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Background. Epithelial ovarian cancer (EOC) has the lowest survival rate among female reproductive cancers present with symptoms
of aggressive malignancies, poor prognosis, drug resistance and postoperative recurrence. The majority of patients with EOC are
diagnosed at an advanced stage due to the therapeutic challenges including lack of early diagnosis and effective therapeutic targets
for EOC. Methods. Pan-cancer analyses were performed to explore the features of forkhead-box (FOX) A1 (FOXA1) using data
from TCGA and GTEx databases. R package “clusterprofiler” was used to perform the enrichment analysis of FOXA1 in EOC.
Data downloaded from Drug Sensitivity in Cancer (GDSC) database were used to evaluate the association between FOXA1 and
antitumor drug sensitivity. In experimental verification, FOXA1 expression was detected using qRT-PCR and western blot assays.
Western blot, immunofluorescence staining, and Transwell assays were used to assess the influence of FOXA1 silencing on
epithelial-mesenchymal transition (EMT) of EOC cells. Results. We found that FOXA1 was highly expressed in EOC and predicted
poorer survival of EOC patients. We observed that FOXA1 expression was positively correlated EMT-related pathways. Through
experimental verification, we found the underlying function of FOXA1 to promote EMT in ovarian cancers. The results from
western blot, immunofluorescence staining, and Transwell assays showed that FOXA1 silencing impeded the progression of EMT
and invasiveness of the cancer cells. Furthermore, CCK-8 and invasion assays suggested that siRNA-FOXA1 attenuated the ability
of cancer cells to metastasize and proliferate. Dual-luciferase reporter assays confirmed the binding activity of FOXA1 to the
promoter of connective tissue growth factor (CTGF). In addition, we found that FOXA1 was closely correlated immunosuppressive
microenvironment of EOC. High FOXA1 expression may contribute to the resistance of many anticancer drugs. Conclusions. Our
results predict and validate the function of FOXA1 in promoting EMT and the progression of disease in EOC. Targeting FOXA1
may improve the sensitivity of EOC treatment.

1. Background

Ovarian cancer is a fatal gynecological cancer [1–3]. Ovarian
cancer is often identified in the advanced phase because it
lacks early-stage symptoms. Even the symptoms in the
advanced stage, including abdominal pain and swelling, loss
of appetite, and frequent urination, can be overlooked.

Germline mutations of the BRCA1 and BRCA2 genes confer
a high life-time risk of ovarian cancer [4, 5]. Moreover, ovar-
ian cancer is genetically and phenotypically heterogeneous
without reliable and effective biomarkers for diagnosis and
prognosis, which also makes it challenging to detect ovarian
cancer in the early phase [6]. The lack of effective serum
biomarkers for ovarian cancer as well as studies aimed at
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identifying novel effective biomarkers, including miRNAs,
lncRNA, and circulating tumor DNA, also brings difficulties
to the early diagnosis and treatment of ovarian cancer [7–9].
The 5-year survival rate of patients with advanced ovarian
cancer was increased with the development of surgery tech-
niques and combined therapies of chemotherapy drugs and
monoclonal antibody drugs. However, the long-term sur-
vival rate still remains disappointing [10, 11]. Further inves-
tigating the mechanisms of the occurrence and progression
of ovarian cancer is fundamental for diagnosis in the early
stage and therapy of ovarian cancers.

Epithelial-mesenchymal transition (EMT) has long been
considered related to tumorigenesis, in which the differenti-
ated epithelial cells (E) shift towards mesenchymal-like (M)
properties by losing the apical-basal polarity and cell-cell
adhesion and gaining the properties of stemness, migration,
and proliferation. During the development of carcinoma,
EMT leads to augmented capability to invade, migrate, and
resist to chemotherapy drugs and metastasize in neoplastic
cells [12]. In the occurrence of EMT, E-cadherin is downreg-
ulated because E-cadherin-mediated intercellular tight
junctions are destroyed [13]. Moreover, EMT is often char-
acterized by a gained motility and changed morphology of
the cells as well as the compositional alteration of cytoskele-
ton filaments [14]. An overexpressed intermediate filament
protein, vimentin, is commonly observed in various epithe-
lial cancers, including EOC. Thereby, mesenchymal markers
are often upregulated in EMT, including matrix metallopep-
tidases (MMPs), fibronectin, vimentin, and N-cadherin,
while epithelial markers are downregulated, such as claudins
and E-cadherin [15].

EMT, a complicated biological process, plays a key role
in an array of physiological and pathological events, includ-
ing tumor progression [16, 17], cancer cell invasion,
embryogenesis [18, 19], wound healing [20], fibrosis [21,
22], therapy resistance [23], and inflammation [24]. There
are various signaling pathways that have participated in
mediating EMT, in which TGF-β pathway is considered
closely related to the invasion-metastasis cascade of EOC
by enhancing the stemness of cancer stem cells and promot-
ing the invasiveness and migration of tumor cells [25].

Recently, the transcription factor forkhead-box A1
(FOXA1) was reported to be a meaningful EMT reporter
[26]. The overexpression of FOXA1 was also reported in
several cancer types, and thus, it serves as a significant
indicator of the poor overall survival (OS) of patients.
FOXA1 belongs to FOX family, participating in the devel-
opment of many endoderm-derived organs mainly
through mediating the nuclear steroid receptor signaling
[27, 28]. It has been studied in various human cancers,
including thyroid cancer [29], breast cancer [30], lung
cancer [31], gastric cancer [32], and prostate cancer [33],
and suggested to be closely associated with the malignancy
and clinicopathological characteristics of tumors.

