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Triptolide (TP) has demonstrated innumerous biological effects and pharmacological potential against different cancer types.
Hepatocellular carcinoma has a high incidence in men, and its incidence is increasing year by year. Studies have shown that
angiogenesis plays an important role in the formation of tumors and that angiogenesis is closely related to tumor growth and
metastasis. Deregulation of sphingolipids signaling has been associated with several pathological conditions, including cancer.
In the present study, we aimed at exploring the potential molecular mechanism of TP’s antivascular and antitumor effects
in vitro from the perspective of sphinolipids. Human umbilical vein endothelial cells (HUVECs) and HepG2 cells were,
respectively, treated with different concentrations of TP and transfected. Then, the effect of HUVECs on HepG2 cells was
investigated using a three-dimensional coculture model system. CCK-8 assay was performed for cell proliferation. Cell
migration and invasion abilities were assessed using the transwell assay. Cell adhesion and tube formation were detected by
Matrigel. RT-PCR and western blotting were used to detect the mRNA and protein expression. The S1P production was
measured via ELISA assay. Our results showed that TP inhibited HUVECs and HepG2 cells proliferation, migration, invasion,
adhesion, angiogenesis, and serine palmitoyltransferase long chain base subunit 2 (SPTLC2) expression; upregulating SPTLC2
facilitated the proliferation, migration, invasion, adhesion, angiogenesis, and sphingosine-1-phosphate (S1P) production of
HUVECs and HepG2 cells, while interfering with SPTLC2 expression inhibited them; HUVECs facilitated the proliferation,
migration, invasion, S1P production, S1PR1, and S1PR2 expression of HepG2 cells, while S1PR3 expression was decreased. In
conclusion, SPTLC2 may be associated with the antivascular and antitumor effects of TP, and SPTLC2 is expected to become a
new marker for tumor therapy. HUVECs can promote the proliferation, migration, and invasion of HepG2 cells, which may be
related to the S1P/sphingosine-1-phosphate receptor (S1PR) signaling pathway.

1. Introduction

Hepatocellular carcinoma is a cancer that has a high inci-
dence in men [1]. The pathogenesis of liver cancer is a very
complicated process that includes a series of related pro-

cesses mediated by various risk factors, such as chronic viral
hepatitis, alcohol abuse, nonalcoholic steatohepatitis, and
type 2 diabetes [2]. Studies show that angiogenesis plays an
important role in the formation of tumors by providing
nutrients to tumor cells and that angiogenesis is closely
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related to tumor growth and metastasis [3]. In addition,
these new vascular tissues can provide blood and nutrients
for the continued growth of tumors, and tumor tissues can
further promote the regeneration of blood vessels in a vari-
ety of ways, thereby forming a vicious cycle. Thus, based
on the principles of modern medicine, it is believed that
blocking the vascular tissues of tumors can cause the tumors
to “starve to death.” Therefore, finding new antivascular and
antitumor targets involved in the pathogenesis of liver can-
cer is a key issue that needs to be addressed. Only by block-
ing the nutritional supply of tumor tissues and inhibiting
their further growth can liver cancer be fundamentally
overcome.

In recent years, further study has found that in addition
to being the basic component of the cell membrane, sphin-
golipids also participate in a variety of signal transduction
pathways and play important roles in the development of
various diseases. The metabolism of sphingolipids is a key
pathway in cancer biology, and their metabolites, namely,
ceramide, sphingosine, and S1P, together regulate tumor cell
death, proliferation, and drug resistance, as well as angiogen-
esis and inflammation [4]. Ceramide is produced by the
hydrolysis of sphingolipids, which can participate in the de
novo synthesis of ceramide from the precursor dihydrocera-
mide, which is converted to ceramide by dihydroceramide
desaturase to induce tumor cell apoptosis [5]. Ceramide is
hydrolyzed by a ceramidase to produce sphingosine, which
is phosphorylated by sphingosine kinases 1 and 2 (SK1 and
SK2) to produce S1P. S1P also binds to and activates the G
protein-coupled receptor family S1P receptor 1-5 (S1PR1-
5), which regulates the biological activity of cells [4]. S1P/
S1PR signaling pathway plays an important role in main-
taining normal tissue physiological functions, such as cell
growth and division [6, 7]. In addition, many studies have
shown that S1P/S1PRs signaling can promote the process
of tumor development, such as promoting the proliferation
and migration of tumor cells, promoting angiogenesis, and
the formation of tumor microenvironment [7, 8]. However,
different S1PRs may have different biological effects. Studies
have shown that S1PR2 plays a positive role in apoptosis and
autophagy, while S1PR3 has the opposite effect [9]. Studies
in many cancer cell lines indicate that S1P induces prolifer-
ation [10] and inhibits ceramide-induced apoptosis [6]. Cer-
amide is a key factor in sphingolipid metabolism, and serine
palmitoyltransferase (SPT) is a key enzyme for the de novo
synthesis of ceramide. In mammals, SPT is a heterodimer
composed of two subunits, namely, serine palmitoyltransfer-
ase long chain base subunits 1 and 2 (SPTLC1 and SPTLC2),
and serine palmitoyltransferase long chain base subunit 3
(SPTLC3) is the third subunit that was discovered in 2009
[11]. SPT plays an important role in the regulation of
growth [12].

