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Background. The importance of pyroptosis in tumorigenesis and cancer progression is becoming increasingly apparent. However,
the efficacy of using pyroptosis-related genes (PRGs) in predicting the prognosis of pancreatic adenocarcinoma (PAAD) patients
is unknown.Methods. This investigation used two databases to obtain expression data for PAAD patients. Differentially expressed
PRGs (DEPRGs) were identified between PAAD and control samples. Several bioinformatic approaches were used to analyze the
biological functions of DEPRGs and to identify prognostic DERPGs. A miRNA-prognostic DEPRG-transcription factor (TF)
regulatory network was created via the miRNet online tool. A risk score model was created after each patient’s risk score was
calculated. The microenvironments of the low- and high-risk groups were assessed using xCell, the expression of immune
checkpoints was determined, and gene set variation analysis (GSVA) was performed. Finally, the efficacy of certain potential
drugs was predicted using the pRRophetic algorithm, and the results in the high- and low-risk groups were compared. Results.
A total of 13 DEPRGs were identified between PAAD and control samples. Functional enrichment analysis showed that the
DEPRGs had a close relationship with inflammation. In univariate and multivariate Cox regression analyses, GSDMC, IRF1,
and PLCG1 were identified as prognostic biomarkers in PAAD. The results of the miRNA-prognostic DEPRG-TF regulatory
network showed that GSDMC, IRF1, and PLCG1 were regulated by both specific and common miRNAs and TFs. Based on the
risk score and other independent prognostic indicators, a nomogram with a good ability to predict the survival of PAAD
patients was developed. By evaluating the tumor microenvironment, we observed that the immune and metabolic
microenvironments of the two groups were substantially different. In addition, individuals in the low-risk group were more
susceptible to axitinib and camptothecin, whereas lapatinib might be preferred for patients in the high-risk group. Conclusion.
Our study revealed the prognostic value of PRGs in PAAD and created a reliable model for predicting the prognosis of PAAD
patients. Our findings will benefit the prognostication and treatment of PAAD patients.

1. Introduction

Pancreatic cancer is the fourth leading cause of cancer-
related death in the USA and Europe [1], and it is expected
to overtake lung carcinoma as the second leading cause by
2030 [2]. The most frequent type of pancreatic cancer is
pancreatic ductal adenocarcinoma (PDAC), which accounts
for up to 90% of pancreatic adenocarcinoma cases [3].
Despite the low incidence and relative rarity, with docu-
mented incidences in the United States and Europe ranging

from 11.5 to 15.3 per 100,000 people [4], the five-year sur-
vival rate is dismal, typically falling below 10% [5]. This
bleak outlook can be attributed to a number of factors. The
insidious and nonspecific symptoms of the disease make it
difficult to diagnose, and cases of pancreatic cancer that
can be definitively diagnosed are usually already in advanced
stages. In addition, a growing number of clinical cases have
found that pancreatic cancer exhibits significant resistance
to traditional treatment options, including chemotherapy,
radiation, and immunotherapy [6, 7]. This resistance makes
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surgery the best option for pancreatic adenocarcinoma
(PAAD) treatment, and for 10-20% of patients who undergo
surgery, the 5-year survival rate is still only 15-25% [8].
Adjuvant therapy is also further evolving. Adjuvant treat-
ment with a modified FOLFIRINOX regimen has recently
demonstrated an extended median overall survival of 4.53
years and a 3-year survival rate of 63.4% in patients after
surgical operation [9]. With regard to chemotherapy, for
approximately 80% of patients with locally advanced or
metastatic illness, gemcitabine or 5-fluorouracil chemother-
apy provides a survival time of months, and nab-paclitaxel
combined with gemcitabine or FOLFIRINOX provides slight
improvements [10, 11]. Neoadjuvant chemotherapy has
evolved rapidly in recent decades, giving patients with
advanced disease more possibilities for surgical resection
and radiation therapy [12]. However, there are still limita-
tions in the treatment and diagnosis of PAAD, and further
research to explore new mechanisms and discover new
potential targets is still warranted. The importance of pro-
grammed cell death (PCD) is being increasingly recognized
in cell biology, and cell apoptosis and necrosis are two of
the most classical forms of PCD. In the last decade, ferropto-
sis, autophagy, and pyroptosis of cells have become particu-
larly interesting as emerging modalities of PCD. Miao et al.
described the mechanism of pyroptosis as a unique type of
caspase-1-dependent PCD in 2001 [13]. Pyroptosis is distin-
guished by gasdermin family-mediated pore development
and then cell lysis, which also releases some intracellular
proinflammatory cytokines. Thus, pyroptosis is considered
a novel proinflammatory cell death program [14]. Based on
the prevailing academic view, pyroptosis can be divided into
two pathways. In the first pathway, pyroptosis is accompa-
nied by the activation of caspase-1, which is referred to as
the canonical pathway. The noncanonical pathway, in con-
trast, mainly involves the activation of atypical caspases 4/5
and 11 (human caspases 4 and 5 and mouse caspase 11)
[15]. Pyroptosis research in solid tumors is also emerging.
There is growing evidence that pyroptosis can be a potential
target for tumor therapy [16]. However, there are few basic
experimental studies on pyroptosis in pancreatic cancer. In
2019, Cui et al. found that MST1 inhibits pancreatic cancer
growth through the ROS-related pathway in the pyroptosis
process [17]. Unfortunately, few pyroptosis-related medi-
cines (inhibitors or activators) have been confirmed for clin-
ical use; additionally, no detailed studies or data have been
published to elucidate the relationship between pyroptosis
and pancreatic cancer outcomes, and for pancreatic cancer,
there are few prediction models available. Due to the lack
of basic experimental studies and the inaccessibility of
pyroptosis clinical data, the use of big data and bioinformat-
ics to try to investigate the connections between pyroptosis
and pancreatic cancer, as well as the connections between
relatively well-studied subject areas (e.g., the immune micro-
environment and tumor metabolism) and pyroptosis in
PAAD is intriguing.

