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Background. Ageing is associated with increased incidence of peri-implantitis but the roles of ageing-associated biological
mechanisms in the occurrence of peri-implantitis are not known. This study is aimed at performing integrative bioinformatic
analysis of publically available datasets to uncover molecular mechanisms related to ageing and peri-implantitis. Methods. Gene
expression datasets related to ageing and peri-implantitis (PI) were sought, and differentially expressed genes (DEGs) were
analysed. Ageing-related genes were also identified from the “Aging Atlas” database. Using intersection analysis, an age-
related-PI gene set was identified. Functional enrichment analysis for enriched GO biological process and KEGG pathways,
protein-protein interaction (PPI) network analysis, correlation analysis, and immune cell infiltration analysis to determine
high-abundance immune cells were performed. Least absolute shrinkage and selection operator (LASSO) logistic regression
identified key age-related-PI genes. Transcription factor-gene and drug-gene interactions and enriched KEGG pathways for the
key age-related-PI genes were determined. Results. A total of 52 genes were identified as age-related-PI genes and found
enriched in several inflammation-associated processes including myeloid leukocyte activation, acute inflammatory response,
mononuclear cell differentiation, B cell activation, NF-kappa B signalling, IL-17 signalling, and TNF signalling. LYN,
CDKN2A, MAPT, BTK, and PRKCB were hub genes in the PPI network. Immune cell infiltration analysis showed activated
dendritic cells, central memory CD4 T cells, immature dendritic cells, and plasmacytoid dendritic cells were highly abundant
in PI and ageing. 7 key age-related PI genes including ALOX5AP, EAF2, FAM46C, GZMK, MAPT, RGS1, and SOSTDC1 were
identified using LASSO with high predictive values and found to be enriched in multiple neurodegeneration-associated
pathways, MAPK signalling, and Fc epsilon RI signalling. MAPT and ALOX5AP were associated with multiple drugs and
transcription factors and interacted with other age-related genes to regulate multiple biological pathways. Conclusion. A suite
of bioinformatics analysis identified a 7-signature gene set highly relevant to cooccurrence of ageing and peri-implantitis and
highlighted the role of neurodegeneration, autoimmune, and inflammation related pathways. MAPT and ALOX5AP were
identified as key candidate target genes for clinical translation.

1. Introduction

Dental implants have emerged as a widely practised glob-
ally [1] and predictable modality for replacement of missing
teeth [2] with high success rates [3]. Dental implant tech-
nology is also rapidly evolving to enable improved treat-
ment outcomes [4]. Loss of teeth increases with age [5],
and thus, a high proportion of patients who require tooth
replacement and receive dental implants are elderly [6].
While dental implants show high treatment success rates

in seniors [7], increased rates of biological complications
including peri-implantitis [8] and implant failure [9]
among elderly are also reported.

Peri-implant diseases include peri-implant mucositis
and peri-implantitis, which comprises a plaque biofilm-
associated inflammatory destruction of implant supporting
bone, marked by bone-loss, bleeding on probing and peri-
implant pocket formation, analogous to periodontitis [10],
and is a chief cause of implant failure [11] or severe compli-
cations such as osteonecrosis in susceptible patients [12]. As
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with periodontitis [13], peri-implantitis is found to occur at
higher rates among elderly individuals [8, 14]. However, the
two diseases have important differences owing to the differ-
ence in the nature of tissues surrounding the dental implant,
including a weaker soft-tissue barrier at the implant-mucosa
interface [13]. Furthermore, the treatment of peri-
implantitis has less predictable outcomes as compared to
periodontitis [15, 16], which necessitates a greater under-
standing of underlying disease mechanisms. Molecular
mechanisms underlying peri-implantitis pathology have
been researched [17]. Elderly patients may be more likely
to have known risk factors and indicators for peri-
implantitis such as diabetes mellitus, osteoporosis, or certain
medications [7], which could account for higher rates of
peri-implantitis. The ageing process is associated with sev-
eral alterations in tissue and cellular turnover including
“immunosenescence” [18]. Age greater than 65 years has
been independently associated with peri-implantitis in mul-
tiple studies [8, 14, 19]. It can be hypothesised that ageing-
related cellular processes might also contribute to increased
incidence of peri-implant disease independently from other
known risk factors. At present, little is known about
ageing-related molecular processes and gene-expression pat-
terns that may be linked to peri-implantitis.

Therefore, the present investigation aimed to uncover age-
ing related transcriptomic changes that could be candidate
mechanisms functional in peri-implantitis and comprehen-
sively investigate related molecular mechanisms including
biological pathways, transcription factors, and pharmacologi-
cal agents. These data can provide important insights into age-
ing related biological pathways that may predispose elderly
patients to peri-implant diseases. Such findings could uncover
experimental research directions for clinical translation in bio-
material design and therapeutics to prevent and intercept peri-
implant diseases among elderly patients.

