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Background. Lung cancer is one of the most commonly diagnosed cancer worldwide. As one of the liquid biopsy analytes,
alternations in cell-free DNA (cfDNA) methylation could function as promising biomarkers for lung cancer detection.
Methods. In this study, differential methylation analysis was performed to identify candidate markers, and lasso regression with
10-fold cross-validation (CV) was used to establish the diagnostic marker panel. The performance of the binary classifier was
evaluated using the receiver operating characteristic (ROC) curve and the precision-recall (PR) curve. Results. We identified
4072 differentially methylated regions (DMRs) based on cfDNA methylation data, and then a 10-DMR marker panel was
established. The panel achieved an area under the ROC curve (AUROC) of 0.922 and an area under the PR curve (AUPR) of
0.899 in a cfDNA cohort containing 29 lung cancer and 74 normal samples, showing outstanding performance. Besides, the
cfDNA-derived markers also performed well in primary tissue datasets, which were more robust than the tissue-derived
markers. Conclusion. Our study suggested that the 10-DMR marker panel attained high accuracy and robustness and may
function as a novel and promising target for lung cancer detection.

1. Introduction

Lung cancer is one of the leading causes of cancer death in
the world [1]. Tissue biopsy is by far the gold standard to
establish a diagnosis of cancer. However, conventional sam-
pling methods bear some limitations, including procedural
complications, lacking sufficient high-quality material, and
sampling biases [2]. Compared to tissue-based approaches,
liquid biopsy, which analyzes circulating tumor markers
from peripheral blood, is noninvasive and has less difficulty
in obtaining samples [3]. Therefore, increased attention has
been attached to liquid biopsy over the past two decades.

Cell-free DNA (cfDNA), one of the liquid biopsy ana-
lytes, refers to extracellular DNA fragments mainly released
from cells through apoptosis and necrosis [2]. Besides,
cfDNA can be actively secreted by forming a cfDNA-
lipoprotein complex in a homeostatic manner, and the com-
plex can function as an intercellular messenger [4]. Various
tumor-related alternations of cfDNA have been reported in

previous research. Raised cfDNA levels in plasma were
found in patients with cancer compared to healthy individ-
uals [5]. Somatic mutations of circulating tumor DNA
(ctDNA) are tumor-specific and could provide diagnostic
information [6]. Besides, microsatellite instability and epige-
netic changes were also detected [7, 8]. The quantitative and
genomic information of cfDNA allows for detecting cancer
and monitoring disease burden.

DNA methylation, a crucial epigenetic modification,
plays an imperative role in the biological process [9]. Aber-
rant DNA methylation is a critical factor of tumorigenesis
and tumor progression [10]. Therefore, alternations in
DNA methylation have been heralded as promising diagnos-
tic markers of cancer. Methylation patterns across a genomic
region tend to be the same [11]. Chan et al. employed this
feature to explore the genome-wide hypomethylation for
cancer diagnosis [12]. Consistent methylation patterns were
found in cfDNA compared to the cells they originated, sug-
gesting cfDNA is promising diagnostic biomarkers [13].
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Apart from owning the common characteristics shared by
liquid biopsy analytes, cfDNA methylation alternations have
relatively high sensitivity and specificity and are feasible for
early detection of cancer [14]. A significant correlation
between aberrant cfDNA methylation and cancer has been
reported in several studies, in settings such as breast, pros-
tate, and testicular [15–17]. However, the research taking
advantage of real-time PCR could only focus on several
genomic loci and provided a limited picture of genome-
wide methylation patterns. Other studies leveraging next-
generation sequencing (NGS) technology and/or methyla-
tion array tended to begin with tissue DNA methylation
data, and thus, the features of cfDNA data were ignored,
and further evaluation in cfDNA samples was required for
tissue-derived markers [18].

