignancy in the epithelial cell subsets. We
observed low CNV in the immune cell subsets (macro-
phages, B cells, and T cells) in control samples, whereas high
CNV was observed in epithelial cells. Chromosome amplifi-
cation mainly occurred in chromosomes 7, 8, 9, 12, 13, 16,
19, 20, and 21, and deletions were most prevalent in chro-
mosomes 4, 6, 8, 12, 14, 15, 17, 18, 19, and 22
(Figure 3(a)). The MEC subpopulation was screened using
a median CNV score > 1,000 as the threshold. Notably, the
CNV scores for epithelial cell subtypes 1 through 5 were
more significant than epithelial cell subtype 6 (Figure 3(b)
and Supplementary Table S2), suggesting a higher degree
of malignancy of CRC lesions associated with these cell
subsets. Therefore, we defined these as MEC subsets, and,
using jlog 2ð f old changeÞj > 0:5 and FDR < 0:01 as
thresholds, we identified 1,259 marker genes
(Supplementary Table S3), and we speculated that 1259
MEC marker genes function differently in CRC than in
normal colonic epithelial cells and therefore require further
analysis.

3.3. GO and KEGG Enrichment Analyses of MEC Subset
Marker Genes. We performed GO function (Figure 4(a))
and KEGG pathway (Figure 4(b)) enrichment analyses of
the 1,259 marker genes in the five MEC subsets to determine
their possible biological functions. We found that the differ-
entially expressed genes in the MEC subsets were mainly
involved in processes associated with ATP metabolism, focal
adhesion, formation of cell–substrate junctions, cadherin
binding, formation of adherens junctions, reactive oxygen
species (ROS), and thyroid cancer. Notably, cell–substrate
junction formation, calmodulin binding, and adhesion junc-
tions are closely related to the characteristics of epithelial
cells themselves, ROS is strongly associated with tumor pro-
gression, and as thyroid cancer and CRC are both epithelial-

derived malignancies, we hypothesised that common epithe-
lial cell-related genes might be involved in the development
of both. These results tentatively suggest that marker genes
of the MEC subpopulation are involved in the occurrence
and progression of CRC mainly through the above-
mentioned biological mechanisms.

3.4. WGCNA of MEC Marker Genes. Using the TCGA-CRC
cohort, we performed WGCNA of the expression profiles of
the identified 1259 marker genes. We clustered the MEC
genes into modules associated with clinical traits (“tumour”
and “normal”) based on a soft threshold of β = 7. As shown
in Figure 5, to prevent meaningful MEC marker genes from
being missed, with the exception of the turquoise module
(P > 0:05), all genes in the remaining modules were signifi-
cantly associated with clinical characteristics (“tumour”
and “normal”) (P < 0:05) and were used in subsequent anal-
yses. To build a clinical prediction model by linking to the
clinical characteristics of CRC patients, we initially identified
787 genes significantly associated with clinical characteristics
(“tumour” and “normal”) and further identified MEC
marker genes associated with survival prognosis.

3.5. Establishment and Validation of a MECRG Signature for
Predicting CRC Patient Survival. The univariate Cox analysis
(Figure 6(a)) and LASSO regression analysis (Supplemen-
tary Figure S7) of the TCGA-CRC training cohort
identified 47 MEC marker genes capable of predicting OS,
the regression coefficients of the nine MECRGs were
calculated using the “predict” function, and nine MECRGs
were identified based on the minimum λ (λ = 0:01970):
galectin 2 (LGALS2), glycerophosphodiester
phosphodiesterase 1 (GDE1), monocyte chemoattractant
protein 1 (MPC1), bone marrow stromal cell antigen 2
(BST2), tropomyosin 2 (TPM2), PRELI domain-containing
2 (PRELID2), G protein subunit gamma 5 (GNG5),
calcyphosin (CAPS), and calcium voltage-gated channel
subunit alpha 1D (CACNA1D). Validation using the
GSE17538 data identified BST2, TPM2, and CAPS as risk
genes (hazard ratio ðHRÞ > 1) and LGALS2, GDE1, MPC1,
GNG5, PRELID2, and CACNA1D as protective genes
(HR < 1). The MECRG risk score was defined as follows: ð
–0:13614 ∗ expression of LGALS2Þ + ð–0:60881 ∗ expression
of GDE1Þ + ð–0:49609 ∗ expression of MPC1Þ + ð–0:20530
∗ expression of GNG5Þ + ð0:05613 ∗ expression of BST2Þ + ð
0:12894 ∗ expression of TPM2Þ + ð–0:16624 ∗ expression of
PRELID2Þ + ð0:48635 ∗ expression of CAPSÞ + ð–0:83941 ∗
expression of CACNA1DÞ. The final risk scores for all CRC
samples in the training and validation cohorts are shown
in Supplementary Tables S4 and S5. The MECRGs were
predominantly distributed in the epithelial cell subsets
(Figure 6(b)).