2. Material and Method

2.1. Datasets. We downloaded the peri-implantitis (PI)
microarray datasets GSE33774 [17] and GSE106090 [20]
from the GEO database (http://www.ncbi.nlm.nih.gov/)
and selected PI-related samples. Next, we downloaded
ageing-related gene expression datasets GSE83382 and
GSE180588 [21]. We selected gingival tissue samples associ-
ated with ageing, where the GSE83382 comprised high
throughput sequencing data and the GSE180588 comprised
microarray data. The datasets used for this analysis are
shown in Table 1. We further download ageing-related genes
from the database “Aging Atlas” (https://ngdc.cncb.ac.cn/
aging/age_related_genes).

2.2. Data Preprocessing. If the downloaded dataset type was
an array, we converted the probe id to gene symbol based
on the platform information corresponding to the dataset.
If the dataset type was high throughput sequencing, we first
downloaded the annotation file from GENCODE (https://
www.gencodegenes.org/human/) and then obtained the
mapping information for the gene symbol and probe ID
from the dataset corresponding platform. We used the anno-
tation file to map the probe ID to the gene symbol, and we
performed the conversion of the probe ID to the gene sym-
bol. When one probe ID matched multiple gene symbols, we
performed deduplication of the gene symbol with the mean
of the sample expression value and finally obtained the
transformed expression matrix. After obtaining the gene
symbol expression matrix, we performed log2 conversion
(log2) for the datasets with large sample expression values
(GSE33774 and GSE180588). When the expression value of
a gene was 0 in more than half of the samples, then, we
removed that gene from the expression matrix.

2.3. Differential Gene Expression Analysis. We used the
“limma” R package (R version 4.1.3) to perform differen-
tial gene expression analysis of the PI datasets and the
ageing datasets, with the comparison method case vs. control.
To obtain potential ageing-related PI genes, we selected dif-
ferentially expressed genes (DEG) based on the results of
each dataset’s analysis. For GSE33774, GSE180588, and
GSE83382, we selected the genes of p value < 0.05 and jlog
ðfold changeÞ j > 0:5 as differentially expressed genes. For
GSE106090, we selected the genes p < 0:05 and jlog ðfold
changeÞj > 1:5 as DEG.

2.4. Prediction of Ageing-Related PI Genes. The genes that
were significantly upregulated or downregulated in the 2 sets
of PI datasets were considered PI-DEGs. The genes that were
up- or downregulated in the ageing datasets were considered
as ageing-DEGs. Next, we extracted the intersection of these
two sets, which were considered potential ageing-related PI-

Table 1: PI and age sample information statistics.

Case Control Platforms

GSE33774 7 (peri-implantitis patient) 8 (healthy individual) GPL6244

GSE106090 6 (inflamed peri-implant tissue) 6 (healthy periodontal tissue) GPL21827

GSE83382 3 (old) 3 (young) GPL11154 (Illumina HiSeq 2000)

GSE180588 9 (gingival tissue at BL, aged NHP) 9 (gingival tissue at BL, young NHP) GPL17015

Table 2: Counts of different expressed genes for PI and age.

Datasets
PI Age

GSE33774 GSE106090 GSE83382 GSE180588

p value p < 0:05 p < 0:05
|Log2(FC)| Value > 0:5 Value > 1:5 Value > 0:5
DEG up 271 1632 1781 641

DEG down 891 1361 1363 346

Total DEG 1162 2993 3144 987
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genes. We labelled these genes age-related PI gene set 1. In
addition, we intersected PI DEGs and ageing-related genes
obtained from the Ageing Atlas database and labelled these
genes as age-related PI gene set 2. Finally, we merged age-
related PI gene set 1 and age-related PI gene set 2 to obtain
the final age-related PI gene set. These genes were signifi-
cantly expressed in peri-implantitis and are also closely
related to ageing.

2.5. Functional Enrichment for Age-Related PI Genes. In
order to observe the gene expression of age-related PI genes
in different samples, we extracted the expression values of
age-related PI genes in the PI and age datasets and then used
the “pheat map” in R to draw a heat map for display. The
“ClusterProfiler” package in R was then used to analyse the
biological process and biological pathways enriched in these
genes.

2.6. PPI Network for Age-Related PI Genes. We obtained the
protein-protein interaction (PPI) relationship pairs between
the age-related PI genes and other genes from the HPRD
database (http://www.hprd.org/) and the BIOGRID (http://
thebiogrid.org/) database. We merged the PPI data obtained
from the two databases and built a PPI network using Cytos-
cape (version 3.8). We mapped other ageing-related genes in
the Ageing Atlas database into the network, analysing the rela-
tionship with age-related PI gene and other ageing-related
genes in the biological network. We analysed the nature of
the network topology using the cyberscape plug-in network
analyzer after the network was built. Finally, we filtered the
hub nodes according to the nature of the topology.