TP is one of the main active ingredients extracted from
the roots, stems, and leaves of Tripterygium wilfordii. TP is
a small molecule compound with antitumor, antiangiogenic,
anti-inflammatory, and proapoptotic properties [13]. It is
found that TP exerts strong inhibitory effect on the biologi-
cal processes of liver [14, 15], ovarian [16–19], lung [20–22],
gastric [23, 24], and breast [25, 26] cancer cells.

Based on the facts mentioned above, this study explored
the effects of TP on liver cancer from the three perspectives
of antivascular effects, tumor suppression, and the tumor
microenvironment and identified a connection between the
antiliver cancer effects of TP and sphingolipids. This exper-
iment first studied the effect of TP on HUVECs and its pos-
sible mechanism, explored the effect of TP on angiogenesis,
and investigated the effect of TP on new angiogenesis tar-
gets. Second, this experiment studied the effect of TP on
HepG2 cells and further explored a new target for TP to
exert its effects against liver cancer. As members of the
tumor microenvironment, vascular endothelial cells not only
form vascular nutrition tumor tissue but also penetrate the
entire tumor tissue. Therefore, do endothelial cells them-
selves exert a certain effect on tumor cells? Then, this study
further explored the interaction between HUVECs and
HepG2 cells in a three-dimensional coculture model and
its possible mechanism and studied the effect of TP on the
coculture system.

2. Materials and Methods

2.1. Cell Culture. HUVECs were purchased from the North
Branch of the Institute of Biotechnology, and HepG2 cells
were purchased from the Chinese Academy of Sciences.
The cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine
serum (FBS) and 1% (v/v) penicillin-streptomycin and were
maintained at 37°C in a humidified 5% CO2 incubator.

2.2. Cell Proliferation Assay. Cell viability was determined by
CCK-8 assay. In monoculture systems, HUVECs and
HepG2 cells were adjusted to a density of 4 × 104 cells/mL
and plated into 96-well plates (100μL/well). HUVECs were
treated with TP (0, 12.5, 25, or 50nM), DMSO (negative
control), and endostatin (positive control, 8mg/L) for 24,
48, and 72 h. HepG2 cells were treated with TP (0, 1, 2, or
4μM) and DMSO (negative control) for 24 and 48 h. In
the monoculture transfection system, HUVECs and HepG2
cells were divided into a SPTLC2 small interfering RNA
group (siR-SPTLC2), SPTLC2 plasmid group (SPTLC2),
negative control group (siR-NC/SPTLC2-NC), and a blank
control group (blank). In addition, HUVECs and HepG2
cells were treated with 25 nM and 2μM TP for 24 h. In the
coculture systems, 2 × 103 HepG2 cells (200μL/well) were
added to the upper chamber of the 24-well coculture system,
and 5 × 103 HUVECs (500μL/well) were added to the lower
chamber (coculture). DMEM (500μL/well) containing 10%
FBS was added to the lower chamber in the control group
(nonculture). Cells were incubated for 1 to 4 days. In the
coculture dosing system, HUVECs were treated with TP
(0, 12.5, 25, or 50 nM) and DMSO (negative control) for
24 h, and then, the HUVECs were washed with PBS. These
treated HUVECs were cultured with HepG2 cells in the
coculture system for 24 h as described.