Next, we divided the patients into high- and low-risk
groups according to the median MECRG risk score. The
Kaplan–Meier survival analysis demonstrated that in the
TCGA-CRC training and GSE17538 validation cohorts, the
survival time of the high-risk group was shorter than that
of the low-risk group (P < 0:001) (Figures 6(c) and 6(d)).
In both cohorts, an increase in the risk score was
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accompanied by an increase in patient mortality
(Figures 6(e) and 6(f)). The area under the ROC curve
(AUC) at 1, 3, and 5 years was 0.746, 0.726, and 0.710,
respectively, in the training cohort, and 0.618, 0.668, and

0.658, respectively, in the validation cohort (Figures 6(g)
and 6(h)). These data indicated that the MECRG risk score
shows good sensitivity and specificity for predicting the
prognosis of CRC patients.
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Figure 1: Characterisation of scRNA-seq from 15,465 cells. (a) The cells were classified into 18 subsets using the t-SNE algorithm.
(b) Distribution ratios of the cell subsets in the four CRC samples.
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Figure 2: Characteristics of the cell subsets. (a) Annotated cell subsets. (b) Proportions of the various types of cells in the four CRC samples.
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3.6. Independent Prognostic Value of the MECRG Risk Score.
To determine whether the MECRG risk score can predict
prognosis independently of traditional clinical features, such
as age, sex, and TNM stage, we performed univariate and
multivariate Cox regression analyses. In the training cohort,

age (HR = 1:029 and 1.040, 95% confidence interval (CI):
1.010–1.048 and 1.021–1.060, respectively; P = 0:002 and P
< 0:001), TNM stage (HR = 2:068 and 2.106, 95% CI:
1.628–2.627 and 1.642–2.701, respectively; P < 0:001), and
the MECRG risk score (HR = 1:294 and 1.234, 95% CI:
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Figure 4: Functional enrichment analysis of marker genes in the MEC subsets. Results of GO function (a) and KEGG pathway (b)
enrichment analyses.
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1.200–1.396 and 1.139–1.336, respectively; P < 0:001) were
independent predictors of OS. Analysis of the GSE17538 val-
idation cohort confirmed that TNM stage (HR = 2:712 and
3.027, 95% CI: 2.077–3.541 and 2.323–3.945, respectively;
P < 0:001) and the MECRG risk score (HR = 1:138 and
1.298, 95% CI: 1.005–1.289 and 1.127–1.496, respectively;
P = 0:042 and P < 0:001) were independent predictors of
OS (Figure 7). The above results indicated that the MECRG

risk score was an independent prognostic factor in both the
training and validation sets.

3.7. Correlation between MECRG Risk Groups and Clinical
Features.We evaluated the correlation between clinical traits
and risk groups among the 435 patients in the TCGA-CRC
training cohort and the 232 CRC patients in the GSE17538
validation cohort (with complete clinical information). The
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Figure 5: MEC marker genes associated with CRC. (a) Dendrogram of MEC subset marker genes obtained by WGCNA according to colour.
(b) Correlations between characteristic genes of different modules and CRC.
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Figure 6: Identification and validation of MECRGs in the TCGA-CRC training and GSE17538 validation cohorts. (a) Univariate Cox analysis
was used to screen MECRGs with prognostic significance. (b) Distribution of MECRGs in cell subsets. (c and d) Kaplan–Meier survival curve
showing the prognostic value of the MECRG signature in the training cohort (c) and the validation cohort (d). (e and f) Distribution of the
MECRG risk scores and survival status of CRC patients in the training cohort (e) and validation cohort (f). ROC curve representing the
efficiency of the MECRG signature in predicting 1-, 3-, and 5-year OS in CRC patients in the training cohort (g) and validation cohort (h).
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patients were grouped according to sex (male or female), age
(≤65 or >65 years), and TNM stage (I–II or III–IV), and
analyses were performed using the log-rank test and
Kaplan–Meier analysis. We found that among female and
male patients (P < 0:05), patients aged >65 years and ≤65
years (P < 0:05), and patients at TNM stage III–IV
(P ≤ 0:001), those in the high-risk group had a shorter sur-
vival time than those in the low-risk group (Figures 8(a)
and 8(b)). A heat map revealed significant differences in
tumour staging between the high- and low-risk groups
(TCGA-CRC: P = 0:024; GSE17538: P = 0:02) (Figures 8(c)
and 8(d)). These results suggested that the MECRG risk
score can significantly affect the survival prognosis of CRC
patients across gender, age, and stage.