2.7. Correlation Analysis between Age-Related PI Gene. To
analyse the correlation among age-related PI genes in PI,
we combined case and control samples from the two sets
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Figure 1: (a, b) Pi and (c, d) Age differentially expressed gene distribution volcano map.
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in PI and then obtained the expression values of age-related
PI genes in the samples. Finally, we used the Pearson corre-
lation coefficient to see the relationship between age-related
PI genes over different sample types.

2.8. Immune Cell Infiltration Analysis for PI. A total of 782
immune genes and 28 immune cell types were obtained from
the literature [22] to obtain a total of 782 immune genes and

28 immune cell types. In order to analyse the relationship
between genes in PI and immune cells, we first obtained the
expression matrices of GSE33774 and GSE106090 and then
quantified their GSVA packets using R. With ssGSEA analysis,
we obtained the cell abundance of immune cells in the two data
sets’ samples. We then combined the results of the two sets to
obtain immune cells with relatively high cell abundance in both
datasets by clustering at the case sample level. We used the
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Figure 2: (a) Differential expression gene relationships between the two datasets of PI. A total of 427 PI differentially expressed genes were
obtained, including 297 upregulated genes and 130 downregulated genes. (b) Differential expression gene relationships between the two
datasets of ageing. A total of 172 PI differentially expressed genes were obtained, including 113 upregulated genes and 59 downregulated
genes. (c) Venn diagram showing the intersection of PI differentially expressed genes and the Aging Atlas database. (d) Venn diagram of
PI differentially expressed genes and ageing-related differentially expressed genes. (e) Venn diagram of the two age-related PI genes.
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Pearson correlation coefficient to analyse the correlation
between immune cells and analyse the differences in the abun-
dance between normal and disease samples using a violin plot.
We also used theWilcoxon test to test differences between the
two sets of samples, while analysing differences in case
sample-related immune cell abundance in GSE33774 and
GSE106090.

In addition, we also performed ssGSEA quantitative
analysis of case samples from the ageing datasets
GSE83382 and GSE180588 and finally obtained immune
cells with relatively high cell abundance in both datasets
through hierarchical clustering analysis. Finally, we obtained
high-abundance immune cells in both PI and age.

2.9. Further Screening for Age-Related PI Genes. To further
acquire the important age-related PI genes, we first extracted
the gene expression values of age-related PI genes in the two
datasets of PI. We then performed ANOVA analysis based
on sample type (case and control) to obtain the age-related
PI genes (p value < 0.05) that were significant in both data-
sets. We then used least absolute shrinkage and selection
operator (LASSO) logistic regression to screen the signifi-
cant age-related PI genes. We first merged the two datasets

of PI and then extracted the expression values of significant
age-related PI genes. We used LASSO to build a model for
feature screening according to the sample type. We con-
structed a penalty function to obtain a more refined LASSO
model to achieve the selection of key genes. The genes
obtained by the LASSO analysis can be considered to play
important roles in PI and ageing, which we labelled as key
age-related PI genes. We obtained the expression values of
key age-related PI genes in the two datasets of PI and then
used ROC analysis to predict the effect of hub genes.

2.10. Relationship between High-Abundance Immune Cells
and Key Age-Related PI Gene. We obtained the fraction of
high-abundance immune cells and the expression of key
age-related PI genes in the case samples of PI. Based on
the fraction of high-abundance immune cells, the expression
of key age-related PI genes, and Pearson correlation coeffi-
cient, we analysed the correlation between the high-
abundance immune cells and the key age-related PI genes.

2.11. Key Age-Related PI Gene, Transcription Factor, and
Drug Relationships. We downloaded the transcription factor
(TF) and key age-related PI gene pairs from TRRUST

NF−kappa B signaling pathway
IL−17 signaling pathway
Lipid and atherosclerosis

Rheumatoid arthritis
Amoebiasis

Pertussis
Legionellosis

Alcoholic liver disease
TNF signaling pathway

Viral protein interaction with cytokine and cytokine receptor
Cytokine−cytokine receptor interaction

Coronavirus disease − COVID−19
Hematopoietic cell lineage

Toll−like receptor signaling pathway
Th17 cell differentiation

Inflammatory bowel disease
Chemokine signaling pathway

Transcriptional misregulation in cancer
Kaposi sarcoma−associated herpesvirus infection

Epithelial cell signaling in helicobacter pylori infection

5.0 7.5 10.0 12.5
−Log10 (Pvalue)

Pa
th

w
ay

−Log10 (pvalue)

4

6

8

10

12

Count
4

6

8

10

(b)

Figure 4: Age-related PI gene regulated functions. (a) Biological processes showing significant enrichment of age-related PI genes. (b)
KEGG pathways significantly enriched in the age-related-PI genes.
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(https://www.grnpedia.org/trrust/), cGRNB (https://www
.scbit.org/cgrnb), HTRIdb (http://www.lbbc.ibb.unesp.br/
htri/), ORTI (http://orti.sydney.edu.au/about.html), and
TRANSFAC (http://gene-regulation.com/pub/databases
.html). To analyse the relationship between key age-related
PI genes and drug sensitivity, we first downloaded drug-
gene interactions (version 2022-Feb) from DGIdb (https://
dgidb.genome.wustl.edu/) and then extracted drugs for key
Age-related PI gene and TF gene interactions.