With the rapid advancement of gene sequencing tech-
nology, there is undeniably an increase in the number of
reports on the gene signature of pancreatic cancer. For
example, a 9-gene signature [18], a 15-gene signature [19],

a tumor stem cell-associated signature [20], and a miRNA-
associated signature [21] have been reported.

However, studies on pyroptosis-related signatures have
not been reported in pancreatic cancer. Our research did
not aim to find direct evidence for pyroptosis-related causes
and treatment of pancreatic cancer. Because the regulation
of tumor growth is not determined by a few genes alone,
we focused on the impact of pyroptosis genes on the overall
regulation of pancreatic cancer and aimed to identify new
targets and treatment options. Finally, we provide a refer-
ence for the precise management of individuals with pancre-
atic cancer.

2. Materials and Procedures

2.1. Information Source. The PAAD patients’ transcriptome
profile (RNA-seq FPKM) and clinical characteristics were
obtained from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/) and the International Can-
cer Genome Consortium (ICGC) database (https://dcc.icgc
.org/). The distribution of the clinical features can be found
in Table 1. TCGA-PAAD cohort was used as the training set
to construct the risk score model. To test this model, data from
the ICGC database were utilized as an external dataset. Fifty-
seven pyroptosis-related genes (PRGs) were collected from
the Reactome database (https://reactome.org/content/detail/
R-HSA-5620971), MSigDB database (http://www.gsea-
msigdb.org/gsea/msigdb/cards/GOBP_PYROPTOSIS.html),
and previous literature [22–25].

2.2. Identification and Functional Analysis of DEPRGs in
PAAD. DEGs between 179 tumors and 4 control samples
were identified through the limma R package [26] using
the criterion of jlog 2FCj > 1 and adjusted p value <0.05.
The differentially expressed PRGs (DEPRGs) were obtained
by overlapping the DEGs with the 57 PRGs. The clusterPro-
filer R package [27] was used to screen significantly enriched
biological process (BP), cellular component (CC), molecular
function (MF), and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway terms of the DEPRGs with p
value <0.05 as a threshold.

2.3. Identification of Robust Prognostic DEPRGs in PAAD.
Based on the expression profiles and clinical information
of the 179 patients in the TCGA-PAAD cohort, DEPRGs
significantly associated with survival (p value <0.05) were
identified using univariate Cox regression. Thereafter, the
genes obtained from the univariate Cox regression were
input into a multivariate Cox regression model to acquire
robust prognostic DEPRGs (p value <0.05). To further
explore the transcriptional and posttranscriptional regula-
tion of the prognostic DEPRGs, the miRNet online tool
(https://www.mirnet.ca/) was applied to predict the miRNAs
and TFs targeting prognostic DEPRGs. Thereafter, a
miRNA-prognostic DEPRG-TF regulatory network was con-
structed and visualized using Cytoscape software [28].

2.4. Development and Validation of a Risk Score Model for
Predicting PAAD Prognosis. Depending on the expression
of prognostic DEPRGs and the coefficients, the risk score
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of every patient in the TCGA-PAAD cohort was calculated
using the following formula:

ExpGene1 ∗ Coef1 + ExpGene2 ∗ Coef2 + ExpGene3 ∗ Coef3⋯
ð1Þ

Every signature gene’s normalized expression value is
Exp, and the gene’s regression coefficient in multivariate
Cox regression analysis is Coef. Thereafter, based on the

median risk score, PAAD patients in the TCGA training
set were divided into low- and high-risk groups. Kaplan–
Meier analysis was used to examine the patients’ overall
survival in the low- and high-risk categories. ROC curves
were used to evaluate the performance of the risk score
model through the “survivalROC” R package [29]. 169
patients in the aggregate with whole clinical characteristics
in the ICGC-PACA-CA cohort were performed to validate
this risk model.

2.5. Development of a Nomogram to Predict Prognosis in
PAAD. To determine independent prognostic factors for
PAAD patients, clinical variables (age, sex, grade, and
TNM stage) and the risk score were input into a multivariate
Cox regression model. Then, independent prognostic
markers determined by multivariate Cox regression analysis
(p value <0.05) were incorporated to establish a nomogram
for predicting the 1-, 3-, and 5-year survival of PAAD
patients. Calibration curves were plotted to assess the nomo-
gram’s performance.