In monoculture or monoculture transfection systems,
the supernatants were removed, and 100μL of CCK-8
medium (CCK-8 reagent: DMEM= 1 : 10) was added to
the wells. In the coculture and coculture dosing systems,
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the upper chamber was transferred to a new 24-well plate
containing 500μL of CCK-8 medium (CCK-8 reagent:
DMEM= 1 : 10). After 1 to 4 h, the absorbance was mea-
sured at 450nM. We used the OD value to indicate the pro-
liferative ability of the cells.

2.3. Cell Migration and Invasion Assay. The migration ability
of HUVECs and HepG2 cells was determined using a 24-
well two-compartment transwell assay. Cells in the mono-
culture, monoculture transfection, coculture, and coculture
treatment systems were cultured as described for the prolif-
eration assays. Each group of HUVECs and HepG2 cells
(3 × 104/200 μL) was resuspended in serum-free DMEM.
Two hundred microliters of the cell suspension was added
to the upper chamber of the transwell, and 500μL of com-
plete medium was added to the lower chamber. After 24h,
the upper chamber was removed and washed with phos-
phate buffered saline (PBS) 3 times. Then, the cells were
fixed with 4% tissue cell fixative for 1 h, washed again with
PBS 3 times, stained with 0.1% crystal violet for 30min,
and washed again with PBS 3 times. The cells inside the
chamber were gently removed with a cotton swab, and the
remaining cells were ultimately photographed with a micro-
scope (100×). When imaging was completed, each group of
chambers was destained for 5min in 500μL of a 10% (v/v)
acetic acid solution, and the absorbance was measured at
550nM.

The cell invasion assay followed a procedure similar to
the cell migration assay except that the transwell membrane
was pretreated with Matrigel and the HepG2 cells density
was adjusted to 3 × 105/200 μL.

2.4. Cell Adhesion Assay. The precooled Matrigel (50μL/
well) was placed in a precooled 96-well plate. Then, 2%
bovine serum albumin (BSA, 100μL) was added to each well
and incubated for 1 h for blocking. The HUVECs in the
monoculture and monoculture transfection systems were
cultured as described in the proliferation assay. HUVECs
(3 × 104/100 μL) were seeded in 96-well plates. After 1 h,
the supernatants were removed, and 100μl of CCK-8
medium (CCK-8 reagent: DMEM= 1 : 10) was added to
the wells. After 1 to 4 h, the absorbance was measured at
450nM.

2.5. Cell Tube Formation Assay. Matrigel was plated in 96-
well culture plates and allowed to polymerize at 37°C in
5% CO2 humidified for 30min. HUVECs were digested with
0.25% trypsin to prepare a cell suspension, adjusted to a cell
density of 8 × 104/100 μL, and added to a 96-well plate with
Matrigel. Then, 100μL of cell suspension was added per
well, and the cells were imaged after 4-8 h (100×). The quan-
tification of tube formation was carried out by counting the
number of branch points.

2.6. PCR Array and RT-PCR Assay. Total RNA was extracted
from cells using TRIzol Universal (TIANGEN, Beijing, China)
according to the manufacturer’s protocol. Absorbance was
measured, and the purity of RNA was assessed using values
of 280/260 and 260/230. cDNAwas prepared using the Prime-

Script RT reagent Kit (TIANGEN, Beijing, China) according
to the manufacturer’s instructions. Genetic screening was per-
formed using an RT2 Profiler PCR Array kit (QIAGEN,Mary-
land, USA). The PCR array plate included 48 genes, including
40 target genes and 8 control genes. PCR amplification was
performed under the following conditions: 40 cycles at 95°C
for 15 s and 60°C for 60 s. GAPDH was used as an internal
control. GAPDH forward primer (5′-3′): CAGGAGGCATT
GCTGATGAT; GAPDH reverse primer (5′-3′): GAAGGC
TGGGGCTCATTT; SPTLC2 forward primer (5’-3’): CAGA
TTGCTTGAGGCCAGGAAGTTC; SPTLC2 reverse primer
(5’-3’): AGTGGTGTGATCTTGCTCATTGC.