3.8. Functional Enrichment Analysis of the MECRG
Signature. We used GSEA to evaluate the functions of and
signalling pathways associated with the genes in the high-
and low-risk groups (Figure 9(a)). The results showed that
the high-risk group was significantly enriched in functions
related to the positive regulation of migration involved in
sprouting angiogenesis, the phosphoinositide 3-kinase
(PI3K)-AKT-mammalian target of rapamycin (mTOR) sig-
nalling pathway, basal cell carcinoma, extracellular matrix
(ECM) receptor interaction, and angiogenesis, whereas the
low-risk group was significantly enriched in apoptosis and
the p53 signalling pathway. Additionally, enrichment analy-
sis of the epithelial cell subsets indicated significant enrich-
ment of activities involving collagen-containing ECM, fatty
acid metabolism, basal cell carcinoma, PI3K-AKT signalling,
and p53 signalling (Figure 9(b)). We found that the above
signalling pathways are more likely to mediate the process
of tumor progression in CRC epithelial cells than in other
cell subpopulations.

3.9. Nomogram for Predicting the Prognosis of CRC Patients.
To establish a practical method for predicting the probability
of CRC patient survival, we constructed a MECRG nomo-

gram using the TCGA-CRC training cohort to predict OS
at 1, 3, and 5 years (Figure 10(a)). The predictors included
three clinical features (age, sex, and TNM stage) and the risk
score. ROC curve analysis of nomogram reliability revealed
AUC values at 1, 3, and 5 years of 0.787, 0.806, and 0.777,
respectively (Figure 10(b)). Analysis of the GSE17538 valida-
tion cohort yielded AUC values of 0.843, 0.812, and 0.827,
respectively (Figure 10(c)). The calibration curve showed
that the predicted survival rate agreed well with the actual
survival rate (Figures 10(d) and 10(e)). Our results demon-
strated that the MECRG nomogram constructed in combi-
nation with the clinical characteristics of CRC can provide
good prediction.

4. Discussion

Epithelial adenocarcinoma represents the most prevalent
type of CRC and arises from benign colon adenoma [33].
Studies have shown that in epithelial malignant tumours,
unstable adhesion between epithelial cells strongly correlates
with an increased invasiveness of tumour cells. Recently,
numerous mechanisms underlying cell–cell junctions regu-
lated by E-cadherin expression in epithelial cells have been
discovered [34–36]. Apical-basal polarity is the main charac-
teristic of epithelial cells. Epithelial cell-associated polarity
proteins are associated with the origin and poor prognosis
of colorectal tumours, hepatocellular carcinoma, and endo-
metrial cancer [37–39]. Therapeutic targets based on epithe-
lial cell apical-basal polarity complexes have been reported.
For example, partitioning-defective 6 (Par6) is expected to
be a therapeutic target for breast cancer [37], and atypical
protein kinase C (aPKC) has been suggested as a possible
therapeutic target for gastric cancer [40]. Based on the above
findings, we believed that the discovery of CRC epithelial
cell-related biomarkers would facilitate the development of
new therapeutic and predictive targets for CRC prognosis.
ScRNA-seq technology allows the sequencing of RNA from
individual cells to systematically track the dynamic changes
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Figure 7: Independent prognostic value of the MECRG signature. Univariate and multivariate Cox analyses of the MECRG risk score in the
TCGA-CRC training cohort (a and b) and GSE17538 validation cohort (c and d).
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in individual cells and deepen the understanding of cellular
states and gene expression regulation in pathological disease
processes [41]. scRNA-seq analysis provides analytical detail
on the cellular level [42]. The technology has been recently
applied to study epithelial cells in serous epithelial ovarian
cancer and endometrial cancer [43, 44]. In nontumour
research, scRNA-seq has been used for gene expression pro-
filing of breast epithelial cells during their development [45].
Xu et al. revealed the biological mechanisms implicated in
the involvement of lung epithelial cells in idiopathic fibrosis
using scRNA-seq [46]. Additionally, scRNA-seq technology
has received increasing attention for predicting the progno-
sis of cancer patients. For example, Wang et al. constructed a