2.6. Characterization of PAAD Patients in the High- and
Low-Risk Score Groups. The PAAD patients in the high-
and low-risk score groups were characterized in three ways.
(1) The reference gene sets “c2.cp.kegg.v6.2.symbols” were
retrieved from the MSigDB database and utilized for GSVA
enrichment analysis and in heatmap by the “GSVA” R pack-
age [30]. Significantly enriched KEGG pathways were found
between the high- and low-risk score groups with a p value
<0.05. (2) The xCell algorithm [31] was used to evaluate
the microenvironment of patients in the high- and low-risk
score groups. (3) The expression of 35 immune checkpoints
was compared between patients in the high- and low-risk
score groups. Furthermore, to investigate the sensitivity of
patients in high- and low-risk categories to common anti-
cancer drugs, IC50 values were analyzed using the pRRophe-
tic algorithm [32].

3. Results

3.1. Thirteen DEPRGs Associated with Immunity Were
Identified between PAAD and Control Samples. A total of
481 DEGs were detected between PAAD and control samples
(Figure 1(a) and Table S1), including 257 upregulated and
224 downregulated genes in tumor samples relative to
control samples. The expression of the top 20 DEGs is shown
in a heatmap (Figure 1(b)). After overlapping the DEGs with
PRGs, GZMA, AIM2, CASP1, TP53, IRF1, IRF2, PLCG1,
GSDMC, TNF, NLRC4, NOD1, NLRP3, and GSDME were
identified as DEPRGs (Figure 1(c)). Functional analysis
results revealed that the DEPRGs were remarkably enriched
in 148 BP, one CC, 28 MF, and 28 KEGG pathway terms
(Table S2). We found that the top Gene Ontology (GO)
and KEGG pathway terms were related to inflammation
(Figures 2(a) and 2(b)), such as positive regulation of
interleukin-1 beta production, inflammasome complex,
NOD-like receptor signaling pathway, and C-type lectin
receptor signaling pathway, indicating that the DEPRGs
may participate in PAAD via immune regulation.

Table 1: Distribution of characteristics of clinical samples in
TCGA and IGCG databases.

TCGA ICGC

OS event

Dead 58 116

Alive 119 53

Age

<=65 93 63

>65 84 87

Unknown 19

Gender

Female 80 76

Male 97 92

Unknown 1

Grade

G1 31 15

G2 94 38

G3 48 23

G4 2 6

Unknown 2 87

Stage

I 21 6

II 146 74

III 3 1

IV 4 1

Unknown 3 87

T stage NA

T1 7

T2 24

T3 141

T4 3

Unknown 2

N stage NA

N0 49

N1 123

Unknown 5

M stage NA

M0 79

M1 4

Unknown 94

Total 177 169
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3.2. Three DEPRGs Were Identified as Prognostic Biomarkers
in PAAD. Thereafter, we assessed the prognostic value of the
13 DEPRGs in PAAD through univariate and multivariate
Cox regression analyses. GSDMC, IRF1, and PLCG1 were
found to be significantly correlated with the survival of
PAAD patients (Table 2) by univariate Cox regression anal-
ysis. These three DEPRGs were input into a multivariate Cox
regression model to gain more robust prognostic biomark-
ers. GSDMC, IRF1, and PLCG1 remained remarkably linked
to the prognosis of PAAD patients (Figure 3(a)) and were
identified as prognostic biomarkers. Moreover, using the
miRNet online tool, we constructed a miRNA–mRNA–TF
regulatory network composed of three prognostic biomark-
ers, 89 miRNAs, and eight TFs. In the network, we found
that GSDMC, IRF1, and PLCG1 were regulated by both
specific and common miRNAs, whereas only IRF1 was pre-
dicted to be regulated by TFs, including STAT1/2/3/4,
RELA, NFKB1, CREBBP, and CIITA (Figure 3(b)).

3.3. A PRG-Related Risk Score Model Was Constructed
and Validated in PAAD. Depending on the expression
levels and coefficients of GSDMC, IRF1, and PLCG1, we
calculated every patient’s risk score as follows: risk score
= ð0:124 ∗GSDMC exp:Þ + ð0:084 ∗ IRF1 exp:Þ + ð−0:155
∗ PLCG1 exp:Þ. We found that the risk score differed
considerably between groups stratified by tumor grade,
but no significant difference in risk score was observed
between groups classified by age, sex, TNM stage, or tumor
stage (Figure 4). The PAAD patients in the TCGA training
set were divided into high- and low-risk groups according
to the median risk score (Figures 5(a) and 5(b)). The high-
risk group showed worse survival than the low-risk group

(p value <0.05, hazard ratio = 1:86, confidence interval =
1:23 − 2:80, Figure 5(c)). The ROC curves and area under
the ROC curve (AUC) values revealed that this risk score
model performed well in predicting the 1-, 3- and 5-year sur-
vival of PAAD patients, with AUC values of 0.63, 0.619, and
0.639, respectively (Figure 5(d)). Furthermore, the risk score
model was also evaluated in the ICGC testing set and
detected similar results (Figures 6(a)–6(d)), indicating that
it was reliable for predicting PAAD patient survival.

3.4. A PRG-Related Nomogram Was Developed in PAAD.
Next, we detected independent prognostic factors in PAAD
by performing multivariate analyses and found that the risk
score, age, and N stage were remarkably correlated with
prognosis (Figure 7(a)), indicating that they were indepen-
dent prognostic factors for PAAD. Then, a nomogram for
predicting the 1-, 3- and 5-year survival of PAAD patients
was established (Figure 7(b)) using those independent prog-
nostic factors. Calibration curves revealed that the predicted
probability of overall survival was close to the actual overall
survival, indicating good performance of the nomogram
(Figures 7(c)–7(e)).