2.12. KEGG Pathways Enriched in Key Age-Related PI Genes.
In order to analyse the biological functional relationships
between key age-related PI genes and other ageing genes,
we extracted the pathways of the key age-related PI gene
and other ageing genes from the KEGG database (https://

www.kegg.jp/). Other ageing genes included the nonkey
age-related PI genes and the ageing gene from the Ageing
Atlas database, with a total of 524 genes. Finally, we used
Cytoscape to map the pathways of key age-related PI genes
and other ageing genes.

3. Results

3.1. Differential Gene Expression Analysis. We used the
“limma” package in R to analyse the differential expression
of PI and ageing-related genes. For the PI dataset
GSE33774, we selected the genes with p value < 0.05 and j
log ðfold changeÞj > 0:5 as differentially expressed genes,
where log 2ðFCÞ > 0:5 indicated upregulated genes, and log
2ðFCÞ < −0:5 indicated downregulated genes. For the PI

Other genes in the aging
atlas database

Age-related PI genes Other genes

Figure 5: Age-related PI gene PPI network. Since there were a large number of nodes, the nodes lower in degree were hidden and nodes
higher in degree were displayed. Nodes in the network include age-related PI genes and genes including other genes in the Aging Atlas
database and nonageing-related genes.
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dataset GSE106090, we selected the genes with p value < 0.05
and jlog ðfold changeÞj > 1:5 as DEGs, of which those with
log 2ðFCÞ > 1:5 were upregulated genes and those with log
2ðFCÞ < −1:5 were downregulated genes.

For GSE180588 and GSE83382 datasets of ageing, we
selected the genes with p value < 0.05 and jlog ðfold change
Þj > 0:5 as DEG, where Log2ðFCÞ > 0:5 indicated upregu-
lated genes, and log 2ðFCÞ < −0:5 indicated downregulated
genes.

The number of DEGs obtained is shown in Table 2. A
volcano plot depicted the distribution of DEGs
(Figures 1(a)–1(d)) in the four datasets, where the top 10
genes with the lowest p values were displayed.

3.2. Age-Related PI Gene Screening. We extracted the
genes that were coupregulated and codownregulated in
the two datasets of PI and finally obtained 427 PI DEGs,
including 297 upregulated genes and 130 downregulated genes
(Figure 2(a)). We extracted the genes that were coupregulated
and codownregulated in the two ageing datasets and obtained
172 ageing-related DEGs, including 113 upregulated genes
and 59 downregulated genes (Figure 2(b)).We obtained a total
of 31 genes that differed significantly in both PI and ageing
(Figure 2(d)), labelled as age-related PI gene set 1.

We obtained a total of 500 ageing-related genes from the
Ageing Atlas database, of which 24 genes showed significant
differences in PI (Figure 2(c)), which were labelled age-
related PI gene set 2. We combined age-related PI gene set
1 and age-related PI gene set 2 to obtain a total of 52 genes.
The three genes MMP1, KCNA3, and IL1B appeared in both
gene sets (Figure 2(e)).

3.3. Biological Functions Enriched in Age-Related PI Genes.
We extracted the expression values of the 52 age-related PI
genes in PI datasets and used heat maps to depict gene
expression (Figure 3(a)). Expression values of the 31 genes
in age-related PI gene set 1 in the ageing dataset were
obtained, displayed as a heat map (Figure 3(b)). From
Figure 3, significant differences in age-related PI genes’
expression values between the case and the control groups
were evident.

We used the “clusterProfiler” package in R for “GO Bio-
logical process” and “KEGG pathway” analysis for the 52
age-related PI genes. We selected pathways with p value <
0.05 as significant and chose the top 25 pathways for presen-
tation (Figures 4(a) and 4(b)). The results showed that the
age-related PI genes mainly regulated biological processes
including myeloid leukocyte activation, positive regulation
of acute inflammatory response, mononuclear cell differenti-
ation, and B cell activation (Figure 4(a)). In addition, age-
related PI genes participated in NF-kappa B signalling path-
way, IL-17 signalling pathway, TNF signalling pathway, and
other related pathways (Figure 4(b)).

