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Purpose. DNA methylation heterogeneity is a type of tumor heterogeneity in the tumor microenvironment, but studies on the
identification of the molecular heterogeneity of the lung adenocarcinoma genome with respect to DNA methylation sites and
their roles in lung cancer progression and prognosis are scarce. Methods. Prognosis-associated DNA methylation subtypes were
filtered by the Cox proportional hazards model and then established by unsupervised cluster analysis. Association analysis of
these subtypes with clinical features and functional analysis of annotated genes potentially affected by methylation sites were
performed. The robustness of the model was further tested by a Bayesian network classifier. Results. Over 7 thousand
methylation sites were associated with lung adenocarcinoma prognosis. We identified seven molecular methylation subtypes,
including 630 methylation sites. The subtypes yielded the most stable results for differentiating methylation profiles, prognosis,
and gene expression patterns. The annotated genes potentially affected by these methylation sites are enriched in biological
processes such as morphogenesis and cell adhesion, but their individual impact on the tumor microenvironment and prognosis
is multifaceted. Discussion. We revealed that DNA methylation heterogeneity could be clustered and associated with the
clinical features and prognosis of lung adenocarcinoma, which could lead to the development of a novel molecular tool for
clinical evaluation.

1. Introduction

DNA methylation, which occurs when methyl groups are
added to the DNA molecule by DNA methyltransferases,
can modify chromatin structure, DNA stability, and
DNA-protein interactions, allowing gene expression to be
controlled without changing the DNA sequence [1]. Due
to the demethylation of tissue-specific genes, CpG sites

(5′-C-phosphate-G-3′) of imprinted genes, and DNA
repeats, the overall methylation level in tumor tissues is
lower than that in normal tissues, while the hypermethyla-
tion status of CpG islands on tumor suppressor genes
inhibits protective gene transcription [2]. Methylation is
known to be crucial to the internal and external microenvi-
ronments of cancer, but DNA methylation heterogeneity
has yet to be systemically clarified.
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For a long time, lung cancer epigenetic research has
shown an abnormal methylation status in a variety of lung
cancer patient samples, such as sputum [3], bronchoalveolar
lavage [4], and cancer tissue [5]. In addition, many tumor-
associated genes, including oncogenes and tumor suppressor
genes, have altered methylation states in the early stages of
lung cancer [6]. DNA methylation can be used to track
recurrence after early-stage lung adenocarcinoma (LUAD)
surgery [7]. Therefore, altered methylation states have trans-
lational potential in pulmonary oncology and can be used to
discover biomarkers to assist in tumor detection and the pre-
diction of cancer prognosis.

At the infant stage of lung cancer methylation studies,
clinical epigenetic researchers focused on single or a few
relatively well-defined tumor suppressor genes, and these
studies were limited to observations of the methylation
differences in tumor and normal tissue pairs and their
association with clinicopathological parameters and cancer
prognosis [8, 9]. In the next stage, biomarker studies
attempted to detect the methylation state of multiple genes
to find genomic regions with greater methylation frequency
in lung cancer [10, 11]. With advances in methylation
detection techniques in recent years, oncologic studies have
transitioned from focusing on single or multiple genes to
whole-genome DNA methylation research. For example, a
comprehensive molecular profiling study showed that a large
number of abnormal DNA methylation sites are present in
LUAD [12]. However, the occurrence of cancer is not caused
solely by a single gene but by interacting networks composed
of multiple genes. Systematic analysis of methylation status
is a promising way to identify potential biomarkers for
NSCLC diagnosis [13]. Therefore, studying the methylation
status of individual genes rather than systemic methyl typing
of the methylation profile is not conducive to understanding
a thorough function of DNA methylation heterogeneity in
the cancer microenvironment.

We used the high-throughput methylation profile and
gene expression data of LUAD patients to uncover
survival-associated DNA methylation sites, as well as the
effect of variation in DNA methylation on LUAD gene
expression, putative biological function, and prognosis. This
study could improve LUAD postoperative survival assess-
ments based on DNA methylation heterogeneity in the
LUAD microenvironment.