Yet, there is still insufficient work to illustrate the mech-
anism regarding the promotive effects of FOXA1 on EMT
and further tumor microenvironment (TME) in EOC. In
the study, we first explored the pan-cancer features of
FOXA1. EMT and immune-related pathways were closely

correlated with FOXA1 in EOC. In the aspect of experimen-
tal verification, we compared the expression in different
EOC cell lines. Cell proliferation and invasion were exam-
ined following siRNA-FOXA1 transfection to demonstrate
the role of FOXA1 in altering cell towards EMT-like charac-
teristics and in promoting tumorigenesis in EOC. More
importantly, the interaction between FOXA1 and connective
tissue growth factor (CTGF) is of our great interest, as the pre-
liminary study reported that FOXA1 may affect the expres-
sion of CTGF [34]. Thereby, it is hypothesized that the
transcription factor, FOXA1, may directly regulate the tran-
scription of CTGF by interacting with its promoter region.

CTGF is implicated in multiple complexed signaling
networks and involved in various biological processes,
including cell adhesion, migration, proliferation, angiogene-
sis, and extracellular matrix synthesis [35]. Although the
pleiotropic biofunctions of CTGF remain to be elucidated,
researchers have noted its association with EMT and cancer
malignancies. CTGF is preferentially expressed in aggressive
neoplasms [36]. The induction of CTGF-induced EMT is
mainly mediated via the TGF-β signaling. Also, TGF-β also
affects the activity of many other pathways that can trigger
EMT, such as Notch, Wnt, and integrin pathways. Based
on the above facts, the amplification of FOXA1 and
FOXA1-induced CTGF is expected to play a pivotal role in
the progression of ovarian cancer by propelling the occur-
rence of EMT. To further examine the association between
the development of EMT and FOXA1-CTGF-TGF-β signal-
ing pathway in the ovarian cancer cells, we studied the
effects of lithium chloride, an inhibitor of TGF-β pathway,
on the cells [37].

2. Methods

2.1. Data Collection and Analysis. The expression and clini-
cal data of The Cancer Genome Atlas (TCGA) and
Genotype-Tissue Expression (GTEx) were downloaded from
the UCSC Xena database (https://xenabrowser.net/
datapages/). For FOXA1, the DNA copy number and meth-
ylation information were obtained from the cBioPortal data-
base (https://www.cbioportal.org/). The survival analysis of
FOXA1 in EOC database from GSE26193, GSE26712, and
GSE63885 was performed using PrognoScan database. The
expression of FOXA1 in single cell sequencing data of OV
was evaluated using TISCH database (http://tisch.comp-
genomics.org/home/). The immunotherapy dataset
GSE135222 was downloaded from GEO database. The
immunotherapy dataset Checkmate cohort was obtained
from the supplementary materials of the published paper
[38]. All patients in these cohorts were enrolled in this study.

2.2. Gene Set Enrichment Analysis (GSEA). Correlation anal-
yses between FOXA1 and other genes were performed using
data from TCGA-OV cohort, and Pearson’s correlation
coefficient was calculated. GSEA was conducted using the
R package “clusterProfiler” based on Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Reactome pathway databases.
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2.3. Correlation Analysis of FOXA1 and Drug Response. We
downloaded half-inhibitory concentration (IC50) values of
192 anticancer drugs and FOXA1 expression profiles of
809 cell lines from the Genomics of Drug Sensitivity in Can-
cer database (GDSC: https://www.cancerrxgene.org/) and
analyzed the Spearman’s correlation between FOXA1
expression and IC50 values of anticancer drugs.

2.4. Cell Culture. OVCAR3, A2780, 3AO, and SKOV-3
(ovarian tumor cell lines) and IOSE80 (normal ovarian cell
line) were purchased from ATCC of the United States.
OVCAR3, 3AO, and A2780 were cultured in RPMI 1640
medium supplemented with penicillin (100U/mL), strepto-
mycin (100mg/L), and 10% v/v fetal bovine serum (FBS).
IOSE80 and SKOV3 were cultured in DMEM and McCoy’s
5A medium containing penicillin (100U/mL), streptomycin
(100mg/L), and 10% FBS, respectively. The cells were
cultured at 37°C and 5% CO2. (The culture medium and
supplements were purchased from Invitrogen.)

2.5. Silencing FOXA1 by Using Small Interfering RNA
(siRNA). FOXA1 siRNA and its negative control (NC)
siRNA were purchased from Shanghai Sangon Co., Ltd.
(Shanghai, China). Three siRNA sequences were as follows:
siRNA#1 (5′-GCGACUGGAACAGCUACUATT-3′; 5′-
UAGUAGCUGUUCCAGUCGCTT-3′), siRNA#2 (5′-
CCACUCGCUGUCCUUCAAUTT-3′; 5′-AUUGAAGGA
CAGCGAGUGGTT-3′, and siRNA#3 (5′-GCACUGCAA
UACUCGCCUUTT-3′; 5′-AAGGCGAGUAUUGCAG
UGCTT-3′). Transfection of siRNA was performed by using
Lipofectamine™ 3000 Transfection Reagent (Thermo Fisher).
After transfection for 72h, the cells were collected to evaluate
the knockdown efficiency of FOXA1 inOVCAR-3 cells (n = 6)
by western blot and qPCR. The siRNA with the best efficiency
was used in subsequent experiments.