2.7. Western Blotting. After HUVECs and HepG2 cells were
treated with drugs or transfected following the above condi-
tions, the protein was extracted for subsequent experiments.
The cells were subsequently lysed with RIPA buffer (Solarbio,
Beijing, China). Equivalent amounts of protein were separated
by 10% SDS-PAGE and transferred to a PVDF membrane.
The membranes were blocked in 5% nonfat milk in TBST
for 1h at room temperature and then incubated with primary
antibodies at 4°C overnight. The primary antibodies used in
this study were purchased from Abcam (Abcam, Cambridge,
UK) and included antiserine palmitoyltransferase antibody
(ab23696), anti-S1P1 antibody (ab233386), anti-S1PR2 anti-
body (ab220173), and anti-S1P3 antibody (ab126622). The
secondary antibodies were incubated at room temperature.
The membrane incubates secondary antibodies at room
temperature. After the secondary antibody was incubated,
the membrane was observed with ECL plus and X-ray film.
Finally, the protein concentration was analyzed using ImageJ.

2.8. Enzyme-Linked Immunosorbent Assay (ELISA). In the
monoculture transfection system, HUVECs and HepG2 cells
were cultured as described in the proliferation assay. 8 × 105
HUVECs(2mL/well) and1 × 106HepG2(2mL/well) cellswere
seeded in 6-well plates. After the cells were cultured for 24h, the
supernatants were collected. In the coculture system, 2 × 105
HepG2 cells (2mL/well) were added to the upper chamber of
the6-well coculture chamber, and1 × 105HUVECs (1mL/well)
were added to the lower chamber.After the cellswere cocultured
for 1 to 4 days, the supernatants were collected. S1P levels were
detected by a sphingosine-1-phosphate ELISA kit (Echelon, Salt
Lake, USA) according to the manufacturer’s protocol.

2.9. Statistical Analysis. All the data are presented as the
mean ± standard deviation ðSDÞ. GraphPad Prism 5.0 soft-
ware was applied for statistical analysis, and the significance
between groups was ascertained by one-way ANOVA
compared with the least significant difference. When the P
value was less than 0.05, the analysis was considered
statistically significant.

3. Results

3.1. TP Inhibited HUVECs Proliferation, Migration,
Adhesion, and Angiogenesis. First, the effects of TP on
HUVECs proliferation were assessed. The results
(Figure 1(a)) showed that the TP inhibited the proliferation of
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Figure 1: Continued.
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HUVECs in a dose- and time-dependent manner, endostatin
(positive control) significantly inhibited the proliferation of
HUVECs, and DMSO (negative control) had no significant
effect on the proliferation of HUVECs. After treatingHUVECs
with TP (0, 12.5, 25, or 50nM), DMSO, and endostatin (8mg/
L) for 24h, the migration (Figure 1(b)), adhesion
(Figure 1(c)), and angiogenesis (Figure 1(d)) of HUVECs were
measured. The migration capacity of HUVECs was measured
in a 24-well transwell chamber. The migrated cells in each
chamber were destained (500μL and 10% acetic acid), and
the absorbancewasmeasuredat 550nMto indicate the number
of migrated cells. The data showed that TP inhibited HUVECs
migration, adhesion, and angiogenesis in a dose-dependent
manner, endostatin (positive control) significantly inhibited
HUVECs migration, adhesion, and angiogenesis, and DMSO
(negative control) had no significant effect onHUVECsmigra-
tion, adhesion, or angiogenesis.

3.2. TP Downregulated the Expression of SPTLC2 in
HUVECs. The results (Figure 2(a)) showed that TP
(25nM) had a regulatory effect on a variety of sphingolipid
genes, but among all the genes, SPTLC2 exhibited the largest
changes in expression, and SPTLC2 was likely to be a new
target of TP. The results are shown as the absolute value of

ΔCt. Therefore, we chose SPTLC2 for subsequent studies.
HUVECs were treated with TP (25 nM) for 24 h, and the
mRNA expression of SPTLC2 in HUVECs was measured
by RT-PCR assay. The data (Figure 2(b)) revealed that TP
could significantly inhibit the expression of SPTLC2 in
HUVECs. HUVECs were treated with TP (0, 12.5, 25, or
50 nM) and DMSO (negative control) for 24h, and the pro-
tein expression of SPTLC2 was detected by western blotting
assay. The data (Figure 2(c)) showed that TP could inhibit
the expression of SPTLC2 in HUVECs in a dose-
dependent manner, and DMSO had no significant effect on
SPTLC2.