2. Material and Methods

2.1. Accession of Clinical, RNA Sequencing, and Methylation
Data. We obtained clinical and RNA sequencing (RNA-seq)
data from the Genomic Data Commons application program-
ming interface of The Cancer Genome Atlas (TCGA) on
August 31, 2018. A total of 594 samples were sequenced, and
522 clinicopathological information and follow-up data sam-
ples were accessed. Then, using the UCSC Cancer Browser,
492 methylation data generated by Infinium HumanMethyla-
tion450 were downloaded (https://xena.ucsc.edu/).

2.2. Curation of Methylation Sites. Data with a follow-up
period of fewer than 30 days were first removed. Then,

TCGA dataset and methylation data in the UCSC dataset
were matched; 438 cases were selected for further analysis.
Then, the removal of CpG sites with a ratio of not assigned
(NA) values greater than 70% in all samples was performed
in over 450,000 methylation sites from the 450 k platform.
As previously reported, the genome’s cross-reactive CpG
sites were screened [14].

We utilized the k-nearest neighbors (KNN) in R (version
3.5.1) to deal with missing data in the methylation profile,
further removing the unstable genomic methylation sites
and single nucleotides in the sex chromosome, resulting in
208021 methylation sites.

2.3. Data Grouping. The 438 clinical samples with RNA-seq
and methylation data were split into two groups: 219 sam-
ples for training and 219 samples for validation. (a) The
training and validation sets were assigned at random, and
(b) the age, clinical stage, follow-up period, and patient
death rate distributions were similar in both groups.

2.4. Screening of Confident Methylation Sites. Using the
“coxph” function in the R “survival” package, a univariate
Cox proportional hazards regression model was run on the
above curated methylation site, age, stage (T, N, and M),
sex, and smoking history with survival data. A p cutoff value
of 0.05 was used, yielding 13200 methylation sites. Signifi-
cant methylation sites were chosen for future multivariate
Cox proportional hazards regression analysis based on
the results of the univariate Cox model, resulting in a
reduction in the number of methylation sites to 7336 for
cluster analysis.

2.5. Cluster Analysis. To identify molecular subgroups, the R
package “ConsensusClusterPlus” was used to perform con-
sistent clustering on significant methylation sites filtered by
univariate and multivariate Cox regression. The Euclidean
distance was used to determine how similar the samples
were, and K-means was utilized to cluster them. Eighty per-
cent of the samples were resampled 100 times. The CDF was
used to determine the ideal number of clusters.

We employed the EpiDiff analysis tool to find cluster-
specific methylation sites to identify the methylated molecu-
lar types of LUAD [15]. The mean methylation level of each
methylation site in the 7336 sites was calculated for each
cluster, resulting in a 73367 matrix that was input into Epi-
Diff software at the cutoff of 4.18, which is a value calculated
by entropy comparisons to minimize within-group variation
while maximizing between-group variation. Cluster-specific
methylation sites comprised a total of 630 methylation sites.

2.6. Gene Function Analysis. We used g:Profiler [16] to per-
form the Kyoto Encyclopedia of Genes and Genomes (KEGG),
Gene Ontology (GO), and transcription factor enrichment
analyses. The EnrichmentMap plugin in Cytoscape was used
to visualize the correlation between the enriched GO terms,
KEGG pathways, and transcription factors.

2.7. Model Validation. To test the discriminatory ability, the
naive Bayes classifier with tenfold cross-validation was
applied to the 630 methylation sites by R package e1071.
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The ROCR package in R visualized the positive and false-
positive rates.

3. Results

3.1. Curation of LUAD Survival-Associated Methylation
Sites. A total of 208021 methylation sites were found after
the methylation sites were screened.

To evaluate LUAD survival-related methylation sites, we
used univariate Cox regression analysis on each methylation
site. We defined p < 0:05 as the cutoff value, and a total of
13200 methylation sites associated with LUAD survival are
shown in Table S1. In the univariate Cox regression analysis,
TNM staging, N staging (lymph node metastasis), and T
status (tumor size) were significant prognostic indicators
with log-rank p values of 2:936 × 10−6, 7:153 × 10−7, and
0.0413, respectively. Following the univariate Cox model, the
significant methylation sites were selected and subjected to
the multivariate Cox regression model with T status, N
status, TNM staging, and age as covariates. For further
LUAD prognostic modeling, a total of 7336 significant
methylation sites were obtained (Table S1). The top 10
methylation sites associated with LUAD survival are listed in
Table 1.