2.6. CCK-8 Viability Assay. OVCAR3 cells transfected with
siRNA-FoxA1 or siRNA-NC were cultured in a 96-well plate
with 1 × 104 cells/well and 6 parallel wells in each group. The
cells were cultured for 24, 48, and 72h, respectively, before
CCK-8 assay. CCK-8 solution was incubated with cells at
37°C for 1-2 h. The cell survival rate was detected at a wave-
length of 450nm.

2.7. Transwell Assay. Biocoat™ Matrigel® Invasion Chamber
was rehydrated for 2 h at 37°C and 5% CO2 using a filter
with 8.0μm pore size (Corning, USA). After transfection
with siRNA, the cells were collected and suspended
(1 × 106 cells/mL) in serum-free culture medium. 200μL of
the cells in serum-free culture medium was added to the
upper compartment, and 600μL RPMI 1640 containing
10% FBS was added to the lower compartment. After 24 h
of incubation at 37°C under 5% CO2, the nonmigrating cells
were removed and culture medium was discarded. Filters
were gently rinsed with PBS, and migrated cells were fixed
with 4% w/v formaldehyde for 15min. 0.1% crystal violet
staining solution was used to stain the cells for 30min. The
upper, middle, and lower left and right fields were observed
under the optical microscope (magnification ×100) for cell

counts for each assay. Cell migration was quantified with
ImageJ software. Each group included three independently
performed Transwell assays.

2.8. Immunofluorescence Staining. The immunofluorescence
staining was performed on cells grown on 22 × 22mm cov-
erslips. OVCAR-3 cells (3 × 104/well) were grown in a 12-
well plate and cultured in the 37°C incubator overnight. At
72 h after the transfection with 80 nM siRNA-FOXA1, 4%
w/v paraformaldehyde was used for fixation for 30min.
0.5% v/v Triton X-100 was used in permeabilization for
5min and 10% normal donkey serum for blocking for 1 h
at room temperature. Then, the cells were incubated at 4°C
overnight with the primary antibodies: mouse anti-E-
cadherin (1 : 500, Abcam, USA) and rabbit anti-vimentin
(1 : 500, Abcam, USA). After being washed by PBS for 3
times, secondary antibodies listed as follows were used for
incubation for 1 h: Alexa Fluor® 488 donkey anti-mouse
IgG or anti-rabbit (1 : 200, Jackson ImmunoResearch,
USA). The cells were finally counterstained with DAPI
(Beyotime, China) for 5min, and the coverslips were
mounted by using 10μL of FluroGuard antifade solution
(Bio-Rad, USA). Images were taken using a confocal micro-
scope (Leica, Germany).

2.9. Quantitative Real-Time PCR (qPCR). Cells or tissues
were collected, and the RNAs were obtained by using TRI-
zol® Plus RNA Purification Kit (Thermo Fisher, Carlsbad,
CA, USA) following the protocol. SuperScript™ III First-
Strand Synthesis SuperMix for qRT-PCR (Thermo Fisher,
Carlsbad, CA, USA) was used to synthesize cDNA. Real-
time PCR was carried out by applying PowerUp™ SYBR™
Green Master Mix (Applied Biosystems, Carlsbad, CA,
USA). The cycling program was set as a follows: 95°C,
2min; 40 cycles of amplification (95°C, 15 s; 60°C, 1min).
The sequences of the primers used in this experiment were
as follows: FOXA1, 5′-GCATACGAA CAGGCACTGCA
ATACT-3′ (forward) and 5′-GTGTTTAGGACGGGTC
TGGAATA-3′ (reverse), and GAPDH, 5′-CCATGACAA
CTTTGGTATCGTGGAA-3′ (forward) and 5′-GGCCAT
CACGCCACAGTTTC-3′ (reverse). GAPDH was used as
internal control for normalization. The relative expression
of the target genes was evaluated by the 2-ΔΔCt method.

2.10. Western Blot. Total cytoplasmic and nuclear proteins
from OVCAR-3 cells were extracted with RIPA buffer
(Thermo Fisher, USA). NE-PERTM Nuclear and Cytoplas-
mic Extraction Kit (Thermo Fisher, USA) was added with
protease and phosphatase inhibitor cocktail (Thermo Fisher,
USA). BCA protein assay kit (Beyotime Biotechnology,
China) was used for quantification. Protein (30μg) was
loaded onto SDS-PAGE gel and transferred to a Hybond-P
PVDF membrane (GE Healthcare, USA). 5% fat-free milk
in TBST (Tris-buffered saline with 0.1% Tween 20) was used
for blocking. The following antibodies were incubated with
the membranes at 4°C overnight: mouse anti-E-cadherin
(1 : 2000, CST: 3195, USA), rabbit anti-vimentin (1 : 2000,
CST: 5741, USA), rabbit anti-Snail (1 : 1000, Abcam:
ab216347, USA), and actin (1 : 5000, Abcam: ab8227, USA)
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as an internal control. Protein expression was visualized on
X-ray films using the HRP-conjugated goat anti-mouse or
anti-rabbit secondary antibodies (1 : 5000, Thermo Fisher,
USA) and SuperSignal West Dura Extended Duration Sub-
strate (Thermo Fisher, USA). Band intensities were quanti-
tated using Image Pro Plus 6.0 software. The results were
presented as the density ratio of the target protein band to
the internal control.

