
Research Article
Database Mining Detected a Cuproptosis-Related Prognostic
Signature and a Related Regulatory Axis in Breast Cancer

Baohong Jiang,1 Hongbo Zhu ,2 Wenjie Feng,2 Zhixing Wan,2 Xiaowen Qi,2 Rongfang He,3

Liming Xie,2 and Yuehua Li 2

1Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang,
Hunan, China
2Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang,
Hunan, China
3Department of Pathology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang,
Hunan, China

Correspondence should be addressed to Yuehua Li; liyuehua05@126.com

Received 25 May 2022; Accepted 7 October 2022; Published 19 October 2022

Academic Editor: Luca Falzone

Copyright © 2022 Baohong Jiang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Breast cancer is the frequent cause of disease burden related to cancer among women. It affects one in 20 women
globally and up to one in eight women in high-income countries. Cuproptosis is a copper-induced modality of mitochondrial
cell death that is involved in tumor proliferation and metastasis. Methods. To construct a prognostic cuproptosis-related
signature, LASSO Cox regression analysis was employed. Additionally, ceRNA was developed with an aim of exploring the
possible lncRNA-miRNA-mRNA regulatory axis in breast cancer. Results. The expression of FDX1, DLD, DLAT, LIAS, LIPT1,
GLS MTF1, and PDHA1 was downregulated, while CDKN2A expression level was elevated in breast cancer in contrast with
normal tissue. We furthermore reviewed the genetic mutation landscape of genes linked to cuproptosis in breast cancer.
Prognosis analysis revealed poor OS and RFS rates in breast cancer patients with elevated levels of CDKN2A and PDHA1 and
low levels of MTF1, DLD, LIPT1, and FDX1. We then constructed a cuproptosis-related signature with six genes (DKN2A,
MTF1, PDHA1, DLD, LIPT1, and FDX1) for breast cancer, which predicted the OS rate with an accuracy that ranged from
medium to high. Further analysis demonstrated a significant correlation between the cuproptosis-related prognostic signature
and pTNM stage, MSI score, drug sensitivity, TMB score, and immune cell infiltration. Moreover, we identified the lncRNA
XIST/miR-92b-3p/MTF1 regulatory axis for breast cancer. Conclusion. Multiomics approaches were used to create a
cuproptosis-related signature with six genes (DKN2A, MTF1, PDHA1, DLD, LIPT1, and FDX1) for breast cancer. We
discovered the lncRNA XIST/miR-92b-3p/MTF1 regulatory axis for breast cancer, which has not yet been investigated previously.

1. Introduction

Breast cancer is the predominant cause of disease burden
related to cancer among women. It affects one in 20 women
globally and up to one in eight women in high-income coun-
tries [1]. With the introduction of surgical treatments, radio-
therapy, chemotherapy, and targeted and endocrine therapy
for breast cancer, the overall death rate from breast cancer

has decreased significantly [2–5]. However, the incidence of
breast cancer has increased in recent years [6]. Early diagnosis
and timely treatment are essential for improvements in the
prognosis of breast cancer. An increasing number of studies
have identified novel effective biomarkers for the diagnosis
of breast cancer; these biomarkers include miRNAs,
lncRNAs, and circulating tumor DNA [7–9]. Advanced prog-
ress has been made in diagnostic approaches and therapeutic
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strategies. However, the outcome of breast cancer patients
with metastatic disease is still poor, as it accounts for over
90% of breast cancer-related deaths [10]. Therefore, it is
important to mine prognostic biomarkers and the potential
mechanisms of invasive breast cancer.

Cuproptosis is a copper-activated modality of mitochon-
drial cell death that was first reported by Tsvetkov et al. in
2022 [11]. The accumulation of copper induces mitochon-
drial lipoylated protein aggregation as well as Fe-S cluster
protein destabilization, causing a distinctive type of cell
death [12]. Increasing evidence has revealed that higher
levels of copper in many malignancies versus normal tissues
lead to the modulation of cancer cell proliferation, growth,
and metastasis [13]. Some scholars have even suggested cop-
per as a vulnerable point that could serve as a target for
arresting cancer development [14]. Limited studies on the
significance of cuproptosis-related genes in the progression
as well as prognosis of breast cancer have been conducted
in accordance with our best knowledge.

In recent years, database mining using the TCGA and
GEO databases has been a promising strategy to clarify
human cancer-related molecular mechanisms and relevant
prognostic markers [15–18]. This study utilized multiple
biological methods to figure out the prognostic value of
cuproptosis-related genes as well as the relevant regulatory
axis in breast cancer.