model based on 10 biomarkers of pancreatic ductal epithelial
cells to predict the prognosis of patients with pancreatic ade-
nocarcinoma [47], Zheng et al. [48] screened nine fibroblast
marker genes from scRNA-seq CRC data as potential prog-
nostic markers, and Li et al. [49] identified seven macro-
phage marker genes from breast cancer scRNA-seq data as
promising diagnostic and prognostic biomarkers.

In our study, we constructed a CRC prognosis model by
analysing scRNA-seq data from CRC epithelial cells. Specif-
ically, we analysed scRNA-seq data of 15,465 cells from four
CRC patients, followed by PCA for unsupervised clustering
and the identification of MEC subsets based on chromosome
CNV analysis. We then used WGCNA, univariate Cox, and
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Figure 8: Analysis of the relationships between the MECRG signature and clinical features using the TCGA-CRC training and GSE17538
validation cohorts. (a) Survival analysis of the MECRG signature in clinical features based on the training cohort. (b) Survival analysis of the
MECRG signature in clinical features based on the validation cohort. (c and d) Heat maps showing the correlation between MECRG risk
grouping and TNM stage in the training cohort (c) and validation cohort (d). ∗∗∗P < 0:001, ∗∗P < 0:01, and ∗P < 0:05.
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LASSO regression analyses to construct a MECRG signature
of nine genes related to CRC prognosis. We validated the
MECRG signature using both training and validation
cohorts. The Kaplan–Meier analysis confirmed a signifi-
cantly shortened OS for CRC patients with a high MECRG
risk score. Furthermore, the univariate and multivariate
Cox regression analyses showed that the MECRG risk score
may be an independent predictor of OS. Based on the
MECRG risk score coupled with the clinical characteristics
of sex, age, and TNM stage (III–IV), low-risk patients
showed significantly longer survival times than high-risk
patients. It is worth noting that there were significant differ-
ences between the MECRG signature-based risk groups at
different CRC stages. Furthermore, the MECRG nomogram
showed excellent prediction in both the training and valida-
tion sets, suggesting that it may efficiently predict CRC
patient survival in the clinical setting.