2.11. Construction of the CTGF Promoter Luciferase Reporter
Plasmids. The binding site of FOXA1 with CTGF was pre-
dicted on LASAGNA-search. Sequences of the wild-type
CTGF promoter (-500 to -1) and mutant CTGF promoter
(-399 to -390, CAGGGCAAAC to CACCGCTTAC) with
recognition sites specific for the enzymes KpnI/XhoI were
manufactured by Sangon Biotech (Shanghai). FOXA1 CDS
flanked with BamHI/EcoRI was cloned as well. Luciferase
reporter plasmids, pGL3-Basic-CTGF-w (wild type) and
pGL3-Basic-CTGF-m (mutant), were constructed by having
the primers flanked with KpnI/Xho cloned into the KpnI/
Xho sites of pGL3-Basic vector (Promega). The FOXA1
overexpression plasmid was created by cloning the FOXA1
CDS sequence with BamHI/EcoRI into pcDNA3.1 (Invitro-
gen). pRL-TK vector (Promega), the Renilla luciferase plas-
mid, was adopted as an internal control reporter vector.

2.12. Dual-Luciferase Reporter Assays. OVCAR3 cells were
cotransfected with a combination of plasmids comprising
of either a mutant or a wild-type CTGF reporter gene
plasmid, a pRL-TK Renilla luciferase reporter plasmid, and
a FOXA1 overexpression plasmid. Thus, the cells were
transfected with the combination of plasmids as follow-
ing, respectively: pGL3-Basic/pcDNA3.1-FOXA1/pRL-TK,
or pGL3-Basic-CTGF-w/pcDNA3.1-FOXA1/pRL-TK, or
pGL3-Basic-CTGF-m/pcDNA3.1-FOXA1/pRL-TK group.
Activities of firefly Renilla luciferases were measured 48h after
transfection according to the dual-luciferase reporter assay
system, with six replicas in each group (Promega).

2.13. Effects of FOXA1 Silencing on CTGF/TGF-β Pathway
and EMT-Associated Markers. OVCAR3 cells were trans-
fected with siRNA-NC or siRNA-FOXA1, which was
followed by replacing with the serum-free culture medium
after 12 h. The TGF-β1 groups were stimulated with 10ng/
mL TGF-β1 accordingly (R&D systems). The cells were col-
lected after 48 h for western blot analysis for FOXA1, CTGF,
MMP-2, E-cadherin, and Snail using rabbit-anti-CTGF
antibody (1 : 1000, Abcam, USA) and rabbit-anti-MMP2
antibody (1: 500, Abcam, USA).

2.14. Lithium Chloride Treatment. The cells were grouped as
follows: control, siRNA-NC-transfected, siRNA-NC-
transfected and LiCl treatment, siRNA-FOXA1-transfected,
siRNA-FOXA1-transfected, and LiCl treatment. A final
concentration of 10mM LiCl was added to the cells after
transfection of siRNA-NC or siRNA-FOXA1 for 8 h.

2.15. Statistical Analysis. SPSS 17.0 software (SPSS Inc.,
Chicago, IL, USA) was used for statistical analysis. The
results were expressed as average value ± standard deviation

(SD). The paired, two-tailed Student’s t-test was used to
compare the results between the two groups. Two-sided p
value less than 0.05 was regarded as statistically significant
(∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001).

3. Results

3.1. Pan-Cancer Expression of FOXA1. We first evaluate the
pan-cancer expression of FOXA1. The results revealed that
FOXA1 was highly expressed in 19 tumor types, including
BRCA, CESC, COAD, DLBC, ESCA, KIRC, LGG, LIHC,
LUAD, LUSC, OV, PAAD, PRAD, READ, STAD, THCA,
THYM, UCEC, and UCS. In comparison, low FOXA1
expression was observed in ACC, GBM, HNSC, KICH,
LAML, SKCM, and TGCT (Figure 1(a)). In paired tumor
and adjacent normal tissues, FOXA1 was overexpressed in
BLCA, BRCA, CESC, LUAD, PAAD, PRAD, and STAD
while low expressed in COAD, HNSC, KICH, KIRC, and
READ (Figure 1(b)). For the expression of FOXA1 in single
cell in OV, we found that FOXA1 was mainly expressed in
malignant tumor cells (Figure 1(c)). In addition, we also
observed that FOXA1 expression was higher in relative
worse tumor stages in ACC, KIRC, KIRP, BRCA, and THCA
(Figures 2(a)–2(e)) while lower in ESCA, BLCA, COAD, and
READ (Figures 2(f)–2(i)).

Genetic and epigenetic alterations induce changes in
gene expression. We explored genetic alterations in FOXA1
using cBioPortal and observed that patients in prostate ade-
nocarcinoma and non-small-cell lung cancer have high
genetic alterations of FOXA1 (Figure 3(a)). In EOC patients,
the frequency genetic and epigenetic alterations were low
(less than 2%), in which the “amplification” accounts for
the largest proportion. The copy number values were posi-
tively correlated with FOXA1 expression, and the methyla-
tion levels of the FOXA1 promoter were negatively
correlated with FOXA1 expression in most tumor types,
while not in EOC (Figures 3(b) and 3(c)). These results
indicated that FOXA1 was highly expressed in EOC and
other tumor types. The mRNA expression of FOXA1 was
not significantly affected by genetic and epigenetic alterations.