3.5. The Microenvironments of the High- and Low-Risk
Groups Were Different. The microenvironment of PAAD
patients in the high- and low-risk groups was then investi-
gated. With xCell, we discovered that there was a significant
difference in the infiltration of CD8+ T cells, endothelial
cells, cancer-associated fibroblasts, hematopoietic stem cells,
M2 macrophages, plasmacytoid dendritic cells, and CD4+
Th1 T cells between the high- and low-risk groups, and the
high-risk groups had higher stromal and microenvironment

468 13

GZMA, AIM2, CASP1, TP53, IRF1, IRF2, PLCG1
GSDMC, TNF, NLRC4, NOD1, NLRP3, GSDME

44

TCGA-PAAD diff Pyroptosis

(c)

Figure 1: Identification of the expression of 13 different PRGs. (a) Volcano plot presenting differentially expressed genes between normal
and tumor tissues from the TCGA dataset. Red plot: upregulated genes in tumor samples. Green plot: downregulated genes in tumor
samples. (b) Heatmap (green: low expression level, red: high expression level) of differentially expressed genes between the normal (blue)
and PAAD (red) samples. (c) Venn diagram: the green circle on the left includes the 481 TCGA-PAAD cohort differentially expressed
genes, the red circle on the right includes the 57 pyroptosis-related genes, and the intersection of the two circles includes the 13
differentially expressed pyroptosis-related genes.
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scores (Figure 8(a)). Furthermore, among the 35 immune
checkpoint molecules, patients in the high-risk group had
significantly higher expressions of ADORA2A, BTNL1,
CD160, CD200, CD28, and NRP1 expression levels and
lower expression of VTCN1 and TNFSF9, and no significant
expression difference of other 27 immune checkpoints
was found between low- and high-risk group (Figure 8(b),
Figure S1). In addition, GSVA identified 184 KEGG pathway
terms that were significantly differentially enriched between
the high- and low-risk groups (Table S3). Interestingly, we
observed that the top 20 differentially enriched KEGG path-

way terms between the high- and low-risk groups were
related to metabolism, such as inositol phosphate metabo-
lism, ascorbate and aldarate metabolism, alphalinolenic acid
metabolism, and cysteine and methionine metabolism
(Figure 9(a)). These findings indicate that pyroptosis might
disturb the immune and metabolic microenvironment, thus
affecting the prognosis of PAAD patients. Increasing evi-
dence has reported that the tumor microenvironment influ-
ences the treatment response of cancer patients [33, 34].
Therefore, we compared the IC50 values of common antican-
cer drugs between the high- and low-risk groups. We found
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Figure 2: Functional enrichment analysis of DEPRGs in the TCGA cohort. (a) Bar graph for GO analysis category. (b) Bar graph for the
KEGG analysis. A longer bar means that more genes were enriched, and an increasing depth of red means that the differences were
more obvious. BP: Biological process; CC: Cellular component: MF: Molecular function. DEPRGs differentially expressed pyroptosis-
related genes.

Table 2: Univariate Cox regression analysis of OS.

Gene 95% CI 95% CI lower 95% CI high p value

GSDMC 1.132550775 1.061848796 1.207960363 0.000153929

IRF1 1.088101442 1.035478699 1.14339846 0.0008425

PLCG1 0.85612537 0.777047892 0.943250289 0.00168086
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that patients in the low-risk group were more sensitive to
axitinib and camptothecin but more resistant to lapatinib
(Figure 9(b)).

4. Discussion

Various forms of tumor death have been discovered. From
apoptosis (proposed in 1972) [35] to ferroptosis (which has
been increasingly researched in the last decade) [36] to alka-
liptosis (proposed in 2018) [37], researchers are exploring
the mechanisms of cell death. In 2001, pyroptosis was also
a focus of research because of its characteristic inflammatory

response. Basic experimental studies related to pyroptosis
and tumors are also abundant, and pyroptosis has been
found in tumor cells in digestive cancers [38–40], breast can-
cer [41], and lung cancer [42]. Unfortunately, studies of
pyroptosis in PAAD are very rare. Since 2019, only Cui
Jet al. have clearly suggested that MST1 is able to induce
pyroptosis via ROS [17]. Few studies have reported whether
studies of pyroptosis can provide therapeutic insight for cli-
nicians. In addition, there are few studies in the field of
PAAD. As a result, we aimed to investigate the association
between pyroptosis and PAAD using clinical data to develop
more innovative methods for clinical diagnosis and therapy.

Hazard ratio
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AIC: 799.29; Concordance index: 0.64 0.8 0.85 0.9 0.95 1.15 1.21.051 1.1
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Figure 3: Multivariate Cox regression analysis of the three DEPRGs and construction of a miRNA–mRNA–TF regulatory network. (a)
Forest plot presenting the HRs for the three DEPRG prognostic models. (b) The miRNA–mRNA–TF regulatory network including the
three DEPRGs, 89 miRNAs, and eight TFs.