3.3. SPTLC2 Affected the Proliferation, Migration, Adhesion,
Angiogenesis, and S1P Production of HUVECs. The results
(Figure 3(a)) showed that the protein expression of SPTLC2
was significantly inhibited in the siR-SPTLC2 (SPTLC2
small interfering RNA) group, the protein expression of
SPTLC2 was significantly increased in the SPTLC2 (SPTLC2
plasmid) group, and the protein expression of SPTLC2 was
not significantly changed in the siR-NC (SPTLC2 small
interfering RNA negative control) and SPTLC2-NC
(SPTLC2 plasmid negative control) groups. After HUVECs
were transfected with siR-NC, siR-SPTLC2, SPTLC2-NC,
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Figure 1: TP inhibited the proliferation, migration, adhesion, and angiogenesis of HUVECs. (a) A CCK-8 assay was used to determine
HUVECs proliferation after treatment with TP (0, 12.5, 25, or 50 nM), DMSO, and endostatin (8mg/L) for 24, 48, and 72 h. After
treating HUVECs with TP (0, 12.5, 25, or 50 nM), DMSO, and endostatin (8mg/L) for 24 h, the migration (b), adhesion (c), and
angiogenesis (d) of HUVECs were measured. ∗P < 0:05, ∗∗P < 0:01 versus the control group.
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or SPTLC2, their proliferation (Figure 3(b)), migration
(Figure 3(c)), adhesion (Figure 3(d)), angiogenesis
(Figure 3(e)), and S1P production (Figure 3(f)) were mea-
sured. The results showed that siR-SPTLC2 could signifi-
cantly inhibit the proliferation, migration, adhesion,
angiogenesis, and S1P production of HUVECs; SPTLC2
could significantly increase the proliferation, migration,
adhesion, angiogenesis, and S1P production of HUVECs;
and siR-NC and SPTLC2-NC had no significant effect on
the proliferation, migration, adhesion, angiogenesis, and
S1P production of HUVECs. On this basis, the proliferation,
migration, adhesion, and angiogenesis of HUVECs in each
group were further inhibited after treatment with TP

(25 nM). Based on these results, SPTLC2 may regulate vari-
ous biological processes in HUVECs by regulating the pro-
duction of S1P.

3.4. TP Inhibited the Proliferation, Migration, Invasion, and
SPTLC2 mRNA and Protein Expression in HepG2 Cells.
Figure 4(a) presents that TP inhibited the proliferation of
HepG2 cells in a dose- and time-dependent manner, and
DMSO had no significant effect on the proliferation of
HepG2 cells. After treating HepG2 cells with TP (0, 1, 2,
or 4μM) and DMSO (negative control) for 24 h, the migra-
tion (Figure 4(b)), invasion (Figure 4(c)), and SPTLC2
mRNA (Figure 4(d)) and protein (Figure 4(e)) expression
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Figure 2: TP significantly downregulated the expression of SPTLC2 in HUVECs. (a) HUVECs were treated with TP (25 nM) for 24 h, and
the changes in related genes were screened by PCR array assay. The results are shown as the absolute value of ΔCt. (b) HUVECs were treated
with TP (25 nM) for 24 h, and the expression of SPTLC2 mRNA was detected by RT-PCR assay. (c) HUVECs were treated with TP (0, 12.5,
25, or 50 nM) and DMSO (negative control) for 24 h, and the protein expression of SPTLC2 in HUVECs was detected by western blotting
assay. ∗P < 0:05, ∗∗P < 0:01 versus the control group.
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Figure 3: Continued.
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of HepG2 cells were measured. The migration or invasion
capacity of HepG2 cells was assessed in a 24-well transwell
chamber, the migrated or invaded cells in each chamber
were destained (500μL and 10% acetic acid), and the absor-
bance was measured at 550nM to indicate the number of
migrated or invaded cells. The data showed that TP inhib-
ited HepG2 cell migration, invasion, and SPTLC2 mRNA
and protein expression in a dose-dependent manner, and
DMSO had no significant effect on HepG2 cell migration,
invasion, or SPTLC2 mRNA and protein expression.