3.2. The Prognostic Value of FOXA1. To assess the prognostic
value of FOXA1, we performed the Kaplan-Meier survival
analysis in pan-cancer. The Kaplan-Meier survival analysis
revealed that high FOXA1 expression predicted worse overall
survival of patients with ACC, BRCA, KIRC, KIRP, LGG,
MESO, SARC, SKCM, and THCA (Figures 4(a)–4(i)) while
better survival of patients with BLCA, COAD, and PAAD
(Figures 4(j)–4(l)). For data of EOC from GEO database, we
found that high FOXA1 predicted poorer survival status of
EOC patients in GSE26193, GSE26712, and GSE63885
(Figures 5(a)–5(c)). To explore the association between
FOXA1 expression and TME, we downloaded signature gene
sets of TME from published articles and calculated signature
scores according to the method described previously [39].
The results revealed that EMT-related pathways was positively
correlated with FOXA1 in pan-cancer. These finding sug-
gested that FOXA1 was a prognostic biomarker in EOC.
FOXA1 may affect the EMT progression.
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Figure 1: Pan-cancer expression. (a) Pan-cancer expression of FOXA1. (b) The expression of FOXA1 in paired tumor and adjacent normal
tissues in indicated tumor types from TCGA cohort. (c) The expression of FOXA1 in indicated cells.
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Figure 2: Continued.
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3.3. Expressions of FOXA1 in EOC Cell Lines. The RNA
materials from the cancer and normal cells lines were
extracted for reverse transcription and RT-PCR assay
(Figure 6(a)). The relative mRNA level of FOXA1 is signifi-
cantly upregulated in the OVCAR3 cell line compared to the
rest. Western blot found that the protein level of FOXA1 was
significantly upregulated in ovarian cancer cells compared
with the normal cell line IOSE80 (Figures 6(b) and 6(c)).
Among all the ovarian cancer cell lines tested (i.e.,
OVCAR-3/A2780/3AO/SKOV-3), both transcriptional and
translational levels of FOXA1 were highest in OVCAR3,
followed by 3AO and SKOV-3, and then A2780.

3.4. FOXA1 Expression Was Significantly Inhibited by siRNA
Silencing. Three siRNAs, siRNA-1, siRNA-2, and siRNA-3,
specific for different sites of FOXA1 gene were designed
for silencing FOXA1 in OVCAR3 by transient transfection.
At the same time, the potency of the three siRNA was com-
pared. The mRNA and protein expressions of FOXA1 were
remarkably suppressed with siRNA-2 transfection compared
to the other groups (Figures 6(d)–6(f)). Thus, siRNA-2 was
employed as the most effective interference siRNA in the
following experiments.

3.5. FOXA1 Silencing Markedly Attenuated Cell Proliferation
and Invasion. The proliferative and invasive capabilities of
FOXA1 knockdown cells were examined by the CCK8
and Transwell assays, respectively. The proliferation of
cells was significantly suppressed following the transfec-
tion of siRNA-FOXA1 compared with siRNA-NC
(Figure 7(a)). The results from Transwell assay indicated
that the invasiveness was also significantly inhibited due
to the absence of FOXA1 in siRNA-FOXA1 OVCAR-3
cells (Figures 7(b) and 7(c)).

3.6. FOXA1 Silencing Inhibited EMT. OVCAR3 cells were
transfected with siRNA-FOXA1 and siRNA-NC, respec-
tively. EMT-associated markers in OVCAR3 cells were
detected by western blot and immunofluorescence staining.
As shown in Figures 7(d)–7(g), the results indicated that
FOXA1 silencing inhibited EMT as shown by the remark-
ably increased expression of E-cadherin and decreased levels
of vimentin (p < 0:01). It was indicated that FOXA1 might

serve as an activator in OVCAR3 cells via promoting EMT.
These results confirmed that FOXA1 could regulate the
EMT process of EOC cells.

3.7. FOXA1 Regulated CTGF Expression by Binding to Its
Promoter Region. To explore the relation between FOXA1
and CTGF, OVCAR3 was transfected with either a wild-
type CTGF promoter or a mutant CTGF promoter; the pre-
dicted binding site and the mutated sequence were defined
as in Figure 8(a). The results from dual-luciferase reporter
assays showed that, comparing to the pGL3-Basic control
group, the activity of pGL3-Basic-CTGF-w luciferase was
significantly enhanced (p < 0:01), while the activity of
pGL3-Basic-CTGF-m higher than that of pGL3-Basic-
CTGF-w was significantly downregulated (p < 0:01)
(Figure 8(b)). It suggests that FOXA1 initiates transcription
of CTGF by binding to its promoter.