8 Disease Markers



≤65 >65
Age

0

5

10

0.96

Age

≤65

>65

Ri
sk

 sc
or

e

(a)

Female Male
Gender

0

5

10

0.46

Gender

Female

Male

Ri
sk

 sc
or

e

(b)

M0 M1
M

0

5

10

0.54

M

M0

M1

Ri
sk

 sc
or

e

(c)

N0 N1
N

0

5

10

0.9

N

N0

N1

Ri
sk

 sc
or

e

(d)

Figure 4: Continued.

9Disease Markers



T1 T4
T

0

5

15

0.5

Ri
sk

 sc
or

e

0.44

0.083

0.92

0.16

0.25

T2 T3

10

20

T

T1

T2

T3

T4

(e)

G1 G4
Grade

0

5

15

0.62

Ri
sk

 sc
or

e

0.11

0.036

0.71

0.79

0.0017

G2 G3

10

20

Grade

G1

G2

G3

G4

(f)

Figure 4: Continued.

10 Disease Markers



The entire experimental design flow of the study is shown in
Figure 10.

We first investigated the intersection of the DEGs in
PAAD and the PRGs. After overlapping the DEGs with
the PRGs, GZMA, AIM2, CASP1, TP53, IRF1, IRF2,
PLCG1, GSDMC, TNF, NLRC4, NOD1, NLRP3, and
GSDME were identified as DEPRGs. The KEGG and GO
studies revealed that these 13 genes are linked to inflamma-
tory and immunological pathways, especially IL-1-related
pathways. In 2020, Das et al. reported a novel mode of
immune evasion in PAAD that is dependent on tumor cell
IL-1 production via TLR4-NLRP3 inflammasome activation
[43]. Similarly, regarding IL-1 and NLRP3, Zhang et al. dis-
covered that fatty acid oxidation was responsible for
increased IL-1 secretion and the resultant promigratory
impact on M2 phenotype monocyte-derived macrophages.
Furthermore, the researchers demonstrated that IL-1 induc-
tion was mediated by reactive oxygen species and was NLRP3
dependent. Their studies showed that fatty acid oxidation
plays an important role in functioning human M2 macro-
phages by increasing IL-1 production, which promotes hepa-
tocellular carcinoma cell motility [44]. Interleukins and
TNF-α are also thought to play an important role in gastro-
enteropancreatic neuroendocrine neoplasms. In a 2020 arti-
cle, it was reported that TNF-α can be used as a prognostic
indicator, while various ILs (IL-2, IL-1β, and IL-6) were also
discovered to be linked to tumor prognosis [45]. Excitingly,

we found a recent report that more completely elaborates
the role of NLRP3, CASP1, and IL-β in pancreatic cancer.
According to a previous study, LPS-induced inflammation
in the presence of ATP activates NLRP3, which enhances
pancreatic cancer cell proliferation by boosting caspase-1
activity, resulting in total IL-1β production [46]. Although
the term “pyroptosis” is not explicitly stated in the article,
we believe that the mechanism detailed in the study is most
likely the canonical CASP1-dependent pyroptosis pathway.
In fact, interleukin-based inflammatory agents have been
shown to act as prognostic indicators in PAAD [47]. Com-
bined with what has been described previously, we suggest
that these genes associated with pyroptosis regulate the
development of PAAD through multiple pathways that affect
immunity or inflammation.

To identify more precise prognostic markers for PAAD,
we employed Cox regression (univariate and multivariate) to
examine the 13 genes, and ultimately, we obtained three
genes of interest: GSDMC, IRF1, and PLCG1. We analyzed
the regulatory network of miRNAs and TFs linked with
these three genes. This network contained several experi-
mentally confirmed regulatory pathways. One study showed
that miR-21 promotes the activation of inflammasomes to
induce pyrolysis [48]. Wang et al. discovered in 2019 that
metformin causes pyroptosis in human esophageal cancer
cells by targeting the miR-497/PELP1 axis [49]. Similarly,
miR-133a [50], miR-148a [51], and the TF STAT [52–54]
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were found to be involved in pyroptosis progression in our
network. This research suggests that a significant number
of miRNAs have a role in pyroptosis control, although more
basic studies are needed to corroborate this concept.

The GSDM family includes six genes in humans, namely,
GSDMA, GSDMB, GSDMC, GSDMD, GSDME, and
DFNB59. These genes may be linked to cell proliferation
and differentiation, as well as cancer in several organs [55].
Two mechanisms of GSDM activation have been confirmed:
the first pathway is protease-related cleavage of the linkage
region to release the N-terminal active domain, and the
second pathway involves mutations in the C-terminal struc-
tural domain that disrupt the interaction between the N-
terminal and C-terminal structural domains and reduce the
ability of the C-terminal domain to inhibit N-terminal
domain pore formation. Specifically, different GSDMs have
different activation methods. GSDMD was found to be acti-
vated by caspases-1/4/5/11, GSDME was found to be acti-
vated by caspase-3, and GSDMB was found to be activated
by caspases-3/6/7. GSDMA was the first identified GSDM
family member, and the expression of GSDMA3 upregulates