3.2. Prognosis-Associated Methylation Profile and Identification
of DNA Methylation Subtypes. We first observed the distribu-
tion of differential methylation sites, which were equally
distributed in the human genome (Figure 1(a)). We next
hypothesized that the methylation sites might function in
groups rather than working individually, so the resulting
methylation locations were subjected to cluster analysis, aimed
at mining potential molecular subtypes. Based on the cumula-
tive distribution function (CFD) curve, we observed that the
clustering was stable at 6 or 7 clusters (Figure S1A). Then,
we selected seven subtypes based on the CFD delta area that
had the most stable clustering results (Figure S1B). The 219
tumor samples were then assigned to seven subgroups based
on the consensus matrix: 49 to subgroup 1, 42 to subgroup
2, 73 to subgroup 3, 8 to subgroup 4, 23 to subgroup 5, 10 to
subgroup 6, and 14 to subgroup 7 (Figure 1(b)). Next,

visualization by heatmap incorporating TNM staging, N
category, M category, and T category of the 7336 filtered
methylation sites showed that most of the methylation sites
were of low abundance (Figure 1(c)). In addition, the level of
differential methylation measured by the Z score per cluster
revealed that cluster 1 had a lower methylation level and that
the methylation abundances were significantly different
among the seven clusters (Figure 1(d)). These results
confirm that DNA methylation subgroups associated with
LUAD prognostic value exist.

3.3. Functional Analysis of Cluster-Specific Methylation Sites.
Next, we hypothesized that certain cluster-specific methyla-
tion sites could systematically play crucial roles in gene
expression, thereby affecting biological function. We found
630 cluster-specific methylation sites, with more particular
methylation sites in clusters 4 and 5, the majority of which
were hypermethylated (Figure 2(a)). The other subclusters
only have a few distinct methylation sites, most of which
are hypomethylated.

We identified a total of 459 genes close to the 630 meth-
ylation sites to observe how individual methylation sites in
the subgroups affect the related gene expression levels.
Table S2 lists the gene annotations and related methylation
subgroups of cluster-specific methylation sites. In addition,
we used the training set to extract RNA-seq expression
data for 359 genes corresponding to 218 samples. The
heatmap expression profile (Figure 2(b)) shows that these
subgroups have cluster-specific expression patterns, implying
that the DNA methylation levels of these genes are linked to
altered mRNA expression in LUAD.

Functional analysis showed that these genes with meth-
ylation sites were enriched in multiple Gene Ontology
(GO) terms and transcription factors (Table S3) and were
mainly enriched in biological processes involved in cell
activity and embryo development (Figure 2(c)). Notably,
these genes are enriched in the cell adhesion molecule
pathway, implying that they are linked to tumor metastatic
transformation in general. To further explore the specific
signaling pathways enriched in annotated genes from each
subgroup (Figure S2), we observed that signaling pathways

Table 1: Top 10 methylation sites associated with LUAD survival.

CpGs
Univariate Cox regression Multivariate Cox regression

p value HR Lower 95% CI Upper 95% CI p value HR Lower 95% CI Upper 95% CI

cg07219542 1:16E − 05 33.410512 6.96169503 160.343466 7:08E − 07 103.155098 16.5088788 644.560682

cg02337836 4:05E − 05 49.5013782 7.68221983 318.96854 5:42E − 06 148.052666 17.1811057 1275.79636

cg24237439 5:75E − 07 67.9228467 12.9953428 355.012805 6:10E − 06 118.317374 14.9524332 936.235643

cg10463708 6:44E − 06 25.0215951 6.17787667 101.342298 7:19E − 06 52.062116 9.26602794 292.516269

cg02709432 0.00035404 12.7481225 3.15438224 51.5202711 7:38E − 06 38.448822 7.79584763 189.628118

cg14565265 3:17E − 06 10.0647825 3.81051651 26.5842821 8:61E − 06 14.0577266 4.38807397 45.0356301

cg24073738 0.00517384 61853009.6 213.657681 1:7906E + 13 1:64E − 05 1:1925E + 16 581566476 2:45E + 23
cg06498232 0.00014643 54.6599825 6.92974791 431.1432 2:06E − 05 171.311278 16.0608167 1827.27657

cg02156680 0.00242903 9.69422363 2.23261927 42.0931473 2:32E − 05 43.7945623 7.60669604 252.141492