3.8. FOXA1-Mediated EMT Was Dependent on the
Activation of CTGF/TGF-β Pathway. In order to confirm
that the molecular mechanism of FOXA1-induced EMT
relies on activation of the CTGF/TGF-β signaling pathway,
FOXA1 of OVCAR-3 cells was silenced followed by a stim-
ulation with TGF-β1 in vitro. Western blot analysis showed
that both CTGF and FOXA1 expressions were considerably
elevated in the TGF-β1 stimulated groups (siRNA-NC
+TGF-β1 and siRNA-FOXA1+TGF-β1) compared to the
nonstimulated groups (siRNA-NC and siRNA-FOXA1)
(Figure 8(c)). When comparing the groups siRNA-NC vs.
siRNA-FOXA1 and siRNA-NC+TGF-β1 vs. siRNA-
FOXA1+TGF-β1, it is found that the expressions of CTGF
and FOXA1 were significantly suppressed due to FOXA1
ablation. In addition, the EMT-associated proteins, MMP2,
and Snail were significantly upregulated following the treat-
ment of exogenous TGF-β1 (p < 0:01), whereas their expres-
sions were considerably reduced (p < 0:05 and p < 0:01)
following FOXA1 ablation. Congruently, the cell-cell junc-
tion indicator protein, E-cadherin, showed a prominent
upregulation in FOXA1-silenced cells (p < 0:01), and a
downregulation in TGF-β1 stimulated cells (p < 0:01). Here,
it shows that interference with FOXA1 downregulates the
expression of CTGF, thus inhibiting the activation of
CTGF/TGF-β pathway in OVCAR3 cells, which in turn
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Figure 2: FOXA1 expression in different tumor stages. (a–i) The FOXA1 expression in different tumor stages in indicated tumor stages
from TCGA cohort.
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Figure 3: Gene alteration of FOXA1. (a) The genetic alteration of FOXA1 in TCGA pan-cancer. (b) The correlation between FOXA1 expression
and copy number in TCGA pan-cancer. (c) The correlation between FOXA1 expression and methylation level in TCGA pan-cancer.
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Figure 4: Continued.
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attenuates the occurrence and development of EMT that is
mediated by the TGF-β signaling pathway.

3.9. The Inhibitory Effect of LiCl on FOXA1 and EMT in
OVCAR3 Cells. To examine the inhibitory effects of LiCl
on the FOXA1-CTGF-TGF-β pathway, OVCAR3 cells were
treated accordingly as per the description of the groups,
namely, the siRNA-FOXA1+10mM LiCl, siRNA-NC
+10mM LiCl, siRNA-FOXA1, and siRNA-NC groups. The
protein expression levels of FOXA1, vimentin, E-cadherin,
and Snail in the treated cells were detected by western blot
assays. In the single treatment group with either LiCl
(siRNA-NC+10mM LiCl) or FOXA1 knockdown (siRNA-
FOXA1), expressions of FOXA1, CTGF, cleaved-TGF-beta,
and EMT-associated markers were all downregulated
(Figure 8(d)). The potency of suppression was strongest in
the combination treatment group (siRNA-FOXA1+LiCl).
The combination treatment of FOXA1 knockdown and
administration of lithium chloride exerts a more robust
inhibitory effect on the EMT-associated proteins, compared
to the respective single treatment. The epithelial marker, E-
cadherin, was upregulated in the treatment groups, indicat-
ing a recovery of the cell-cell adhesive junctions. Our data
show that the LiCl treatment is able to suppress the
FOXA1-CTGF-TGF-β pathway and, therefore, inhibit
EMT in OVCAR3 cells. Equally important, silenced FOXA1
and LiCl treatment could have worked collaboratively to
augment the inhibitory impact on EMT features.

3.10. The Correlation between FOXA1 and
Immunosuppressive Microenvironment. We further per-
formed the GSEA of FOXA1 in TCGA-OV cohort based
on GO, KEGG, and Reactome databases. The results
revealed that immune-related pathways were commonly
enriched (Figures 9(a)–9(c)). Through the correlation analy-
ses between FOXA1 and MHC genes (Figure 10(a)), immu-
nosuppressive genes (Figure 10(b)), immune activating
genes (Figure 10(c)), and chemokine receptors
(Figure 10(d)), we found that FOXA1 was closely correlated
with immune regulatory genes, indicating a pivotal role of
FOXA1 in tumor immunomodulatory function, especially
in TCGA-OV cohort. Since the immunosuppressive micro-
environment is not conducive to the efficacy of immune
checkpoint inhibitors, we speculated that patients with high
expression of FOXA1 are resistant to immunotherapy.
Through our analysis, we found that FOXA1 expression
was higher in PD/SD (progressive disease/stable disease)
group than that in CR/PC (partial response/complete
response) group in GSE135222 (Figure 11(a)). In addition,
high expression of FOXA1 predicted poorer survival status
of patients undergoing immunotherapy (Figure 11(b)). The
same phenomenon was observed in Checkmate immuno-
therapy cohort (Figures 11(c) and 11(d)).

3.11. The Correlation between FOXA1 and Resistant of
Anticancer Drugs. At last, we conducted the correlation anal-
yses between FOXA1 expression and IC50 values of
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Figure 4: Prognostic value of FOXA1. (a–l) The Kaplan-Meier analyses of FOXA1 in indicated tumor types. The optimum cutoff value of
FOXA1 in each tumor type was set.
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Figure 5: TME analysis. (a–c) The Kaplan-Meier analyses of FOXA1 in EOC datasets, including GSE26193 (a), GSE26712 (b), and
GSE63885 (c). The optimum cutoff value of FOXA1 in each dataset was set. (d) The correlation between TME-related signature scores
and FOXA1 expression.
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anticancer drugs. We found that the expression of FOXA1
positively correlated IC50 values of most anticancer drugs,
such as camptothecin, vinblastine, and cisplatin
(Figure 12). These results indicated that EOC patients with
high expression of FOXA1 may be resistant to most antican-
cer drug treatments.