Elevated expression of LGALS2 reportedly inhibits the
development of CRC and lymph nodemetastasis of gastric can-
cer [50, 51]. GDE1 expression is significantly reduced in drug-
resistant ovarian cancer samples [52]. Consistent with these
findings, our results suggested that high expression of LGALS2
and GDE1 in CRC patients implies a good prognosis. However,
the relationship betweenGDE1 and CRC requires further study.
Lysine demethylase 5A (KDM5A) regulates MPC1 expression,
and the KDM5A–MPC1 axis is involved in regulating the mes-
enchymal characteristics of cancer cells during EMT [53]. Schell
et al. [54] found that loss of MPC1 expression enhances the
Warburg effect and promotes the proliferation of CRC cells.
Deletion ofMPC1 is related to a poor prognosis in glioblastoma
[55]. Furthermore, BST2 activates the nuclear factor-κB-Snail-
Raf kinase inhibitor protein axis to promote tumour invasion
and metastasis via EMT [56, 57]. BST2 overexpression corre-
lates with poor prognosis in CRC, stomach cancer, and
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Figure 9: Functional enrichment analysis of the MECRG signature and distribution of enriched pathways in the cell subsets. (a) GSEA of the
MECRG high- and low-risk groups. (b) Pathways enriched in the cell subsets of the MECRG risk groups.
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oesophageal cancer [58]. BST2 expression is specifically upreg-
ulated in oral squamous cell carcinoma and is responsible for
drug resistance [59]. BST2 is more highly expressed in breast
cancer cells derived from patients presenting bone metastasis
than in human primary breast cancer cells [60]. Furthermore,
Mukai et al. [58] showed that BST2 knockout in vitro inhibited
the proliferation of gastric cancer cells. Together, these findings
suggest thatMPC1 is a protective gene and BST2 a risk gene in
CRC, which is consistent with the results of the present study.
CAPS is a calcium-binding protein related to cell proliferation
and differentiation signals [61] and associated with poor prog-
nosis in CRC and gliomas and drug resistance in breast cancer
[62–64], which is consistent with our results. Abnormal expres-
sion of TPM2 is involved in actin cytoskeleton remodelling dur-
ing EMT of lens epithelial cells [65]. Shibata et al. [66] showed
that downregulation of TPM2 expression decreased EMT in
injured mouse lens epithelium, resulting in delayed lens wound
healing. Additionally, TPM2 is upregulated in ovarian cancer,
liver cancer, and breast cancer [67–69]. Zhou et al. [70] found
that elevated TPM2 expression in CRC patients was predictive
of poor prognosis, which is in line with the findings of the pres-
ent study. However, Ma et al. [71] showed that TPM2 expres-
sion was downregulated in CRC; therefore, the precise
mechanism of TPM2 in CRC requires clarification. Patients
with glioma exhibiting elevatedGNG5 expression have a shorter
survival time [72], and patients with head and neck squamous
cell carcinoma and elevated PRELID2 expression have a poor
prognosis [73]. Tan et al. [74] reported that excessive aldoste-
rone secretion from aldosteronoma is related to a CACNA1D
mutation. We identified GNG5, PRELID2, and CACNA1D as
protective genes in CRC patients; however, further basic exper-
imental studies of these three genes in CRC are needed. Addi-
tionally, we showed that MPC1, BST2, and TPM2 are closely

related to EMT, suggesting that these molecules are potentially
important EMT-related therapeutic targets.

GSEA suggested that genes related to collagen-containing
ECM, fatty acid metabolism, PI3K-AKT signalling, p53 signal-
ling, EMT, and other related pathways were enriched in epithe-
lial cell subsets. Among these, EMT-related pathways were
more significantly enriched in epithelial cell clusters 7, 9, and
10. Activation of the PI3K-AKT signalling pathway is a key fea-
ture of the EMT programme during tumour progression [75].
The expression of genes involved in fatty acid synthesis is
upregulated in CRC epithelial cells, where the accumulation of
polyunsaturated fatty acids contributes to the development of
CRC [76]. Targeting fatty acid synthesis genes may become a
new strategy for the treatment of CRC in the future. ECM
remodelling can affect the signalling in the tumour microenvi-
ronment [77]. The P53 signalling pathway is a common tumour
suppressor pathway [78], and we speculate that epithelial cells
may promote CRC progression by interfering with this path-
way. Thus, in the CRC microenvironment, epithelial cells may
mediate the development of CRC through collagen-containing
ECM, fatty acid metabolism, PI3K-AKT signalling, p53 signal-
ling, EMT, and other pathological mechanisms.

This was a retrospective study that used scRNA-seq data
and bulk data from public databases to construct a model for
predicting survival in CRC patients. However, this study had
some limitations. First, the mechanisms of GDE1, PRELID2,
GNG5, and CACNA1D in CRC have not been clarified; there-
fore, the data suggesting their prognostic value need to be val-
idated. Second, we did not evaluate tumour size, metastasis,
surgery, postoperative chemoradiotherapy, and other prog-
nostic factors in this study. This may have affected the predic-
tive accuracy of the model. In future studies, we will include
additional data to increase the accuracy of the model.
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Figure 10: Construction of a nomogram based on the MECRG signature. ROC curve analysis of the nomogram (a) using the TCGA-CRC
training cohort (b) and the GSE17538 validation cohort (c). (d and e) Calibration curves for the nomogram using the training cohort (d) and
the validation cohort (e).
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5. Conclusion

We evaluated epithelial cell marker genes with prognostic
significance in CRC using scRNA-seq data and bulk data
and generated a MECRG signature and risk score, which
was confirmed to show independent prognostic efficacy for
CRC patients. A nomogram based on the MECRG signature
along with specific clinical features demonstrated accurate
prediction of CRC patient survival, suggesting its potential
utility for clinical application.
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