2. Materials and Methods

2.1. Dataset and Preprocessing. According to a study by
Tsvetkov et al., we obtained 10 cuproptosis-related genes
(DLD, DLAT, FDX1, GLS, LIAS, LIPT1, MTF1, CDKN2A,
PDHA1, and PDHB). The RNA-seq data of breast invasive
carcinoma (BRCA) were downloaded from the TCGA
(https://cancergenome.nih.gov/) and the International Can-
cer Genome Consortium (ICGC; https://www.icgc-argo
.org/) databases. Those cases who had already received che-
moradiotherapy were excluded from our study. This was
followed by the normalization of gene expression profiles
to transcripts per kilobase million (TPM) values. The mRNA
levels of cuproptosis-related genes in BRCA versus normal
tissues were measured by Student’s t-test. The visualization
of the findings was accomplished by R (version 4.0.3) with
the ggplot2 package.

2.2. Genetic Mutations and GO and KEGG Pathway
Analyses. The TCGA database provided the SNV and CNV
data of BRCA. In order to evaluate the genetic mutations
of cuproptosis-related genes in BRCA, the “maftools” pack-
age in the R software played a central role. In addition, to
identify the potential functions of cuproptosis-related genes,
we conducted GO and KEGG analyses.

2.3. Cuproptosis-Related Prognostic Gene Signature
Development. Overall survival (OS) and recurrence-free sur-
vival (RFS) analyses were conducted to evaluate the prog-
nostic value of cuproptosis-related genes in BRCA with the
log-rank test computing hazard ratios (HRs), the p values,
and 95% CIs. After identifying potential prognostic bio-

markers, we did the LASSO Cox regression analysis based
on these genes to create a ferroptosis-related prognostic gene
signature. Utilizing the median value as the cutoff value, we
categorized BRCA cases into two groups on the basis of the
median value as the cutoff value, which was computed as the
sum of coefficients × cuproptosis-related gene expression.
The OS curve was drawn by the Kaplan-Meier method,
and the area under the curve (AUC) was analyzed with time
ROC analysis. We also verified the cuproptosis-related prog-
nostic gene signature using the ICGC dataset.

2.4. Hub Gene Analysis. Pearson’s correlation test was con-
ducted to establish the link between cuproptosis-related
prognostic genes and the proportion of immune cells in
the TIMER (https://cistrome.shinyapps.io/timer/) database.
Moreover, it determined the link between cuproptosis-
related prognostic genes and the IC50 of small molecules in
the Cancer Therapeutics Response Portal (CTRP) database.
The Spearman correlation test in this experiment evaluated
the link between cuproptosis-related prognostic genes and
tumor mutational burden (TMB)/microsatellite instability
(MSI) in TCGA.

2.5. Potential Regulatory Axis Analysis. Four miRNA target
prediction databases, miRDB (http://mirdb.org/), TargetS-
can (https://www.targetscan.org/), starBase (http://starbase
.sysu.edu.cn/), and miRWalk (http://mirwalk.umm.uni-
heidelberg.de/), were utilized to explore the miRNA targets
of the hub gene MTF1. Moreover, two lncRBA databases,
starBase (http://starbase.sysu.edu.cn/) and the LncBase
module of the DIANA tool (http://carolina.imis.athena-
innovation.gr/), were utilized to explore the lncRNA targets
that interact with miRNAs. We additionally evaluated the
expression as well as the prognostic value of miRNAs and
lncRNAs using Student’s t-tests and the Kaplan-Meier
method utilizing the TCGA BRCA dataset.

2.6. Verification Analyses. Considering MTF1 expression
and other clinical characters, univariate and multivariate
analyses were conducted to identify prognostic factors. We
also verified the prognostic value of MTF1 in the OS and
RFS analyses using GSE20685 dataset. Moreover, the protein
level of MTF1 expression was determined with The Human
Protein Atlas (https://www.proteinatlas.org/). The immuno-
histochemistry of MTF1 in normal and cancer tissue was
obtained in the “tissue” and “pathology” modules of The
Human Protein Atlas.