3.4. PPI Network of Age-Related PI Genes. We extracted pro-
tein pairs for age-related PI gene interactions from the
HPRD and BIOGRID databases and then used the Cytos-
cape software to build a PPI network (Figure 5). The net-
work consisted of 1172 nodes and 1441 relationship pairs.

We performed a topological property analysis of the net-
work and then arranged the nodes in descending order of
degree, filtering the top 20 (Table 3) with higher degree. As
can be seen from the topological properties, LYN, CDKN2A,
MAPT, BTK, and PRKCB were hub genes in the PPI
network.

3.5. Correlation Analysis between Age-Related PI Gene. We
combined the two datasets of PI to obtain a total of 13 case
samples and 14 control samples. We extracted the age-
related PI genes’ expression values in the pooled samples,
then computed Pearson’s correlation coefficient to analyse
the relationship between the genes, and used the R corrplot
package for depiction (Figures 6(a) and 6(b)).

Based on correlation analysis, we obtained gene relation-
ship pairs that were highly positively correlated in both case
and control samples: CD14 and LY96 (cor = 0:9983, case),
CD14 and DNAJB9 (cor = 0:9982, case), CD14 and BCL2A1
(cor = 0:9974, case), CD14, and BTK (cor = 0:9972, case).

3.6. Immune Cell Infiltration Analysis for PI. We obtained
the immune cells and gene relationships from the literature
[19] and performed ssGSEA analysis for case samples of
the two datasets (GSE33774 and GSE106090) of PI based
on the immune cells and gene relationships. We combined
the results of the two datasets’ analyses and used the “phea-
map” package to depict cellular abundance (Figure 7(a)) of
these immune cells. We extracted the abundance fractions
of the immune cells in the case samples and used hierarchi-
cal clustering to obtain 8 immune cells with relatively high
cell abundance (Figure 7(b)). We also performed ssGSEA
for case samples from the 2 datasets (GSE83382 and

Table 3: The topological characteristic of top 20 age-related PI
gene in PPI networks.

Symbol Degree ASPL BC CC TC

LYN 222 2.660606 0.39286 0.375854 0.006757

CDKN2A 159 3.135931 0.252187 0.318885 0.016009

MAPT 106 3.129004 0.178415 0.31959 0.027576

PRKCB 100 2.85974 0.191758 0.349682 0.012247

BTK 98 2.850216 0.178826 0.350851 0.013164

PDGFRB 80 3.347186 0.104298 0.298758 0.05

GHR 46 3.733333 0.046809 0.267857 0.072011

IL2RB 31 3.203463 0.036329 0.312162 0.038519

CD27 31 3.835498 0.048607 0.260722 0.037634

C1QA 30 3.916017 0.045632 0.255361 0.058333

CD14 30 4.263203 0.042613 0.234565 0.046667

PTGS2 30 3.361039 0.060437 0.297527 0.058333

DNAJB9 28 4.119481 0.0458 0.242749 0.043651

RORA 27 3.986147 0.04784 0.250869 0.045267

MMP3 26 4.594805 0.03939 0.217637 0.057692

IRF4 25 3.998268 0.032101 0.250108 0.06

CD2 21 3.663203 0.024086 0.272985 0.076605

IL1B 21 3.116017 0.057988 0.320922 0.049829

PIM2 20 3.693506 0.027603 0.270745 0.07

UCP2 19 4.522944 0.025891 0.221095 0.105263
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Figure 6: Continued.
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GSE180588) for ageing. Thereafter, we obtained 7 immune
cells with relatively high abundance (Figure 7(c)). Through
ssGSEA (Figure 7), we showed that activated dendritic cells,
central memory CD4 T cells, immature dendritic cells, and
plasmacytoid dendritic cells were highly abundant in both
PI and ageing.

Pearson correlation coefficient was computed to analyse
the correlation of immune cells in the case samples of PI
(GSE33774 and GSE106090) (Figure 8(a)). The results
showed that the activated dendritic cell and the immersive
dendritic cell were highly positively correlated in both
datasets.

The abundance of immune cells in control samples and
case samples of PI datasets (GSE33774 and GSE106090)
was analysed for differences using the Wilcoxon test

(Figures 8(b) and 8(c)). The results showed that 18 immune
cells had significant differences in the dataset GSE33774,
including 4 high-abundance immune cells (activated den-
dritic cell, central memory CD4 T cell, immature dendritic
cell, and plasmacytoid dendritic cell) were significantly dif-
ferent (Figure 8(b)). In addition, we obtained 22 immune
cells with significant differences in the dataset GSE106090,
of which the immature dendritic cell did not have significant
differences, and the other 3 high-abundance immune cells
(activated dendritic cell, central memory CD4 T cell, and
plasmacytoid dendritic cell) had significant differences
(Figure 8(c)).