3.5. SPTLC2 Affected the Proliferation, Migration, Invasion,
and S1P Production of HepG2 Cells. The results
(Figure 5(a)) showed that the protein expression of SPTLC2
was significantly inhibited in the siR-SPTLC2 (SPTLC2
small interfering RNA) group, the protein expression of
SPTLC2 was significantly increased in the SPTLC2 (SPTLC2
plasmid) group, and the protein expression of SPTLC2 was
not significantly changed in the siR-NC (SPTLC2 small
interfering RNA negative control) and SPTLC2-NC
(SPTLC2 plasmid negative control) groups. After HepG2
cells were transfected with siR-NC, siR-SPTLC2, SPTLC2-
NC, and SPTLC2, their proliferation (Figure 5(b)), migra-
tion (Figure 5(c)), invasion (Figure 5(d)), and S1P produc-
tion (Figure 5(e)) were measured. The results showed that
siR-SPTLC2 could significantly inhibit the proliferation,
migration, invasion, and S1P production of HepG2 cells;
SPTLC2 could significantly increase the proliferation, migra-
tion, invasion, and S1P production of HepG2 cells; and siR-
NC and SPTLC2-NC had no significant effect on the prolif-
eration, migration, invasion, and S1P production of HepG2
cells. On this basis, the proliferation, migration, and invasion
of HepG2 cells were further inhibited after treatment with
TP (2μM). Based on these results, SPTLC2 may regulate
various biological processes of HepG2 cells by regulating
the production of S1P.

3.6. HUVECs May Induce the Proliferation, Migration, and
Invasion of HepG2 Cells via the S1P-S1PRs Pathway. To ver-

ify the effect of HUVECs on the proliferation, migration,
and invasion of HepG2 cells, HUVECs and HepG2 cells
were cocultured to further detect the proliferation, migra-
tion, and invasion of HepG2 cells. In the noncocultured or
control group, HepG2 cells were added to the upper cham-
ber of the 24-well coculture chamber, and DMEM was added
to the lower chamber. In the cocultured group, HepG2 cells
were added to the upper chamber of the 24-well coculture
chamber, and HUVECs were added to the lower chamber.
The HUVECs and HepG2 cells were cocultured for 1 to 4
days. The results (Figure 6(a)) showed that HUVECs pro-
moted the proliferation of HepG2 cells, and their prolifera-
tive effects increased as the coculture time increased.
HUVECs and HepG2 cells were cocultured for 24 h, and
the data showed that HUVECs promoted the migration
(Figure 6(b)) and invasion (Figure 6(c)) of HepG2 cells
(100×). HUVECs and HepG2 cells were cocultured for 1 to
4 days, and the data showed that the content of S1P
(Figure 6(d)) in the coculture system and the protein expres-
sion of S1PR1 and S1PR2 (Figure 6(e)) in HepG2 cells
increased, while the protein expression of S1PR3
(Figure 6(e)) decreased gradually.

3.7. TP Inhibited the Proliferation, Migration, and Invasion
of HepG2 Cells Induced by HUVECs. HUVECs were treated
with TP (0, 12.5, 25, or 50 nM) for 24h, the media was chan-
ged to remove the effects of the drug, and the treated
HUVECs were cocultured with HepG2 cells in a transwell
coculture chamber. HepG2 cells were added to the upper
compartment and treated HUVECs were added to the lower
compartment. The data showed that when HUVECs were
treated with TP, its ability to promote the proliferation
(Figure 7(a)), migration (Figure 7(b)), and invasion
(Figure 7(c)) of HepG2 cells was significantly inhibited.

4. Discussion

Angiogenesis is known to play an important role in tumor
growth and metastasis. The newly formed vascular tissue
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Figure 3: SPTLC2 can affect the proliferation, migration, adhesion, angiogenesis, and S1P production of HUVECs. After HUVECs were
transfected with siR-NC (SPTLC2 small interfering RNA negative control), siR-SPTLC2 (SPTLC2 small interfering RNA), SPTLC2-NC
(SPTLC2 plasmid negative control), or SPTLC2 (SPTLC2 plasmid), the protein expression of SPTLC2 was detected by western blotting
assay (a), and the proliferation (b), migration (c), adhesion (d), angiogenesis (e), and S1P production (f) were measured. ∗P < 0:05, ∗∗P
< 0:01 versus the blank group.
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Figure 4: TP inhibited the proliferation, migration, invasion, and SPTLC2 mRNA and protein expression in HepG2 cells. (a) A CCK-8 assay
was used to determine HepG2 cell proliferation after treatment with TP (0, 1, 2, or 4 μM) and DMSO (negative control) for 24 and 48 h.
After treating HepG2 cells with TP (0, 1, 2, or 4 μM) and DMSO (negative control) for 24 h, the migration (b), invasion (c), and
SPTLC2 mRNA (d) and protein (e) expression of HepG2 cells were measured. ∗P < 0:05, ∗∗P < 0:01 versus the control group.
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Figure 5: Continued.
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can not only lead to the metastasis of tumor cells but also
provides a continuous nutritional supply to tumor tissue
[27, 28]. Therefore, according to modern medicine princi-
ples, the removal of tumor blood vessel tissue can “starve”
the tumor. Therefore, in addition to inhibiting the develop-
ment of tumor tissue, in the treatment of tumors, it is more
important to control the formation of new blood vessels. TP
is one of the most popular antitumor drugs in recent years.
TP inhibits not only tumor angiogenesis but also various
tumor biological processes [29–31]. In recent years, studies
have found that sphingolipids are not only the basic compo-