4. Discussion

In our research, we investigated the potential role of the
FOXA1, a transcription factor, in pan-cancer and EOC and
its underlying molecular mechanism on promoting EMT.
In pan-cancer research, we found that FOXA1 was highly
expressed in most tumor types, including EOC. High expres-
sion of FOXA1 predicted poorer survival of patients with

EOC. For the expression of FOXA1 in single cell in OV,
we found that FOXA1 was mainly expressed in malignant
tumor cells, indicating that FOXA1 mainly plays its function
in tumor cells. By analyzing the frequency genetic and epige-
netic alterations of FOXA, we found that the mRNA expres-
sion of FOXA1 was not significantly affected by genetic and
epigenetic alterations in EOC. In the experimental verifica-
tion, FOXA1 expression levels in four ovarian cancer cell
lines were all higher than those in normal ovarian cells.
The overexpression was most prominent in OVCAR-3 with
the most malignant characteristics, implying that FOXA1
had an evitable role in the development of EOC. Preliminary
studies demonstrated that FOXA1 silencing could effectively
hinder the invasion and proliferation of certain tumor cells,
for example, lung adenocarcinoma A549 cells [12] and lung
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Figure 6: FOXA1 expression was upregulated in ovarian cancer cells. (a–c) FOXA1 expression was assessed by qRT-PCR (a) and western
blot (b) in IOSE80 (human ovarian epithelial cell line from normal tissues) and OVCAR-3/A2780/3AO/SKOV-3 cells (human ovarian
cancer cell lines). Relative mRNA and protein levels of FOXA1 were quantified in (a) and (c); N = 3, two-way ANOVA. (d, e) FOXA1
knockdown via transient transfection with siRNA-2 in OVCAR-3 cell was confirmed by qRT-PCR (d) and western blot (e, f). siRNA-
NC-transfected cells were set as the control. The experiments were repeated independently for 3 times.
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Figure 7: Effects of FOXA1 silencing on OVCAR-3 cell proliferation and invasion. (a) The proliferation was measured by CCK8 assay at 24, 48,
and 72 h, respectively. The results were obtained from the 6 replicates in each group and presented as average value ± SD. (b) The invasiveness of
OVCAR-3 cells was detected by the Transwell migration assay. Representative images were selected (magnification ×100). (c) The number of
invaded cells were quantified and obtained from three independent experiments. (d) Protein levels of E-cadherin, vimentin, and Snail were
measured by western blot after 48 h following siRNA transfection. (e) Quantifications of representative blots were demonstrated in bar
graphs. Protein levels of E-cadherin, vimentin, and Snail in the FOXA1-silenced group (siRNA-FOXA1) were compared to those in the
control group (siRNA-NC) and presented in the form of average ± SD. (f, g) Representative immunofluorescence staining for E-cadherin (f)
and vimentin (g) in the siRNA-NC- or siRNA-FOXA1-transfected OVCAR3 cells (original magnification ×630).
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squamous cell carcinoma cells [40]. These results were con-
sistent with what we found in our research. In FOXA1
knockdown OVCAR3 cells, the mesenchymal characteristics
were reversed, which is confirmed by the upregulated E-
cadherin level and downregulated Snail and vimentin. These

results suggested that FOXA1 was a prognostic biomarker in
EOC and could promote the EMT progress of EOC cells.

It was demonstrated that FOXA1 have a directly and/or
indirectly role in the regulation of EMT occurrence. Our
findings were consistent with the results in other research
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Figure 8: The suppressive effects of FOXA1 silencing on EMT through TGF-beta 1 signaling pathway. (a) Predicted binding site of FOXA1
at the wild-type CTGF promoter region and the mutant CTGF promoter (-399 to -390) was present. (b) Relative luciferase activity was
presented as per the ratio of the intensity of firefly luciferase to that of Renilla. (c) Western blot analysis on protein expression levels of
FOXA1, CTGF, MMP-2, E-cadherin, and Snail in the siRNA-NC-, or the siRNA-FOXA1-transfected cells treated with or without TGF-
β1. Quantifications of protein expressions was represented as mean ± standard deviation (SD) of the results from six independent
replicates in each group. (d) Expressions of FOXA1, CTGF, cleaved TGF-beta 1, and EMT-associated markers including E-cadherin,
vimentin, and Snail were analyzed by western blot after 48 h after the transfected cells treated with or without lithium chloride.
Quantification of the representative blots was represented as mean ± standard deviation (SD) of the results from three independent
experiment in bar graphs.
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[41, 42]. For example, Badve et al. implied that the concen-
tration of FOXA1 varied at different stages in the course of
tumor progression with a significant correlation with drug
resistance and poor prognosis in both breast and prostate
tumors [30]. In addition, FOXA1 was upregulated in malig-
nant ovarian cancer tissues with substantial differences
between the early and advanced stages [26]. On the other
hand, researchers also pointed out that FOXA1 might sup-
press tumorigenesis in some cancer types by inhibiting
EMT. For example, Song et al. suggested that the inhibition
of FOXA1 expression could provoke the activation of EMT

in pancreatic cancer [43]. Zhang et al. found that a high level
of FOXA1 inhibited cell invasion and proliferation in breast
cancer [44]. In another breast cancer research, FOXA1 was
found to downregulate EMT-associated markers, including
E-cadherin, ZEB2, and vimentin, eventually preventing
EMT progression [45]. Likewise, similar outcomes were also
observed in liver cancer, nasopharyngeal cancer, gastric can-
cer, prostate cancer, and colorectal cancer, in which the
EMT process seemed to be reversed due to the presence of
FOXA1 [46]. The possible explanation could be that
FOXA1, as a strong activator of E-cadherin transcription,
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Figure 10: The correlation analysis. (a) The correlation between MHC genes and FOXA1. (b) The correlation between
immunosuppressive genes and FOXA1. (c) The correlation between immune activating genes and FOXA1. (d) The correlation
between chemokine receptors and FOXA1.
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could serve as a tumor suppressor gene which could possibly
reverse EMT by increasing E-cadherin expression, restoring
the epithelial phenotype of the cancer cells [38]. Taken
together, FOXA1 might influence the viability, prolifera-
tion, and invasion of tumor cells by affecting different sig-
naling pathways in different cancers, leading to various
effects on EMT.