2.7. Statistical Analyses. The mRNA levels of cuproptosis-
related genes in BRCA versus normal tissues were subjected
to analysis using Student’s t-test. The Kaplan-Meier method
was applied to draw the survival curve with the log-rank test
computing the p values, hazard ratio (HR), and 95% CI.
LASSO Cox regression analysis was done to create a
cuproptosis-related prognostic gene signature. Pearson’s
correlation test ascertained the link between gene expression
and immune cell infiltration and drug sensitivity. The Spear-
man correlation test also determined the link between gene
expression and TMB/MSI score.
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Figure 1: Continued.
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3. Results

3.1. The Expression and Mutation Landscape of Cuproptosis-
Related Genes in Breast Cancer. The expression landscape is
demonstrated in Figure 1(a). The expression level of 9 of 10
cuproptosis-related genes was altered in breast cancer tissues
(all p < 0:0001). The data indicated that the expression of

PDHA1, FDX1, GLS, DLD, DLAT, LIAS, LIPT1, and MTF1
was downregulated in breast cancer versus normal tissue.
CDKN2A expression level was elevated in the cancerous
breast tissues in contrast to normal tissues. Mutation analysis
showed that 32% of breast cancer samples had MTF1 genetic
mutations. The next most commonly mutated genes were
GLS (21%), LIAS (21%), and PDHA1 (16%) (Figure 1(b)).
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Figure 1: The expression and mutation landscape of cuproptosis-related genes in breast cancer. (a) The mRNA level of the cuproptosis-
related gene in breast cancer versus normal tissues. (b, c) SNV investigation of the cuproptosis-related gene in breast cancer. (c) CNV
investigation of the cuproptosis-related gene in breast cancer. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001; -p > 0:05.
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Further analysis depicted that missense mutations and C>T
mutations were the predominant variant classification and
SNV class, respectively (Figure 1(c)). Figure 1(d) shows the
results of the CNV analysis. These results indicate that most
of the 10 cuproptosis-related genes had homozygous amplifi-
cations, and the DLD gene had a widespread homozygous
deletion.

3.2. GO and KEGG Analyses. To further elucidate the possi-
ble roles of cuproptosis-related genes, functional enrichment
analyses, including GO and KEGG pathway analyses, were
conducted. As a result, GO analysis demonstrated the partic-
ipation of these cuproptosis-related genes in the acetyl-CoA
biosynthetic process from pyruvate, acetyl-CoA metabolic
process, tricarboxylic acid cycle, mitochondrial matrix, oxi-
doreductase complex, oxidoreductase activity, and metal
cluster binding (Figure 2(a)). Furthermore, KEGG pathway
analysis revealed the involvement of the TCA cycle, pyruvate
metabolism, gluconeogenesis, carbon metabolism, HIF-1
signaling pathway, miRNAs in cancer, and glucagon signal-
ing pathway (Figure 2(b)).