nents of cell membranes but also participate in a variety of
signal transduction pathways and play important roles in
the development of various diseases, especially tumors [4].
However, the antitumor effect of TP has mainly focused on
the tumor suppressor gene p53 [14, 32], microRNAs [33,
34], P-glycoprotein [35], mitogen-activated protein
kinases/extracellular signal-regulated kinase (MAPK/ERK)
[32], and high-mobility group box 1 (HMGB1) [36], while
studies on the sphingolipid signaling pathway are relatively
lacking. The signal diagram which indicates the TP effects
on sphingolipid signaling pathway is shown in Figure 8.
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Figure 5: SPTLC2 can affect the proliferation, migration, invasion, and S1P production of HepG2 cells. After HepG2 cells were transfected
with siR-NC (SPTLC2 small interfering RNA negative control), siR-SPTLC2 (SPTLC2 small interfering RNA), SPTLC2-NC (SPTLC2
plasmid negative control), and SPTLC2 (SPTLC2 plasmid), the protein expression of SPTLC2 was detected by western blotting assay (a),
and the proliferation (b), migration (c), invasion (d), and S1P production (e) were measured. ∗P < 0:05, ∗∗P < 0:01 versus the blank group.
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Based on these facts, this research first studied the mecha-
nism underlying the antivascular and antiliver cancer effects
of TP. The experimental data showed that TP could down-
regulate the expression of SPTLC2 in HUVECs and HepG2
cells, and further transfection experiments showed that the
biological behavior of the cells was significantly inhibited
after SPTLC2 knockdown, while the biological behavior of
the cells was significantly enhanced after SPTLC2 upregula-
tion. In addition, the downregulation of SPTLC2 expression
inhibited the production of S1P in two kinds of cells, while
upregulation of SPTLC2 expression increased the produc-
tion of S1P. Based on the above experimental results,
SPTLC2 is likely to be a new antivascular and antitumor tar-
get of TP, and the regulatory effect of SPTLC2 on cells is
likely to be realized by indirectly regulating the production
of S1P. SPTLC2 is likely to be a new target for tumor inhibi-
tion via sphingolipid-related pathways. Perhaps, the high
expression of SPTLC2 is closely related to the development
of tumors, and it is very likely to become one of the markers
for auxiliary tumor examination.

Angiogenesis is associated with many types of tumors,
especially solid tumors, such as liver and breast cancer. As

components of the tumor microenvironment, vascular
endothelial cells can not only form vascular nutrient tumor
tissue but can also penetrate the whole tumor tissue. There-
fore, vascular endothelial cells themselves have a certain
effect on promoting biological processes of tumor cells. A
coculture model is a common method to study interactions
between cells. Costa et al. [37] studied the correlation
between human hematopoietic stem/progenitor cells and
mesenchymal stem/stromal cells using a coculture model.
Chen et al. [38] used liver tumors cocultured with stellate
cells to study drug resistance and intercellular interactions.
Bernhardt et al. [39] studied the interaction between pri-
mary human osteoclasts and mature human osteoclasts in
a coculture model. Machado et al. [40] investigated the effect
of HepG2 cells on endothelial cells through a coculture
model. Few studies have investigated the effect of endothelial
cells on tumor cells. Thus, this research designed coculture
experiments with HUVECs and HepG2 cells. The data
showed that the proliferation, migration, and invasion of
HepG2 cells cocultured with HUVECs were significantly
enhanced compared with HepG2 cells cultured alone. Mech-
anistic studies have shown that HUVECs may secrete S1P
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Figure 6: HUVECs may induce the proliferation, migration, and invasion of HepG2 cells via the S1P-S1PR pathway. (a) HUVECs and
HepG2 cells were cocultured for 1 to 4 days, and a CCK-8 assay was used to determine HepG2 cells proliferation. HUVECs and HepG2
cells were cocultured for 24 h, and their migration (b) and invasion (c) were measured. HUVECs and HepG2 cells were cocultured for 1
to 4 days, and the S1P content (d) in the coculture system and the S1PR1, S1PR2, and S1PR3 protein expression (e) in HepG2 cells were
measured. ∗P < 0:05, ∗∗P < 0:01 versus the noncoculture or control group.
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and then act on S1PR in HepG2 cells. Our results showed
that HUVECs could promote the expression of S1PR2 in
HepG2 cells, thereby promoting their proliferation, migra-
tion, and invasion. However, Ghosal et al. [9] found that
S1PR2 could promote apoptosis and autophagy, which is
contrary to our results. This also indicates that the effect of
S1PR2 may be opposite in different cells, and its effect may
be different or even opposite when the cell environment
and other factors are different [41]. Previous reports have