caspase-3 expression, implying that GSDMA3may be associ-
ated with apoptosis. GSDMB promotes caspase-4 activity by
binding to the CARD structural domain of caspase-4, which
may be another pathway for cell pyroptosis. However, the
related functions of GSDMC are poorly studied [56]. When
GSDMC was discovered in metastatic melanoma cells, it
was named melanoma-derived leucine zipper extranuclear
factor (MLZE) due to a suspected leucine zipper in its C-
terminal domain [57]. Overexpression of the N-terminal
domain of GSDMC in human 292 T cells can yield pyroptotic
characteristics comparable to those induced by other GSDM
family members [58]. Furthermore, Hou et al. [59] found
that caspase-8 can specifically cleave GSDMC and generate
an NT domain that forms pores on the cell membrane and
induces pyroptosis of MAD-MB-231 cells. Furthermore,
GSDMC has been discovered to have a crucial function in
colorectal cancer [60], lung cancer [61], and other solid
tumors. In our study, GSDMC seemed to be a oncogene,
since it was expressed nearly twice as strongly in tumor tis-
sues as in normal tissues, contributing to a decrease in patient
survival.
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Phospholipase C grammar 1 (PLCG1) is ubiquitously
expressed in various tissues and is reported to be associated
with the receptor tyrosine kinase- (RTK-) related signaling
pathway, influencing multiple biological functions of cells
[62, 63]. Some studies have revealed that PLCG1 can drive
the progression of cancers, such as breast carcinoma [64],
colorectal carcinoma [65], and small-cell lung cancer [66].
PLCG1 has not been reported in pancreatic cancer, and we
only found that phosphorylation and translocation of PLCG1
were associated with PAAD invasion and metastasis [67].
It is worth noting that we analyzed PLCG1 expression
and its correlation with prognosis. PLCG1 was highly
expressed in tumor tissue, but patients with high expres-
sion had better survival. Based on our Cox analysis find-
ings, PLCG1 also plays a protective role in PAAD. This
relationship between expression and prognosis seems to
be contradictory. However, our careful analysis revealed
an interesting phenomenon in which PLCG1 expression
in pancreatic cancer was mainly found in mesenchymal
cells rather than tumor cells. In contrast, PLCG1 expres-
sion was not high in normal pancreatic mesenchymal cells
(the expression location data can be found at https://www
.proteinatlas.org/ENSG00000124181-PLCG1). Tumor mes-
enchymal cells mainly regulate the tumor microenviron-

ment, and alterations in mesenchymal cells change tumor
immunity. Therefore, we hypothesize that the main reason
for the contradictory results is the feedback regulation of
pancreatic cancer. It is possible that the increased expres-
sion of PLCG1 is due to the presence of tumors and that
this increase in PLCG1 is intended to negatively regulate
tumor growth. Although we did not find other relevant
studies in solid tumors, we confirmed in basic studies of
other diseases that PLCG1 may be a protective factor.
The article “Reduced PLCG1 expression is associated with
inferior survival for myelodysplastic syndromes” published
in 2020 by Masayuki Shiseki et al. provides good support-
ing evidence. The association of PLCG1 with pyroptosis
has also been demonstrated, with the main mechanism
being involvement in the GSDMD-mediated pyroptosis
pathway [68]. In 2018, Kang et al. found that GSDMD-
N-induced cell death can be inhibited by the knockdown
of PLCG1 and indicated that PLCG1 could be involved
in GSDMD-dependent pyroptosis [69]. This paper sup-
ports our previous speculation that PLCG1 is a protective
factor, suggesting that this protective mechanism is likely
to promote cellular pyroptosis.

The IRF-1 gene encodes a protein that acts as a tran-
scriptional regulator and tumor suppressor, activating genes
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Figure 6: Validation of the risk model in the ICGC cohort. (a) Distribution of the ICGC cohort based on the risk score. (b) Survival status
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involved in both innate and acquired immune responses.
The encoded protein promotes the transcription of genes
involved in the body’s response to viruses and bacteria, as
well as cell proliferation, apoptosis, the immunological
response, and the DNA damage response [70]. Some studies
have revealed that IRF-1 has antitumor effects via apoptosis
and the cell cycle in human cancer [71]. In addition to apo-
ptosis, IRF-1 has been linked to the control of cellular
autophagy in breast cancer [72]. Although reports on IRF-
1 regulation of pyroptosis are uncommon in tumors, we
found that IRF-1 is involved in the pyroptosis pathway in
other diseases. IRF-1 can induce macrophages in acute
coronary syndrome [73, 74]. The same pyroptosis of macro-
phages is also induced by IRF-1 in acute lung injury [75].
These results suggest that IRF-1 plays an important role in
tumor immunity and pyroptosis. In a mouse model, Shao
et al. discovered that the lack of IRF-1 can result in the loss
of PD-L1 and tumor cell killing via CD8+ T cells [76]. Sim-
ilarly, Yan et al. also found that IRF-1 can upregulate PD-L1
and result in tumor cell evasion of antitumor immunity via
T cell interactions in human hepatocellular carcinoma [77].
However, the relationship between tumor immunity and
pyroptosis remains unknown. In our study, using the
expression of the three genes to analyze and predict the
prognosis of patients was found to be a feasible approach
with good statistical significance.

We are also interested in the predictive power of these
three genes in other cancers. Therefore, we performed a
prognostic pancancer analysis and found that these three
genes alone did not show good predictive power as prognos-
tic factors for other tumor prognoses (Figure S2).