3.3. Development of a Cuproptosis-Related Prognostic
Signature in Breast Cancer. OS analysis and RFS were utilized

to evaluate the prognostic value of differentially expressed
cuproptosis-related genes in BRCA. Figure 3(a) shows the
findings of the OS analysis. These results reveal a poor OS rate
in breast cancer patients with elevated levels of CDKN2A
(p = 0:043, HR = 1:22) and PDHA1 (p = 0:0042, HR = 1:39).
However, breast cancer patients with elevated levels of MTF1
(p = 0:0022,HR = 0:65), DLD (p = 0:0042,HR = 0:65), LIPT1
(p = 3:1e−6, HR = 0:37), FDX1 (p = 0:0041, HR = 0:6), and
LIAS (p = 0:0052, HR = 0:77) had a better OS rate
(Figure 3(a)). Figure 3(b) shows the results of the RFS analysis.
These results reveal a poor RFS rate in breast cancer patients
with high levels of CDKN2A (p = 1:3e−5,HR = 1:28), PDHA1
(p = 0:0051, HR = 1:18), and GLS (p = 0:00017, HR = 1:36).
However, patients with breast cancer who had high levels of
MTF1 (p = 0:011, HR = 0:87), DLD (p = 2e − 10, HR = 0:61),
LIPT1 (p = 1:9e−6, HR = 0:78), and FDX1 (p = 1:2e−6, HR =
0:68) had a better RFS rate (Figure 3(b)). This evidence sug-
gests that CDKN2A, MTF1, PDHA1, DLD, LIPT1, and
FDX1 are potential biomarkers for breast cancer. Utilizing
these possible prognostic biomarkers, we executed a LASSO
Cox regression analysis, and afterward, a cuproptosis-related
prognostic signature containing these 5 prognostic biomarkers
was constructed for breast cancer. The risk score of every
TCGA patient was determined utilizing the formula: risk
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Figure 2: The enriched items in GO and KEGG pathways analyses. (a) The enriched items in GO analysis. (b) The enriched items in KEGG
analysis. BP: biological process; MF: molecular function; CC: cellular component.
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score = ð0:1001Þ ∗ FDX1 + ð−0:3109Þ ∗ LIPT1 + ð0:1966Þ ∗
DLD + ð0:1678Þ ∗ PDHA1 + ð0:076Þ ∗MTF1 + ð−0:0802Þ ∗
CDKN2A. All TCGABRCA samples were classified into high-
and low-risk groups. Figure 4(a) outlines the risk scores, gene
expression, and survival status of the prognostic signature. As
expected, BRCA patients in the TCGA cohort with a greater
risk score were affirmed to have a poor OS rate (Figure 4(b),
p = 0:000148, HR = 1:895), with AUCs of 0.582 and 0.582 in
the 3-year and 5-year ROC curves, correspondingly
(Figure 4(c)). To validate further this prognostic signature,
we adopted a verification analysis using the ICGC dataset.
The risk score of every TCGA patient was determined with
the formula: risk score = ð−0:1729Þ ∗ FDX1 + ð−0:4454Þ ∗
LIPT1 + ð2:9672Þ ∗DLD + ð0:3425Þ ∗ PDHA1 + ð−0:8096Þ
∗MTF1 + ð−0:1194Þ ∗ CDKN2A. The risk score of the ICGC
sample, gene expression of the verification prognostic signa-
ture, and survival status are displayed in Figure 4(d). As antic-
ipated, BRCA patients in the ICGC cohort with an elevated
risk score demonstrated a poor OS rate (Figure 4(e), p =
0:0165, HR = 13:055), with AUCs of 0.728 and 0.701 in the
3-year and 5-year ROC curves, correspondingly (Figure 4(f)).

3.4. Hub Gene Analysis. We afterward analyzed the link
between the cuproptosis-related prognostic signature and
immune infiltration. We ascertained that CDKN2A expres-
sion was positively correlated with the abundance of B cells,
CD4+ T cells, dendritic cells, and neutrophils (Figure 5(a)).
The abundance of B cells, CD8+ T cells, CD4+ T cells, macro-
phages, dendritic cells, and neutrophils was elevated as the
expression of MTF1 (Figure 5(b)), DLD (Figure 5(c)), and
FDX1 (Figure 5(f)) increased. Moreover, the data suggested
a positive link between PDHA1 expression and the propor-
tion of B cells, CD8+ T cells, macrophages, dendritic cells,
and neutrophils (Figure 5(d)). A positive link was established
between LIPT1 expression and immune cell infiltration
(CD8+ T cells, CD4+ T cells, macrophages, and neutrophils)
(Figure 5(e)). Interestingly, somatic cell copy number alter-
ations in the cuproptosis-related prognostic signature inhib-
ited the infiltration level of some immune cells (Figures 6(a)–
6(f)). Increasing evidence suggests that TMB and MSI are
predictive markers for determining the efficacy of tumor
immunotherapy in cancer [19, 20]. TMB analysis revealed a
remarkable link between TMB score and the expression of

(a)

(b)

Figure 3: The prognostic value of the cuproptosis-related genes in breast cancer. (a) The result of OS analysis of cuproptosis-related genes in
breast cancer. (b) The result of recurrence-free survival evaluation of cuproptosis-related genes in breast cancer.
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CDKN2A, PDHA1, and LIPT1 (Figure 7(a), all p < 0:05).
The data affirmed a remarkable correlation between the
MSI score and the expression of CDKN2A and MTF1
(Figure 7(b), all p < 0:05). To ascertain the potential of the

cuproptosis-related prognostic signature as a drug scanning
target for breast cancer, we additionally carried out a drug
sensitivity analysis. This analysis implied that the low expres-
sion of DLD, CDKN2A, LIPT1, and MTF1 was positively
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Figure 4: Cuproptosis-related prognostic signature in breast cancer. (a) The patient survival status, risk score distribution, and cuproptosis-
related gene expression profile of prognostic signature in TCGA cohort. (b, c) The breast cancer patients’ survival curve with high/low risk
score and ROC curve of prognostic signature in TCGA cohort. (d) The patient survival status, risk score distribution, and cuproptosis-
related gene expression profile of prognostic signature in ICGC cohort. (e, f) The breast cancer patients’ survival curve with high/low
risk score and ROC curve of prognostic signature in ICGC cohort.
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(f)