shown that S1PR3 plays a positive role in cell proliferation
[42]. However, our data showed that HUVECs could inhibit
the expression of S1PR3 in HepG2 cells, which may be ben-
eficial for their proliferation, migration, and invasion. Our
results suggest that S1PR3 may also have two-sidedness,
and more mechanisms need to be further verified by subse-
quent experiments. This discovery further draws attention to
the research field of the effects of vascular endothelial cells
on tumor cells and enables us to determine that vascular
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Figure 7: TP inhibited the proliferation, migration, and invasion of HepG2 cells induced by HUVECs. HUVECs were treated with TP (0,
12.5, 25, or 50 nM) for 24 h, the media was changed to remove the effects of the drugs, and the treated HUVECs were cocultured with
HepG2 cells in a transwell coculture chamber. The data showed that when HUVECs were treated with TP, its ability to promote the
proliferation (a), migration (b), and invasion (c) of HepG2 cells was significantly inhibited. ∗P < 0:05, ∗∗P < 0:01 versus the control group.
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endothelial cells can also promote the biological processes of
tumor cells. These findings provide a theoretical basis for
further research on the effects between vascular endothelial
cells and tumor cells. However, this conclusion has only
been verified in HepG2 cells, and these effects need to be fur-
ther studied in other tumor cells and animal models. This
conclusion may suggest a potential new target for the clinical
treatment of tumors. In addition to tumor cells, vascular
endothelial cells are also the focus of tumor therapy.
Although TP can inhibit a variety of tumor cells through a
variety of pathways, its high hepatotoxicity limits its clinical
application. Zhao et al. [43] found that TP can induce apo-
ptosis of liver cells by acting on phosphatidylinositide 3-
kinases (PI3K), MAPK, tumor necrosis factor α (TNF-α),
and p53 signaling pathways and further affect the metabo-
lism of glycerophospholipids, fatty acids, leukotrienes,
purines, and pyrimidines, which eventually lead to liver tox-
icity. Hasnat et al. [44] found that TP can cause mitochon-
drial dysfunction and mitochondrial autophagy by affecting
the generation of reactive oxygen species (ROS), thereby
causing toxicity to L02 hepatocytes. Inhibition of the liver
toxicity induced by TP is a key issue that urgently needs to
be resolved in order to better take advantage of its antitumor
effect. However, there are few studies in this field. Tan et al.
[45] found that licorice root extract and magnesium isogly-
cyrrhizinate can inhibit the liver toxicity of TP through the
Nrf2 pathway.

In conclusion, the results of this research indicated that
TP inhibited the biological processes of HUVECs and
HepG2 cells by regulating the SPTLC2-S1P axis and that
HUVECs could promote the biological behavior of HepG2
cells. These findings are helpful to further understand the
antivascular and antitumor effects of TP via the sphingolipid
pathway and to further reveal the role of sphingolipids in the
development of tumors.

5. Conclusion

In vitro experiments showed that TP could inhibit the bio-
logical behavior of HUVECs and HepG2 cells by downreg-
ulating the expression of SPTLC2. SPTLC2 is a promising
target for tumor inhibition in the future. HUVECs may pro-
mote the biological behavior of HepG2 cells through S1P/
S1PR signaling pathway, and TP can inhibit these processes.
These results suggest that vascular endothelial cells may
affect the prognosis of tumor.
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