Meanwhile, we analyzed the relationship between clini-
cal features and risk scores. Based on the clinical data avail-

able in the TCGA database, we did find that risk scores were
associated with tumor grade. However, other clinical charac-
teristics did not show a strong correlation with the risk score
and were not statistically significant. This may be caused by
insufficient samples in the subgroups divided by clinical
characteristics. The grading of tumors is based on the
appearance of tumor cells under the microscope: low-grade
tumor cells are closer to normal cells than to high-grade
tumor cells. The grading provides advice to physicians about
the degree of infiltration of individual tumors and their rate
of growth and spread. Overall, low-grade tumors grow more
slowly, while high-grade tumors grow more rapidly. The rate
of tumor infiltration and growth also has a great impact on
the prognosis of patients, and our risk score was established
based on the prognosis of patients too, so the relationship
between tumor grade and risk score is within the under-
standable range.

New signaling pathways of IRF-1 have been found
within tumor microenvironments and in metastatic sites
[78]. PLCG1 overexpression is associated with tumor growth
and poor survival in gliomas in adult patients [79]. The col-
ony formation assay showed that GSDMC and GSDMD had
cell growth inhibitory activity, which affected the growth
rate of the cells [55]. The above literature suggests that the
genes contained in our signature all affect tumor infiltration
and growth. Therefore, we can speculate that it is because
the altered expression and activity of these genes affect the
rate of tumor cell infiltration and growth, ultimately leading
to different tumor grades.

As researchers in clinical medicine, we were most inter-
ested in what benefits the above results can bring to patients
and what type of treatment references can be provided for
clinicians. As a result, we classified patients as high-risk or
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Figure 7: Combination of the risk model and clinical characteristics for predicting PAAD prognosis. (a) Multivariate Cox regression
analysis of independent prognostic factors for the risk model. (b) Nomogram constructed to predict the probability of OS in PAAD
patients at 1, 3, and 5 years. (c)–(e) Calibration curves for 1-, 3-, and 5-year survival probabilities in the TCGA cohort.
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low-risk based on the expression of the three genes. The
immune infiltration of patients in various risk categories
was compared, and we investigated whether immunotherapy
works differently in patients in various risk groups. We were
surprised to note that tumor infiltration differed between
risk categories of patients. Tumor cell invasion was more
noticeable in the high-risk patients. The expression of
immunological checkpoints is a crucial marker utilized in
tumor immunotherapy. As a result, we investigated the
expression of immunological checkpoints in patients from
various risk categories. Immune checkpoint expression was
substantially correlated with the degree of tumor cell infiltra-
tion and was higher in patients in the high-risk group than

in those in the low-risk group. This finding suggests that
the prognostic PRGs interfere with the immune response
of the tumor. A study published in 2020 discovered that
CD8+ T cells and natural killer (NK) cells boosted tumor
clearance via the GSDMB–granzyme A axis. These data sug-
gest that NK cells can trigger pyroptosis but have different
axes in different cells [80]. Separate studies published the
same year discovered that CD8+ T cells and NK cells both
induce pyroptosis in tumor cells via granzyme B (an enzyme
capable of cleaving GSDME) [81]. The GSDM family is still
the focus of research on the link between CD8+ T cells and
pyroptosis. An in vitro study found that GSDMD is required
for CD8+ T cell antitumor activity [82]. In our study, CD8+
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Figure 8: Association of the risk score with the microenvironment and immune checkpoints. (a) Comparison of immune cells and the
stroma between the low- and high-risk groups in the TCGA cohort. (b) Comparison of immune checkpoints between the low- and high-
risk groups in the TCGA cohort. The statistical test used by nonparametric tests.
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T cells varied across risk groups; the scores were lower in the
high-risk group. This finding is also in accordance with our
expectations.

However, few targetable immune checkpoints have been
identified for PAAD compared to other tumors. Therefore,
few immune checkpoint inhibitors are available. Fortunately,
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Figure 9: GSVA and determination of response to chemotherapy. (a) GSVA showing the activation states of biological pathways between
the high- and low-risk groups. A heatmap was used to visualize the enriched biological processes. Red represents activated pathways, and
blue represents inhibited pathways. (b) Correlation analysis between chemotherapeutic drug sensitivity and the model: the low-risk
group had lower IC50 values for axitinib and camptothecin and a higher IC50 value for lapatinib.
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we still identified eight immune checkpoints with differential
expression. Furthermore, our immune checkpoint gene
study revealed that the low-risk group had greater levels of
immune checkpoint gene expression (VTCN1 and TNFSF9).
VTCN1 is a transmembrane protein expressed on the sur-
face of some tumors and is considered to negatively regulate
T cells, significantly inhibiting CD4+ T cell differentiation
[83]. TNFSF9 (also known as CD137 or 4-1BB) is an induc-
ible costimulatory receptor expressed on activated T cells
and natural killer cells that can enhance effective function;
combining PD-1/PD-L1 blockade with a CD137 agonist
synergistically increased antitumor responses [84]. We
hypothesize that a combination therapy targeting immune
checkpoints and pyroptosis might be a novel therapeutic
strategy. A review corroborated this idea, reporting that
immune checkpoint inhibitors effectively killed immune-
cold tumor cells only when pyroptosis was also induced. Sim-
ilarly, pyroptosis induction alone was ineffective in inhibiting
tumor growth, emphasizing the need to treat immune-cold
tumors with a combination of pyroptosis activator and
immune checkpoint inhibitors [85].