Figure 5: Immune cell infiltration of cuproptosis-related prognostic signature in breast cancer. Link between the expression of CDKN2A
(a), MTF1 (b), PDHA1 (c), DLD (d), LIPT1 (e), and FDX1 (f) and the abundance of immune cells in breast cancer.
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linked to drug resistance to CTRP (Figure 7(c)). To clarify the
potential role of the cuproptosis-related prognostic signature
in the development of breast cancer, we evaluated their link
with the pTNM stage. The results revealed that the expression
of MTF1 (Figure 8(b), p = 0:037) and LIPT1 (Figure 8(e), p
= 0:021) decreased as the pTNM stage increased in breast
cancer. No remarkable correlation between the pTNM stage
and the expression of CDKN2A (Figure 8(a)), PDHA1
(Figure 8(c)), DLD (Figure 8(d)), or FDX1 (Figure 8(f)) was
established. These data suggest that MTF1 and LIPT1 may
participate in breast cancer progression.

3.5. Verification of the Expression and Prognostic Value of
MTF1 in Breast Cancer. The aforementioned data suggested

that MTF1 and LIPT1 may participate in breast cancer pro-
gression. We selected MTF1 for further analysis. We
afterward validated the prognostic value of MTF1 in breast
cancer. Univariate as well as multivariate analyses indicated
that MTF1 expression, age, and pTNM stage were
independent factors influencing the breast cancer patient’s
prognoses (Figures 9(a) and 9(b)). Consistent with the previ-
ous data, immunohistochemistry revealed that MTF1 was
medium staining in normal tissue while it was low staining
in breast cancer tissue (Supplementary Figure 1). In
prognosis analysis of GSE20865 cohort, the data affirmed a
better OS and RFS rate in breast cancer patients with
elevated MTF1 expression levels (Figures 9(c) and 9(d), p
< 0:05).
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Figure 6: Immune cell infiltration analysis of cuproptosis-related prognostic signature in breast cancer. Correlation between CNV of
CDKN2A (a), MTF1 (b), PDHA1 (c), DLD (d), LIPT1 (e), and FDX1 (f) and immune cell infiltration in breast cancer.
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3.6. lncRNA-miRNA-mRNA Regulatory Axis Analysis. Finally,
we conducted an lncRNA-miRNA-mRNA regulatory axis
analysis to elucidate the role of MTF1 in breast cancer. Based
on the predicted miRNA targets of the starBase, miRWalk,
TargetScan, and miRDB databases, six miRNAs (miR-92b-
3p, miR-302a-3p, miR-25-3p, miR-367-3p, miR-520a-3p,
and miR-4319) were suggested as the miRNA targets of

MTF1 (Figure 10(a)). Among these miRNAs, only miR-92b-
3p was differentially expressed in breast cancer, so we selected
miR-92b-3p as a miRNA target of MTF1 (Figure 10(b)). We
additionally evaluated the lncRNA targets of miR-92b-3p,
and the findings suggested that the lncRNAs DAPK1-IT1,
AC005394.2, XIST, NORAD, and OIP5-AS1 are potential
lncRNA targets of miR-92b-3p (Figure 10(c)). Among these
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Figure 8: The expression of cuproptosis-related prognostic signature in various groups of patients with breast cancer. The expression of
CDKN2A (a), MTF1 (b), PDHA1 (c), DLD (d), LIPT1 (e), and FDX1 (f) in breast cancer patients in different pTNM stages.
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Figure 10: lncRNA-miRNA-mRNA regulatory axis in breast cancer. (a) The miRNA targets anticipated by TargetScan, miRWalk, and
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five lncRNAs, the XIST (Figure 10(d), p = 9:2e−12), NORAD
(Figure 10(e), p = 1:1e−9), and OIP5-AS1 lncRNAs
(Figure 10(f), p = 8:3e−11) were expressed differentially in
breast cancer. Moreover, patients with breast cancer and with
elevated XIST levels demonstrated a better survival
(Figure 10(g), p = 0:00016). Thus, the XIST lncRNA was the
most likely potential lncRNA target of miR-92b-3p. The
lncRNA XIST/miR-92b-3p/MTF1 regulatory axis may be
important in breast cancer progression.