cg02874942 0.00025906 26.0385172 4.53017875 149.663935 2:50E − 05 84.0269719 10.7028099 659.689566
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Figure 1: Landscape of LUAD prognosis-associated methylation sites. (a) The distribution of differentially methylated sites on
chromosomes. (b) The 7336 methylation sites in 7 methylation clusters based on consensus clustering (k = 7). (c) Heatmap of the DNA
methylation level incorporating DNA methylation subtypes, clinicopathological stage, and TNM stage. (d) The average number of
methylation sites per cluster.
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were affected in a methylation subgroup-specific manner.
Based on this observation, we performed biological
process enrichment analysis using genes annotated with
specific methylation sites in the seven subgroups, of which
only C1, C3, C5, and C7 had significantly enriched

pathways (Figure S3A-D). This finding suggests that
systematic alteration of methylation sites affects different
biological functions in LUAD subgroups, participating in
the biological mechanism of different survival outcomes
of LUAD.
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Figure 2: Identification of LUAD-specific methylation sites and functional analysis: (a) methylation-specific site distribution; (b) expression
profiling of annotated methylation site-regulated genes; (c) functional analysis using KEGG, GO, and transcription factor enrichment analyses.
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Figure 3: Continued.
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3.4. Translational Implication of Methylation Subtypes on
LUAD Survival Assessment. We evaluated the distribution
of each of the seven molecular subtypes according to T
status, N status, M status, TNM staging, and prognosis to
determine the clinical importance of the methylation sub-
types. The distributions of TNM staging, N stage, M stage,
and T stage of the seven subgroups were plotted and
compared between clusters. As shown in Figure 3(a), meth-
ylation clusters 2 and 5 were distributed in larger LUADs.
Lymph node metastasis more easily occurred in cluster 4
(Figure 3(b)), and a higher proportion of distant metastasis
was found in clusters 5 and 6 (Figure 3(c)). Figure 3(d)
shows that patients in cluster 2 and cluster 3 are associ-
ated with advanced TNM stages. Then, age variances
(Figure 3(e)) and sex differences in cluster 3 and cluster 6
(Figure S4A) among the seven methylation subtypes were
analyzed. However, the association between methylation
clusters and treatment response (Figure S4B), as well as
other common parameters such as BMI and comorbidities,
is not clear due to missing data. Furthermore, there were
prognostic disparities among the methylation subtypes, with
patients in cluster 1 having the greatest prognosis and
patients in clusters 4 and 5 having the worst prognosis.
These findings suggest that hypomethylated LUAD samples
had a better prognosis than hypermethylated LUAD samples
(Figure 3(f)). Detailed clinical parameters and survival
analyses of each cluster comparison in the training set are
shown in Figures 3(g)–3(j) and Figure S5.

3.5. Validation of the Prognostic-Associated Methylation
Subtype. To identify subtype-specific methylation sites,
Bayesian network classifiers were constructed by using 630
specific methylation sites identified by EpiDiff. The model
established using the training set had a classification accuracy
of 93.61 percent. The receiver operating characteristic curve’s
area under the curve was 0.9227 (Figure 4(a)). We used the
validation set to assess the model’s stability and reliability after
selecting 630 CpG methylation sites from the test set. The
methylation profile of the seven subtype-specific clusters also
showed distinct methylation patterns, as previously shown
(Figure 4(b)). The number of samples in each subgroup in
the validation set was 35 in subgroup 1, 46 in subgroup 2, 69
in subgroup 3, 5 in subgroup 4, 51 in subgroup 5, 5 in sub-
group 6, and 8 in subgroup 7. The clinical stage and age distri-
butions in the validation set were then found to be consistent
with those in the training set (Figure S6A-D). Figure S6E-H
depicts the distributions and comparisons of the seven
subgroups in the T, N, M, and TNM stages. As shown in
Figure 4(c), significant prognostic differences were classified
by the subtype-specific cluster model with a p value of 0.015.
Patients in cluster 1 have a better prognosis than patients in
other subtypes, which is consistent with the training set
results. Detailed survival analysis of each cluster comparison
in the validation set is shown in Figure 4(d). These results
confirmed that the methylation clusters are distributed
differently in clinically defined LUAD subgroups and affect
their prognosis.
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Figure 3: Clinical and prognostic features of the seven methylation clusters.The distributions of the seven subgroups in the T stage (a), N
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4. Discussion