3.7. Further Screening for Key Age-Related PI Genes. We
extracted the expression values of the age-related PI genes
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Figure 6: Correlation coefficient of age-related PI gene in PI case (a) and control (b). The correlation coefficient of the significance p value >
0.05 is hidden in the figure. The smaller the value of the test result, the more “∗” on the graph, and the correspondence between the p value
and the “∗” sign is ns: p > 0:05; ∗: p ≤ 0:05; ∗∗: p ≤ 0:01; :p ≤ 0:001; :p ≤ 0:0001.
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in the PI dataset (GSE33774 and GSE106090) and then used
ANOVA for variance analysis. We obtained 34 significant
age-related PI genes (p value < 0.01 in two datasets)
(Figure 9(a)) and then used LASSO logistic regression to
remove redundant features of 34 age-related PI genes
(Figures 9(b) and 9(c)). Finally we obtained 7 significant

key age-related PI genes (ALOX5AP, EAF2, FAM46C,
GZMK, MAPT, RGS1, and SOSTDC1).

We extracted the expression values of 7 key age-related
PI genes from GSE33774 and GSE106090 and then
applied the Wilcoxon test for difference analysis. The
results showed that the 7 key age-related PI genes were
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Figure 7: Abundance of immune cells in PI and age samples. (a) Abundance of immune cells in all samples of PI datasets (GSE33774 and
GSE106090). (b) Abundance of immune cells in the case samples of PI datasets (GSE33774 and GSE106090). (c) Abundance of immune cells
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differentially expressed between disease and control sam-
ples in both datasets (Figures 10(a) and 10(b)). We com-
bined the GSE33774 and GSE106090 samples and then
extracted the expression values of key age-related PI genes
in the combined samples and analysed the differences. The
results showed that only SOSTDC1 was not differentially
expressed, and the remaining 6 key age-related PI genes
were differentially expressed between case and control
samples (Figure 10(c)). We performed a ROC analysis
for the 7 key age-related PI genes, which key showed
AUC values that were all greater than 70%, with a high
predictive effect (Figures 10(d)–10(f)).

3.8. Relationship between High-Abundance Immune Cells
and Key Age-Related PI Gene. We further analysed the rela-
tionship between immune cells and key age-related PI genes.
We first obtained the abundance values of 4 high-abundance
immune cells in the case samples of PI and expression values
of 7 key age-related PI genes in the same samples. For each
immune cell and key age-related PI gene, we performed a
correlation analysis. We selected the correlation pairs with
p value < 0.05 and jCorrelationj > 0:75 in the analysis results
for display. The results showed that MAPT, GZMK, and
SOSTDC1 were highly correlated with high abundance of
immune cells (Figure 11).
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Figure 8: Correlation and significance analysis of immune cells in PI. (a) Correlation analysis of immune cells in PI, the lower left half is the
correlation between case samples in GSE106090, and the upper right half is the correlation between case samples in GSE33774. Significant
correlation coefficients (p value < 0.05) are shown. (b) Differential analysis of the abundance of immune cells in the PI dataset GSE33774. (c)
Differential analysis of the abundance of immune cells in the PI dataset GSE106090.
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3.9. Key Age-Related PI Gene, Transcription Factor, and
Drug Relationship. We obtained drugs targeting key age-
related PI genes from the DGIdb database, and then, we
extracted key age-related PI gene and TF relationship pairs.
Then, we used TF as a medium to merge the drug-target
pairs and the TF-target relationship pairs. In addition, we
downloaded drug-TF pairs from the DGIdb database, min-
ing for TF regulated key age-related PI genes. Finally, the
above relationship pairs were integrated to obtain drug-
target-TF relationship pairs (target is key age-related PI
gene). We used Cytoscape software to demonstrate the rela-

tionships among key age-related PI genes, drugs, and TFs
(Figure 12(a)). The network included 1905 nodes and 2459
interrelated edges. The result showed that MAPT and
ALOX5AP obtained were associated with multiple drugs
and regulated by TF.