4. Discussion

Breast cancer is the predominant malignant-related cause of
disease burden among women. It affects one in 20 women
globally and up to one in eight women in high-income coun-
tries [1]. The prognosis of patients diagnosed with breast
cancer and metastatic disease is poor, as it accounts for over
90% of breast cancer-related deaths [10]. The mechanisms of
tumorigenesis, as well as the progression of breast cancer,
are still not fully understood. Therefore, it is important to
mine prognostic biomarkers and potential mechanisms of
invasive breast cancer. Cuproptosis is a copper-triggered
modality of mitochondrial cell death that was first reported
by Tsvetkov et al. in 2022 [11]. Increasing evidence has
affirmed the importance of cuproptosis in the modulation
of tumor cell proliferation, growth, and metastasis [13],
and limited studies on the importance of cuproptosis-
related genes in not only the progression but also the prog-
nosis of breast cancer have been conducted. This study sys-
tematically studied the roles exerted by cuproptosis-related
genes in breast cancer.

The gene expression profile revealed that the expression
of FDX1, GLS, LIAS, LIPT1, MTF1, DLD, DLAT, and
PDHA1 was downregulated, whereas the CDKN2A expres-
sion was upregulated in breast cancer in contrast with the
normal tissue. Further, functional analysis demonstrated
that these cuproptosis-related genes were associated with
the TCA cycle, gluconeogenesis, and the HIF-1 signaling
pathway in GO and KEGG analyses. In fact, studies have
clarified the involvement of these genes in the advancement
of cancer of the breast and its therapy. Liu et al. affirmed that
HIF-1-regulated expression of calreticulin could accelerate
tumorigenesis and progression in breast cancer [21].
Another study affirmed that the HIF-1 pathway participated
in the regulation of cancer metabolism and survival stress
[22]. The TCA cycle could affect tumor burden and inva-
sion, thus leading to poor prognosis and a lack of targeted
therapies in breast cancer [23].

Prognosis analysis revealed poor OS and RFS rates in
breast cancer patients with elevated levels of CDKN2A and
PDHA1 and low levels of MTF1, DLD, LIPT1, and FDX1.
These findings suggest that CDKN2A, MTF1, PDHA1,
DLD, LIPT1, and FDX1 are potential biomarkers for breast
cancer. In fact, these cuproptosis-related genes have been
found to be biomarkers in other types of cancers. In ovarian
cancer, MTF1 might be a new biomarker for prompt diagno-
sis and aid in targeted therapy [24]. Another study suggested
that CDKN2A is not only a prognostic marker but is also
involved in immune infiltration in hepatocellular carcinoma

[25]. In gastric cancer, a low level of PDHA1 was associated
with a poor prognosis [26].

Another vital discovery of our research was that we
developed a cuproptosis-related prognostic signature con-
taining six genes (CDKN2A, MTF1, PDHA1, DLD, LIPT1,
and FDX1) for breast cancer, which predicted the OS rate
with an accuracy that ranged from medium to high. This is
the first pyroptosis-related prognostic signature identified
in human carcinoma, although numerous prognostic signa-
tures have been discovered for breast cancer as per our best
knowledge. Previous studies have identified an autophagy-
related lncRNA signature that can predict prognosis in
breast cancer [27]. Wang et al. also developed a prognostic
signature consisting of nine ferroptosis-related genes for
breast cancer [28]. Another study also identified and verified
a necroptosis-related gene signature as well as an associated
regulatory axis in breast cancer [29].

Our study also ascertained the lncRNA XIST/miR-92b-
3p/MTF1 regulatory axis for the progression of breast can-
cer. The XIST lncRNA could inhibit cancer proliferation
and ETM and promote apoptosis in breast cancer, as
affirmed by a previous study [30]. XIST was also suggested
as a likely cancer immune marker in breast cancer patients
with high PD-L1 levels [31]. Moreover, miR-92b-3p can
function as not only a diagnostic marker but also as a prog-
nostic marker in breast cancer and correlates with clinical
staging and tumor differentiation in breast cancer [32].
Mediated by XIST, miR-92b-3p could accelerate tumor pro-
gression in hepatocellular carcinoma [33]. Our study deter-
mined the lncRNA XIST/miR-92b-3p/MTF1 regulatory
axis for breast cancer, which has not been studied before.

5. Conclusion

In conclusion, multiomics approaches were conducted to
develop a cuproptosis-related signature with six genes
(DKN2A, MTF1, PDHA1, DLD, LIPT1, and FDX1) for
breast cancer. We identified the lncRNA XIST/miR-92b-
3p/MTF1 regulatory axis for breast cancer, which has not
been studied before.
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