Whether it is improper hypermethylation or hypomethyla-
tion, abnormal DNA methylation is linked to the occurrence
and progression of cancer. Understanding the DNA methyl-
ation changes in cancer tissues represents a promising tactic
for enhancing cancer postoperative recurrence control and
treatment. The presenting integrative analysis, although with
potential limitations such as batch effects in the generation
of RNA-seq together with DNA methylation data, not at
the single-cell level, and lack of multiple testing, shows that
methylation site subtypes exist in LUAD, and most of the
methylation sites were at low abundance. Furthermore, we
discovered that the expression profiles of the seven methyla-
tion subtypes were different. Taking methylation cluster 1 as
an example, the methylation level is significantly lower than
that in the other subtypes, suggesting that there could be a
unique biological meaning in this downregulated methylation
block, and the assessment of LUAD prognosis could be further
subdivided based on DNA methylation subgroups.

Altered methylation status of a single gene has been
found to be linked to the prognosis of patients with non-
small-cell lung cancer (NSCLC). For example, SHOX2 was
discovered by Dietrich et al. to be an independent predictor
of prognosis as well as a biological indicator for the early
diagnosis of NSCLC [17]. A similar example is that the
promoter methylation of TMEM88 plays a prognostic pre-
dictor role in NSCLC [18]. A meta-analysis indicated that
RASSF1A methylation status can be applied to predict
NSCLC prognosis [19]. Adding to these findings, our study
found that there is a systematic change in gene expression

associated with abnormal methylation sites in LUAD tissue.
We found that the gene expression patterns in LUAD tissues
differ among methylation subtypes, suggesting that DNA
methylation, in cancer tissues, can cause a systematic alter-
ation in gene expression. As a result, research into the com-
bined effect of methylation sites on gene expression is needed.

Previous findings showed that abnormal gene methylation
could affect cancer prognosis. For example, hypomethylation
of cytoplasmic polyadenylation element-binding protein 1
(CPEB1), in our gene list (Table S2), can be used as a
potential glioma prognostic marker [20]. Another example is
repulsive guidance molecule member A (RGMA), which is a
gene in a prognostic mRNA signature for breast cancer [21]
whose methylation frequency can be used in evaluating
colon cancer prognosis [22]. In terms of lung cancer, the
aberrant methylation status of the APC and CDH13
promoters was associated with lung cancer risk [23, 24].
Therefore, by providing potential candidates for methylation
sites and target genes, the prognostic roles of identified genes
with altered methylation sites in this study are candidates
worthy of further study.

It is worth mentioning that, as reported in a previous
in vitro study, epithelial gene expression is enriched in cell
adhesion functions, whereas mesenchymal genes are enriched
in regulators of transcription [25]. Our study shows that the
methylation-influenced genes in our model were enriched in
the KEGG enrichment pathway of cell adhesion as well as in
the transcription factor GKLF. GKLF, also named KLF4, in
lung cancer tissues was found to regulate lung tumor-
initiating cells at a considerably lower level than that in normal
lung tissues [26]. The abnormal methylation of cell adhesion
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Figure 4: The LUAD DNA methylation subtype-specific prognostic model has been validated: (a) the validation set’s area under the curve;
(b) the validation set’s methylation profile of subtype-specific methylation sites; (c) the validation set’s prognosis differences; (d) a detailed
survival analysis of each cluster comparison.
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molecules is involved in multiple cancer development pro-
cesses [27], such as tumor angiogenesis [28], and is one of
the consequential steps in metastasis [29]. Therefore, obtain-
ing an understanding of how methylation sites systematically
affect cell adhesion would have great translational value in
the development of broad-spectrum DNA methylation-
targeted agents for both LUAD prevention and treatment.

5. Conclusions

This study systematically summarized the methylation sites
of LUAD and, for the first time, proposed seven DNA meth-
ylation subtypes that are closely related to LUAD prognosis.
Abnormal DNA methylation clusters in LUAD could affect
changes in gene expression levels in a cluster manner. Differ-
ent methylation subtypes are associated with clinical charac-
teristics and prognosis, suggesting that DNA methylation
may play a role in cancer formation and intrinsic malig-
nancy, providing important bioinformatics hints for the fur-
ther development of epigenetic biomarkers and therapeutic
targets for LUAD.
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