In this study, we explored the specific cfDNA methyla-
tion markers that distinguish patients with lung cancer from
healthy individuals significantly. Four independent cohorts
were employed in the analytical pipeline, including two
cfDNA datasets and two tissue datasets. Differential methyl-
ation analysis was performed to screen out candidate

markers in the discovery phase, and then lasso regression
with 10-fold CV was performed to identify diagnostic
markers in the model construction phase. Analyses showed
that tissue-derived markers did not perform as well in
cfDNA. However, cfDNA-derived markers achieved an
AUROC greater than 0.90 in both cfDNA and tissue data-
sets, implying the potential benefits offered by identifying
markers directly from cfDNA samples.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. Four independent
datasets were used in differential methylation analysis and
model construction phase, two for tissue samples and the
others for cfDNA samples. Tissue 450 k data of 121 NSCLC
and 12 normal samples were obtained from GSE56044 to
create tissue set 1, and low-quality samples were removed
using mean detection p value < 0.01 as a cutoff. Poor per-
forming probes with detection p value < 0.01 and those asso-
ciated with SNPs or located on sex chromosomes were also
filtered out. The level-3 DNA methylation data of the LUNG

Table 1: Summary of four datasets after preprocessing.

Datasets Sample sizes Detection techniques CpG sites

cfDNA set 1 [13] 4 LC/12 norm Infinium EPIC array 752843

cfDNA set 2 [33] 29 LC/74 norm RRBS /

Tissue set 1 [34] 121 LC/12 norm Infinium 450K array 431802

Tissue set 2 832 LC/75 norm Infinium 450K array 337278

LC: lung cancer group; Norm: normal group. Detailed clinical information of participants is provided in the corresponding datasets.

cfDNA set 1
(850k 4 LC/12 Norm)

Tissue set 1
(450k 121 LC/12 Norm)

cfDNA set 2
(RRBS 29 LC/74 Norm) 

4072 DMRs 2425 DMPs

16 candidate markers

Validation of diagnostic model

10-DMR marker panel

Genome annotation

Tissue set 2
(450k 832 LC/75 Norm) 

Lasso regression using
10-fold CV

Lasso regression using
10-fold CV

Performance evaluation Performance evaluation

Genome annotation

1906 candidate markers

7-DMP marker panel

Figure 1: Graphic workflow of this study.
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Figure 2: Continued.
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cohort were downloaded from the UCSC Xena platform to
create tissue set 2, with sex chromosome and cross-reactive
probes removed for downstream analysis. The cohort was
profiled by the Illumina HumanMethylation450 platform
and included 832 lung cancer and 75 normal samples.
CfDNA set 1 was retrieved from GSE122126, comprised of
MethylationEPIC data of 4 NSCLC and 12 normal samples.
Raw data from IDAT files were read in, and the processing
procedures were as described above for tissue set 1. Then,
data were normalized using the preprocessFunnorm func-
tion. CfDNA set 2 was comprised of processed reduced rep-
resentation bisulfite sequencing (RRBS) data from Cell-Free
Epigenome Atlas (CFEA) database [19]. The RRBS data of
29 lung cancer and 74 nontumor samples were originally
derived from GSE79277 and preprocessed using CFEA
benchmarking pipelines.

The preprocessing procedures were conducted using the
minfi package in R 4.0.2. The hg19 human reference genome
was used for annotation. Differentially methylated regions or
positions were determined using cfDNA, and tissue sets 1
and diagnostic models were finally trained on cfDNA and
tissue sets 2.

2.2. Identification of DNA Methylation Markers of Tissue
Samples. Beta-value of tissue sets was converted to M-value
for differential analysis of methylation levels and model con-
struction. Differentiallymethylated positions (DMPs) between
lung cancer and nontumor samples were determined using
empirical Bayesian methods in the limma package, with ∣log
2FC ∣ >2 and adjusted p value < 0.05 considered statistically
significant. To improve detection reliability, the exact work-
flow was applied to both datasets, and the overlaps between
DMPs of two tissue sets with the same alternation patterns
were considered as potential biomarkers.

Methylation data of potential markers in tissue set 2 was
then partitioned into 10 disjoint groups randomly. Nine sub-
sets were used as the training set, and the remaining subset
was used as the validation set. Lasso regression was then first
trained on the training set and assessed on the validation set
using the glmnet package. The procedure was repeated 10

times, with each of the 10 subsets used as the validation
set, to improve the data efficiency.