In addition, we obtained biological pathways enriched in
the key age-related PI genes and other age-related genes
from the KEGG database. Five enriched pathways were
identified including Parkinson disease, pathways of
neurodegeneration-multiple diseases, MAPK signalling
pathway, Fc epsilon RI signalling pathway, and Alzheimer
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Figure 9: Key age-related PI genes screening. (a) ANOVA analysis of age-related PI genes. p value < 0.01 is a significant gene. (b) Change
curves of characteristic gene. The x-axis shows the logarithm of the lambdas, the y-axis shows the variable coefficient, and the x-axis (above)
is the remaining number of variable genes whose variable coefficient is not 0 under the log value of the current lambda. (c) Cross-checking of
the lambda result. There are two dashed lines in the figure, one is lambda.min with the minimum mean square error, and the other is
lambda.1se with the standard error from the minimum mean square error.
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Figure 10: Key age-related PI gene expression levels and ROC analysis. (a) Expression of key age-related PI genes in GSE33774. (b)
Expression of key age-related PI genes in GSE106090. (c) Expression of key age-related PI genes in PI combined datasets (GSE33774 and
GSE106090). (d–f) ROC analysis results of key age-related PI genes in GSE33774, GSE106090, and PI combined datasets (GSE33774 and
GSE106090).
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disease. We used Cytoscape to build pathway-gene networks
(Figure 12(b)). The network includes 136 interleaved nodes
and 233 edges. From the results obtained, ALOX5AP and
MAPT were found to interact with other age-related genes
to regulate multiple biological pathways.

4. Discussion

Using intersection analysis, 52 genes were identified as age-
related-PI genes and found enriched in multiple
inflammation-associated processes including myeloid
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Figure 11: Relationship between high-abundance immune cells and key age-related PI genes.
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leukocyte activation, acute inflammatory response, mononu-
clear cell differentiation, B cell activation, NF-kappa B signal-
ling, IL-17 signalling, and TNF signalling. The ageing process
has been associated with deregulated chronic and low-grade
inflammation via mechanisms of molecular inflammation,
immunosenescence, and “inflammaging” [23–25], which can
exacerbate inflammatory responses to pathogenic stimuli.
Increased NF-kappa B signalling with higher levels of IL-6
and TNF-α and related receptors is seen in aged tissues [26].
Higher C-reactive protein levels indicative of the acute inflam-
matory response are also evident [27]. These findings and our
results together suggest that ageing-associated exacerbated
inflammatory mechanisms can contribute significantly to
peri-implantitis pathology in elderly subjects, as with other
age-associated inflammatory and metabolic disorders [28].
Age-associated NF-kappa B signalling activation is considered
a central mechanism in ageing-related inflammation and is
highly responsive to redox stress [29], indicating heightened
responses to plaque biofilm pathogens may occur in peri-
implant tissues of aged individuals.

LYN, CDKN2A, MAPT, BTK, and PRKCB were evident
as hub genes in the PPI network. These genes are important
regulators of immune responses, neurodegeneration, and
autophagy pathways. Lck/yes-related protein tyrosine kinase
(LYN) is involved in regulation of multiple immune cells
including dendritic cells, T, and B cells [30–32]. CDKN2A
(cyclin dependent kinase inhibitor 2A/multiple tumor sup-
pressor 1) gene is linked to immune infiltration in multiple

cancers [33], and it regulates anti-inflammatory cytokine
IL-4 and CD8+ T cell population [34]. The microtubule-
associated protein Tau encoding gene MAPT, which was
also identified as a key-age-related PI gene, is strongly asso-
ciated with neurodegeneration and related diseases includ-
ing Alzheimer’s and Parkinson’s diseases [35] and also
associated with bone-mineral density [36]. The Bruton’s
tyrosine kinase (BTK) gene is an important regulator of B
cell receptor signalling and innate immune cells including
macrophages and dendritic cells [37]. Protein kinase C β
(PRKCB) functions as a mitochondrial energy regulator
and inhibits autophagy [38].

Multiple dendritic cell populations including activated
dendritic cells, immature dendritic cells, and plasmacytoid
dendritic cells along with central memory CD4 T cells were
found highly abundant in PI and ageing tissues by immune
cell infiltration analysis. Dendritic cell functions are
impaired with age, leading to attenuated phagocytic and
migratory capacity. Furthermore, aged dendritic cells pro-
duce higher proinflammatory cytokines, with lowered self-
antigen tolerance and T-cell induction capacity [39], all of
which may exacerbate proinflammatory responses to plaque
microorganisms and also increase foreign body response to
dental implant titanium [40] that can contribute to peri-
implantitis. In aged individuals, the proportions of naïve
CD4 T cells decline whereas memory CD4 T cells are
increased [41]. A higher proportion of memory CD4+ cells
in age are associated with dysregulated cytokine production,
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impaired T cell function and immune responses, and
chronic disease occurrence [42].