In addition, the GSVA results suggested that our prog-
nostic PRGs may influence the metabolism of tumor cells.
Glucose metabolism plays a crucial role in the body’s envi-
ronmental homeostasis. A variety of enzymes related to
gluconeogenic intermediates have been shown to be closely
related to the activation of NLRP3 [86]. Gao et al. found
that hyperglycemia activates the NADPH-oxidase system,
leading to the upregulation of ROS production and NLRP3
inflammatory vesicle activity [87]. ROS have been shown to
induce NLRP3 inflammatory vesicle formation, triggering
cellular pyroptotic death. Bacterial infections may cause cel-
lular pyroptosis by affecting glucose metabolism. Salmonella
can disrupt metabolism by taking up glucose from the host
cell, reducing the level of reduced nicotinamide adenine
dinucleotide (NADH) and leading to mitochondrial ROS
production, which in turn triggers caspase-1-dependent cel-
lular pyroptosis. It has been shown that restoration of NADH
can save cells from pyroptosis [88]. The absence of NLRP3

inflammatory vesicles or treatment with the antioxidant N-
acetylcysteine ameliorated islet cell damage caused by
advanced glycation end products (AGEs) after NLRP3 acti-
vation [89]. We also found reports on pyroptosis and lipid
metabolism. High homocysteine (HCY) is a risk factor for
obesity, elevated serum cysteine levels have been found in
obese patients [90], and high levels of HCY can cause pyrop-
tosis in the presence and absence of LPS [90]. Researchers
found that NLRP3-related inflammation was activated in
the fat pads of leptin-deficient mice and high-fat diet-fed
obese mice and that NLRP3-dependent caspase-1 activation
in hypertrophic adipocytes may induce obesity and adipocyte
death through pyroptosis [91]. A high-fat diet alters lipid
metabolism and raises free fatty acid levels, which activates
the NLRP3 inflammasome and causes caspase-1-dependent
pyroptosis. Glucose metabolism disruptions generate addi-
tional ROS, which activate the NLRP3 inflammasome and
caspase-1-dependent pyroptosis. HCY levels can also cause
NLRP3 inflammasome activation and caspase-1-dependent
pyroptosis.

Finally, in light of the importance of the tumor microen-
vironment in cancer treatment, we examined the sensitivity
of the two groups of patients to routinely used anticancer
drugs, and the results showed that the drug sensitivity
differed between the two groups, with axitinib and campto-
thecin being more suitable for patients in the low-risk group
and lapatinib being more suitable for patients in the high-risk
group. We analyzed the origin and mechanism of the three
drugs in DrugBank (https://go.drugbank.com/). Axitinib is
a tyrosine kinase inhibitor of the second generation that
operates by specifically blocking vascular endothelial growth
factor receptors (VEGFR-1, VEGFR-2, and VEGFR-3) [92].
Camptothecin is an alkaloid extracted from the stem wood
of Camptotheca acuminata, a Chinese tree. This chemical
inhibits the nuclear enzyme DNA topoisomerase (type I) in
a specific manner [93]. Lapatinib is a tyrosine kinase inhibi-
tor of human epidermal growth factor receptor type 2
(HER2/ERBB2) and epidermal growth factor receptor
(HER1/EGFR/ERBB1) [94]. A phase II clinical trial assessed
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lapatinib combined with capecitabine as a new choice for
metastatic PAAD [95, 96]. Unfortunately, we did not find a
clear pathway associated with pyroptosis, and thus, more
exploration is needed. However, we found that the targets
of both lapatinib and axitinib are tyrosine kinases. Therefore,
our subsequent research will focus on the relationship
between tyrosine kinases and pyroptosis.

We were interested in comparing our prediction model
to existing pyroptosis-related models. In fact, no similar
pyroptosis signature study has been reported in pancreatic
cancer. We could only compare pyroptosis-related signa-
tures in other solid tumors. In lung adenocarcinoma, a
pyroptosis signature has been reported to be able to predict
prognosis. However, the values of their AUC curves were
small, and the AUC values in the first and second years were
surprisingly less than 0.6, which indicates that the predictive
power of this prediction model is not sufficient [97]. In
hepatocellular carcinoma, some reports indicate that a
pyroptosis signature has good predictive power with rela-
tively high AUC values. However, the signature includes a
total of 9 related genes. Theoretically, this signature may be
more accurate, but the cost of detection in clinical practice
will be much higher. In contrast, our signature has only
three genes, which reduces the cost of testing in practical
application in the clinic [98].

Nonetheless, there are certain general limits to our
research. The major source of our data, as with other predic-
tive model publications, was publicly available databases;
hence, our work lacks validation using laboratory data and
genuine clinical data. Although we validated our model with
another dataset, this strategy cannot substitute for validation
using real clinical data. As a result, further prospective stud-
ies are needed to evaluate the feasibility and real predictive
value of the pyroptosis-related gene signature in clinical
applications.

5. Conclusion

Our research described that pyroptosis is closely related to
pancreatic cancer and established a predictive model con-
sisting of three signature PRGs. The score from the model
could predict overall survival in TCGA and ICGC cohorts.
This score could be used to determine whether patients were
sensitive to immunotherapy and which drug was most suit-
able. In addition, a nomogram was generated to predict
patient survival. We hope this model can contribute to the
precision treatment of pancreatic cancer in the future.
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