The performance of tissue-derived markers was also eval-
uated in cfDNA samples. Considering the low coverage of
RRBS data in cfDNA set 2, A-clustering algorithm was imple-
mented to detect regions of coregulated CpG sites and merge
M-value located in such regions separately. Parameters dis-
t.thresh and bp.thres.clust were set to 1 and 300, referring to
similarity distance threshold and maximum length between
neighbor CpG sites. The procedure rendered tissue 450k data
and cfDNA RRBS data comparable. Multiple imputation was
then performed to fill in missing values in RRBS data, and
the diagnostic model was also built using lasso regression.

2.3. Identification of DNA Methylation Markers of cfDNA
Samples. Differential methylation analysis was performed
on cfDNA set 1 using the DMRcate package. Two crucial
parameters lambda and C were set to 1000 and 2, referring
to Gaussian kernel bandwidth and scaling factor for band-
width. DMRs were determined with the thresholds of
HMFDR < 0:01 and treated as a source of candidate
markers. Then, cfDNA set 2 was imported following the
strategy below. For CpG sites located in each DMR location,
the methylated and unmethylated intensity values in RRBS
data were merged to measure the average methylation.
DMR locations where methylation data of more than 60%
samples were missing were removed for low quality. Wil-
coxon signed-rank test was performed on cfDNA set 2
between lung cancer and normal samples to select potential
diagnostic markers. The strategy solved the problem caused
by the low coverage of RRBS data and rendered the selection
more robust to some extent. Multiple imputation was imple-
mented to fill in missing values using the mice package.

Lasso regression with 10-fold CV was implemented to
build cfDNA diagnostic models using the glmnet package.
Parameters family and type.measure were set to “binomial”
and “auc” to fit the model. Cross-validation could prevent
overfitting and improve the generalization capability of the
classification model. To figure out the robustness of makers
identified, the cfDNA-derived diagnostic markers were
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Figure 2: Genomic coverage analysis of RRBS libraries stratified by CpG resort context. (a) The number of CpG loci covered at different
read depths. (b) Number of discrete CpG contexts covered at different read depths. (c) The proportion of the contexts covered by the
Infinium EPIC array which were also detected in RRBS libraries. (d) The proportion of the contexts covered by the Infinium 450 k array
which were also detected by RRBS libraries.
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validated in tissue samples. The genomic positions of
cfDNA-derived markers were mapped to 450 k data from
tissue set 2 using findOverlaps function in GenomicRanges
packages. Then, lasso regression with 10-fold cross-
validation was performed to construct the diagnostic model.

2.4. Model Evaluation Using ROC and PR Curves. ROC
curve was used to evaluate the performance of marker panels
derived from two different sources by plotting sensitivity
against specificity at various thresholds. AUROC could
reflect the probability that the rank of positive instance was
higher than that of negative instance predicted by the classi-
fier. Considering the imbalance of datasets in the model con-
struction phase, PR curve and AUPR, an evaluation tool
summarizing the trade-off between precision and recall,
were used as an alternative evaluation metric. A higher
AUPR value indicates better binary classifier performance,
which is similar to AUROC.

XL-minimal hypergeometric (XL-mHG) test was also
implemented to assess the discrimination ability of each

marker. The method treated lung cancer and healthy group
as two clusters and binarized methylation data of markers
in a marker-specific and cluster-specific manner. Then,
XL-mHG p value was calculated to assess the statistical sig-
nificance of enrichment and the performance of markers in
isolating lung cancer samples.

2.5. Functional Annotation of cfDNA-Derived DMRs. Func-
tional enrichment analysis, based on the Gene Ontology
(GO) knowledgebase and Kyoto Encyclopedia of Genes
and Genomes (KEGG) database, was performed on the
genes whose predefined promoters overlapped with DMRs
identified. GO classifies functions in the aspect of molecular
function, cellular component, and biological process, and
KEGG provides the information of molecular interaction
and reaction networks. GO terms or KEGG pathways with
BH-adjusted p values <0.1 were considered to be enriched
significantly using the hypergeometric test.