7 key age-related PI genes including ALOX5AP, EAF2,
FAM46C, GZMK, MAPT, RGS1, and SOSTDC1 were iden-
tified using LASSO and showed high predictive value in dis-
tinguishing cases and controls. The key age-related PI genes
were linked to several immune-related functions in experi-
mental studies including autoimmune responses. Among
the key genes, MAPT and ALOX5AP were found associated
with several drugs and transcription factors and also inter-
acted with other age-related genes to regulate multiple bio-
logical pathways. The leukotriene pathway includes 5-
lipoxygenase (5-LO) activating protein, encoded by
ALOX5AP [43]. Leukotriene pathways are implicated in
multiple ageing-related inflammatory diseases [44]. The
ELL-associated factor 2 (EAF2) gene is implicated in pre-
venting autoimmune responses by promoting B cell apopto-
sis [45]. The FAM46 gene is implicated in regulating T and B
cells and found negatively associated with naïve CD4+ cells
in pan-cancer [46] GZMK encodes Ganzyme K, a serine
protease closely associated with proinflammatory responses
and impediment of wound-healing by inflammation and
impaired epithelialization [47]. A subpopulation of age-
associated granzyme K- (GZMK-) expressing CD8+ T
(Taa) cells have been identified as a source of proinflammatory
granzyme K and considered a valuable target for age-linked
immune dysfunction [48]. The potential role of Taa cells in
aged peri-implantitis lesions is not yet experimentally investi-
gated. RGS1 (regulator of G-protein signalling 1) is linked to
multiple autoimmune disorders via control of T and B cell sig-
nalling, including T follicular helper cell population [49].
Sclerostin domain containing 1 (SOSTDC1) inhibits osteo-
blast differentiation by attenuating Wnt-BMP signalling [50]
and regulates natural killer (NK) cells [51]. MAPT, GZMK,
and SOSTDC1 were highly correlated with high abundance
of immune cells, possibly reflecting immune cell perturbations
accompany ageing-associated signalling pathways to play a
role in peri-implantitis lesions in aged tissues.

The 7-key age-related PI genes were found markedly
enriched in multiple neurodegeneration-associated path-
ways, Parkinson disease, pathways of neurodegeneration-
multiple diseases, and Alzheimer disease, along with MAPK
signalling pathway and Fc epsilon RI signalling. The loss of
periodontal ligament following tooth-loss results in mecha-
noreceptor and neural tissue loss resulting in tactile sensa-
tion loss, whereas dental implants show “osseoperception”
owing to sensory innervation at the bone-implant junction
and junctional epithelium [52]. Myelinated nerve fibres have
been noted in the peri-implant bone [53]. The nerve density
in peri-implant bone is lower than that around teeth [54],
and little is known about changes induced by peri-implant
disease. Neurotrophins, neuropeptides, and nerve cells play
important roles in regulating bone tissue, and most research
has focused on osseointegration [55]. The contribution of
age-associated activation of neurodegenerative pathways to
peri-implantitis lesions in elderly is yet to be experimentally
investigated. In addition, mitogen-activated protein kinase
cascade (MAPK) signalling is an important regulator of cell
survival and is also implicated in neurodegeneration [56]

age-associated decline in tolerance of oxidative stress [57].
Fc epsilon RI signalling is a receptor for IgE [58], present
on mast cells, dendritic cells, monocytes, and eosinophils,
and is implicated in type I allergic responses and T-cell
priming [59]. Titanium particles and cement have been
observed as foreign bodies in peri-implantitis lesions [40].
It is plausible that age-associated shifts in immune cell pop-
ulations and signalling bias towards proinflammatory path-
ways may enhance foreign body responses in peri-
implantitis among aged individuals. Overall, our findings
support that age-related immunosenescence and persistent
chronic inflammation that impact host response to biomate-
rials [60] could account for peri-implantitis in aged individ-
uals. However, as we have performed secondary analysis of
available gene expression data, these findings should be ver-
ified in future using experimental models and clinical
research. While it is not possible to provide causal inference
from this study, the analysis provides theoretical basis for
experimental and translational research investigating the
identified candidate molecular mechanisms in context of
host-peri-implant interaction in the backdrop of biological
ageing. These perspectives can contribute to the develop-
ment of improved modalities for better implant treatment
outcomes in elderly patients. Notably, for the peri-
implantitis dataset GSE33774, the median age was 52 (range:
38-71) years, and for the dataset, the mean reported age for
GSE106090 was 55:7 ± 13:0 years. These data indicate that
the population under study consisted primarily of middle-
aged and elderly adults. This age distribution is representa-
tive of the dominant age groups who receive the most num-
bers of dental implants [61]. With increasing ageing of
global populations, the proportion of elderly individuals
with dental implants is increasing [62]. Further research
should focus on identifying age-specific disease characteris-
tics of peri-implantitis lesions in elderly. The major limita-
tion is lack of experimental data verifying the candidate
genes and interrelationships identified. Furthermore, the
study has utilised relatively few datasets. Addition of PI data-
sets, especially from lesions in aged individuals, can provide
greater insights into this subject.

5. Conclusion

A suite of bioinformatics analysis identified a 7-signature
gene set highly relevant to cooccurrence of ageing and
peri-implantitis associated with inflammation, auto-immu-
nity, and neurodegeneration-related signalling. MAPT and
ALOX5AP were identified as key candidate target genes for
clinical translation.
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