Activated CTGF/TGF-β pathway leads to a loss of adhe-
sion between cells, accelerating the development of EMT
and metastasis in tumors [47]. There are many researches
on CTGF pointing out its direct or indirect role in facilitat-
ing tissue fibrosis or profibrotic TGF-β1 activity [35, 40,
42, 44]. Persistent activation of TGF-β pathway is associated
with malignancies of cancers. Burns et al. have comprehen-

sively explained the mechanisms of CTGF in potentiating
and enhancing TGF-β signaling either by increasing the
affinity between TGF-β molecule and its receptor through
physical interactions in the extracellular matrix or by abro-
gating the negative TGF-β feedback loop (Smad7) following
binding to TrkA [20]. The present study proves the interac-
tion between FOXA1 and the promoter of CTGF, suggesting
that FOXA1 can increase the transcription of CTGF. Tran-
scribed CTGF enters the ECM functions as a strong enhanc-
ing mediator of the TGF-β signaling pathway. This helps to
explain the reason why TGF-β signaling was significantly
enhanced in OVCAR3 cells, especially in those stimulated
with the TGF-β cytokine. Furthermore, it has been shown
that the persistence and severity of fibrosis caused by
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Figure 11: Effect of FOXA1 on the efficacy of immunotherapy. (a) The FOXA1 expression in indicated groups in GSE135222. (b) The
Kaplan-Meier curve of FOXA1 in GSE135222. (c) The FOXA1 expression in indicated groups in checkmate cohort. (d) The Kaplan-
Meier curve of FOXA1 in checkmate cohort.
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simultaneous injection of both TGF-β and CTGF far more
exceed that caused by the injection of individual TGF-β or
CTGF on its own. In the study of renal interstitial fibrosis,
CTGF is an important cytokine that affect the prognosis and
progression of disease [48]. Congruently, our study found that
FOXA1, CTGF, and TGF-β are intercorrelated. Overexpres-
sion of FOXA1 is highly correlated with the elevation of
endogenous CTGF and cleaved-TGF-β in OVCAR3. This is
because in cancer cells, amplified FOXAl upregulates the
expression of CTGF, which elicits prolonged activation of
the CTGF/TGF-β pathway. Thereby, many important TGF-
β-pathway-induced elements associated with EMT features,

cell proliferation and invasion, and ECM remodeling are
expected to be modulated correspondingly.

LiCl, as an inhibitor for GSK-3, has been reported to
inhibit EMT efficiently [48]. In accordance with the previous
findings, our study showed that LiCl leads to downregula-
tions of FOXA1, CTGF, and cleaved-TGF-β in OVCAR3
cells, indicating the potential role of LiCl in controlling
EMT progression in EOC. Further analysis demonstrated
that LiCl combined with siRNA-FOXA1 silencing exerted a
more robust effect on inhibiting EMT in OVCAR3. In addi-
tion, our study has some limitations. For example, to assess
the validity of the functional experiments, two cell models
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Figure 12: The correlation analysis between FOXA1 and IC50 values of indicated anticancer drugs.
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should be used. The upstream regulatory mechanism of
FOXA1 was not clear. In our future studies, we will delve
into these directions.

Tumor microenvironment, especially tumor immune
microenvironment, plays a vital role in accelerating tumor
progression. In our study, we predicted that FOXA1 is
involved in immune regulation-related pathways using
GSEA. Moreover, FOXA1 was positively correlated with
MHC genes, immunosuppressive genes, immune activating
genes, and chemokine receptors, indicating a pivotal role of
FOXA1 in tumor immunomodulatory function, especially
in TCGA-OV cohort. Since the immunosuppressive micro-
environment is not conducive to the efficacy of immune
checkpoint inhibitors, we speculated that patients with high
expression of FOXA1 are resistant to immunotherapy.
Through our analysis of immunotherapy datasets, we found
that FOXA1 expression was higher in PD/SD group than
that in CR/PC group in GSE135222 cohort and Checkmate
cohort. High expression of FOXA1 predicted poorer survival
status of patients undergoing immunotherapy. These results
indicated that patients with high FOXA1 expression may be
resistant to immunotherapy. Further analysis also suggested
that patients with high expression of FOXA1 may be resis-
tant to most anticancer drug treatments, such as camptothe-
cin, vinblastine, and cisplatin.

5. Conclusions

In our study, we conducted a comprehensive assessment of
FOXA1, revealing a potential role of FOXA1 as an indicator
of patient prognosis and molecular mechanism of FOXA1 to
promote EMT by regulating CTGF/TGF-β pathway in ovar-
ian cancer. We also predicted that FOXA1 was involved in
the formation of tumor immunosuppressive microenviron-
ment. In addition, EOC patients with high FOXA1 expres-
sion may be resistant to immunotherapy and most
anticancer drug treatments. Targeting FOXA1 may become
a potential treatment of EOC patients.
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