2.6. Validation of cfDNA-Derived Markers. To validate
cfDNA-derived markers, methylation levels of randomly
selected genes (TRAF1, RPTOR, and SPON2) were determined
using data analytics in cfDNA and pyrosequencing in tissue.
Whole genome bisulfite sequencing (WGBS) data of cfDNA
was retrieved from the European Nucleotide Archive (ENA),
including 5 lung cancer and 45 normal samples
(PRJNA418597, PRJNA494975). TheWGBS data was prepro-
cessed in the same workflow for RRBS data. Then,
Kolmogorov-Smirnov test (K-S test) was performed to vali-
date that methylation levels were different between lung can-
cer and normal samples. Genomic DNA isolated from 3
lung cancer vs. 3 control tissue samples was bisulfite-
converted using EZ DNA Methylation-Gold™ Kit. And the
procedure was approved by the Ethics Committees on Human
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Figure 3: Differential methylation analysis of tissue samples. (a) The hierarchical clustering heat map of DMPs detected in tissue cohort. (b)
Number of hypermethylated (red) and hypomethylated (blue) positions located in different genomic features. (c) Distribution of DMPs
across the whole genome. (d) Number of hypermethylated (red) and hypomethylated (blue) positions located in different CpG resort
contexts. (e) Overlap of DMPs detected in tissue set 1 and 2 separately. (f) Enrichment analysis of candidate markers in different sources
using XL-mHG test.

Table 2: Diagnostic marker panel derived from tissue samples.

DMP marker Coefficient Genomic location Gene

cg16732616 0.07184664 chr1: 50886782 DMRTA2

cg06962177 0.05050583 chr1: 63785946 /

cg22167515 0.09985845 chr1: 91192466 /

cg03964958 0.01627892 chr2: 176964720 HOXD12

cg16768018 0.11208871 chr3: 147108843 ZIC4

cg26521404 0.29924966 chr7: 27204981 HOXA9

cg02443967 -0.19001655 chr10: 98129902 TLL2

DMP markers are made up of methylation values of CpG sites.
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Research of Shanghai Chest Hospital (Approve ID:
KS(Y)1987). Then, PCR was performed with biotinylated
primers designed by PyroMark Assay Design Software 2.0
(Table S4). 1% agarose gel electrophoresis was carried out to
check the PCR products. Finally, pyrosequencing reactions
were performed in a PyroMark Q96 system (Qiagen), and
methylation levels were then quantified.

3. Results

3.1. Dataset Information and Genomic Coverage Analysis.
Four independent datasets were included in the study,
among which cfDNA and tissue sets 1 were for differential
methylation analysis and cfDNA and tissue sets 2 were for
model construction. Detailed dataset information after data

preprocessing was listed in Table 1, and the whole workflow
was shown in Figure 1.

Considering that RRBS usually did not interrogate the
same CpG loci as 450 k and EPIC array did, genomic cover-
age analysis was performed to test the concordance between
the datasets using different detection techniques. 3 normal
and 3 lung cancer samples in cfDNA set 2 were selected ran-
domly to be examined in detail. All 6 RRBS libraries covered
more CpG loci than EPIC and 450 k arrays did at each CpG
resort context when read depth was greater than or equal to
2 (Figure 2(a)). From the perspective of the CpG resort con-
text, RRBS libraries covered more discrete open sea regions
at ≥2× but fewer other regions than the Infinium arrays
did (Figure 2(b)). At least 70% of CpG islands and 95% of
open seas identified by the EPIC array were also covered
by all RRBS libraries at ≥2× (Figure 2(c)). However, the
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Figure 4: Evaluation of tissue-derived markers. (a) ROC curve and AUROC of marker panel in tissue dataset. (b) PR curve and AUPR of
marker panel in tissue dataset. (c) ROC curve and AUROC of marker panel in cfDNA dataset. (d) PR curve and AUPR of marker panel in
cfDNA dataset.
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consistency of CpG shores and shelves detected by the two
methods was relatively low. Similar results were observed
in the comparison between RRBS and 450 k array stratified
by CpG resort context as more than 90% of probes from
450 k array were included by EPIC array (Figure 2(d)).

3.2. Identification and Evaluation of Tissue-Derived
Methylation Markers. In the differential methylation analysis
phase, 2425 DMPs were identified by empirical Bayes

methods using the limma package, with a cut-off value of ∣
log 2FC ∣ >2 and adjusted p value < 0.05. Supervised hierar-
chical clustering distinguished 121 lung cancer samples from
12 healthy samples significantly based on the M-value of
DMPs (Figure 3(a)). More hypermethylated DMPs (red)
were found in each genomic feature than hypomethylated
DMPs (blue) (Figure 3(b)). Besides, the proportion of hyper-
methylated regions in promoters was relatively high. From
the perspective of distribution in different chromosomes,
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Figure 5: Differential methylation analysis of cfDNA samples. (a) The hierarchical clustering heat map of DMPs detected in tissue cohort.
(b) Number of hypermethylated (red) and hypomethylated (blue) positions located in different genomic features. (c) Distribution of DMPs
across the whole genome. (d) Number of hypermethylated (red) and hypomethylated (blue) positions located in different CpG resort
contexts.
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Table 3: Diagnostic marker panel derived from cfDNA samples.

DMR marker Coefficient Genomic location Gene XL-mHG p value

DMR_1 -0.007012253 chr1: 12493605-12494280 VPS13D 0.012529923

DMR_2 -0.293540674 chr1: 36983119-36983235 / 1.21307E-05

DMR_3 0.145449335 chr1: 248902767-248904167 LYPD8 0.0010886

DMR_4 -0.180719422 chr3: 11651536-11651990 VGLL4 0.001477124

DMR_5 0.3167126 chr4: 1195845-1196179 SPON2 0.00018493

DMR_6 0.194881649 chr5: 139043443-139044215 CXXC5 6.8938E-05

DMR_7 0.235620277 chr9: 123688715-123689193 TRAF1 2.2204E-16

DMR_8 0.29712874 chr11: 10476242-10477461 AMPD3 0.00183147

DMR_9 0.341871604 chr17: 16319861-16320257 TRPV2 6.4709E-04

DMR_10 0.236108117 chr17: 78753273-78754372 RPTOR 0.001784

DMR markers are made up of mean methylation values of CpG sites in the corresponding DMRs.
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Figure 6: Evaluation of cfDNA-derived markers. (a) ROC curve and AUROC of marker panel in cfDNA dataset. (b) PR curve and AUPR of
marker panel in cfDNA dataset. (c) ROC curve and AUROC of marker panel in tissue dataset. (d) PR curve and AUPR of marker panel in
tissue dataset.
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the density of DMPs in chromosome 19 was the highest, and
most DMPs were located in chromosome 1 (Figure 3(c)).
Significant enrichment of hypermethylated CpG sites was
found in CpG islands (Figure 3(d)). DNA methylation data
of tissue set 2 were also processed using the same pipeline,
and a total of 8155 CpG sites were identified as DMPs. Then,
an overlap of 1906 DMPs between the two datasets was
screened out to be candidate markers (Figure 3(e)). XL-
mHG test revealed that the aberrant methylation status of
the majority of candidate markers was significantly enriched
in the cancer group (Figure 3(f)). However, the discrimina-
tion ability of the same CpG loci in cfDNA set 1 was rela-
tively low, suggesting that tissue-derived markers were less
robust in surrogate plasma cfDNA. Lasso regression was
performed with 10-fold CV, and finally, 7 CpG sites were
selected to fit a linear combination of weighted coefficients

and M-value (Table 2). 6 of the 7 markers were found to
be located in CpG islands and were significantly hyper-
methylated in lung cancer samples compared to the normal
reference (Table S1). The coefficients of the 6 markers were
positive, whose higher methylation levels suggest a higher
probability of being diagnosed with lung cancer
correspondently. The left marker, cg02443967, was located
in the open sea and acted oppositely. The 7-DMP marker
panel performed well in the tissue cohort, achieving an
AUROC of 0.980 and an AUPR of 0.999 (Figures 4(a) and
4(b)). However, the false-negative rate of the classifier was
significantly high in cfDNA set 2, which tended to divide
samples into the healthy group (Figures 4(c) and 4(d)).
Considering the low sensitivity of tissue-derived markers in
the cfDNA cohort, markers based on methylation data
derived directly from cfDNA samples were identified.
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Figure 7: Overrepresentation analysis of cfDNA-derived DMGs. (a) GO analysis with genes whose promoters overlap with DMRs. (b)
KEGG analysis with genes whose promoters overlap with DMRs.

11Disease Markers



3.3. Identification and Evaluation of cfDNA-Derived
Methylation Markers. A total of 4072 DMRs were found in
cfDNA set 1 using DMRcate package (HMFDR < 0:01), of
which 2707 (66.48%) regions were hypomethylated and
1365 (33.5%) regions were hypermethylated. The methyla-
tion patterns of the 4072 DMRs were significantly different,
according to which the normal and lung cancer samples
were separated into two clusters (Figure 5(a)). Across the
whole genomes, the ratios of hypomethylated (blue) and
hypermethylated (red) regions in different genomic features
were relatively consistent (Figure 5(b)), with the majority of
DMRs located in the gene body. However, the absolute
number of hypomethylated regions was larger than that of
hypermethylated regions in each genomic feature except
1st Exon. The distribution of DMRs in discrete chromo-
somes in cfDNA data was similar to that in tissue data
(Figure 5(c)). Furthermore, CpG annotations revealed that
most DMRs, especially hypomethylated regions, were
located in the open sea, referring to the genomic regions at
least 4 kb away from CpG islands (Figure 5(d)). Meanwhile,
a relatively high proportion of hypermethylated regions were
found in CpG islands.

RRBS data of 29 lung cancer and 74 normal samples
were extracted from GSE79277 and preprocessed using
CFEA standard pipeline to identify diagnostic markers. We
compared the genomic location between DNA methylation
data from cfDNA sets 1 and 2. And the methylated and
unmethylated RRBS reads were agglomerated if they were
in the location of the same DMR identified in cfDNA set
1. Considering that M-value is more statistically valid, log2
ratios of methylated and unmethylated reads were calcu-
lated. Then, 16 candidate markers that distinguished
between lung cancer and normal states were selected using
the Wilcoxon test with p value < 0.001 and ∣log 2FC ∣ >1:2.
Lasso regression was performed on the remaining candidate
markers using the 10-fold CV technique. Finally, a 10-DMR
diagnostic model was constructed in the form of a linear
equation. The detailed information was listed in Table 3,
and each regression coefficient represented the contribution
of the corresponding DMR marker. Genome annotation
revealed that 9 of 10 DMRs were mapped to known genes,
including LYPD8, VPS13D, AMPD3, RPTOR, TRPV2,
VGLL4, SPON2, CXXC5, and TRAF1. To assess the perfor-
mance of the binary classifier, ROC and PR curves were cre-
ated (Figures 6(a) and 6(b)). A 2000 stratified bootstrap
analysis revealed that AUROC was 0.922, with a sensitivity
of 0.920 (95% CI: 0.800-1.000) and a specificity of 0.923
(95% CI: 0.859-0.974). AUPR was calculated to be 0.899,
indicating that the diagnostic model dealt well with skewed
data. Methylation outliers of all the 10 markers showed sig-
nificant enrichment in the lung cancer group by the XL-
mHG test. In addition, 29 CpG sites in tissue set 2 that over-
lapped with the genomic locations of the 10 DMRs were
retrieved, and then a 10-CpG marker panel was established.
The panel showed an outstanding discrimination ability,
with an AUROC of 0.973 and an AUPR of 0.990
(Figures 6(c) and 6(d)). In conclusion, the 10-DMR marker
panel showed high accuracy and robustness both in cfDNA
and tissue sets.

3.4. Overrepresentation Analysis of DMR-Related Genes. To
explore the biological functions associated with DNA meth-
ylation alternations, overrepresentation analysis was per-
formed on the 3134 genes with their promoters
overlapping with DMRs detected in cfDNA set 1. GO anno-
tations revealed that differentially methylated genes (DMGs)
are significantly enriched in biological processes related to
energy metabolism and cell behavior, such as regulation of
GTPase activity and cell-cell adhesion (Figure 7(a)). KEGG
pathways overrepresented in DMGs also showed a high cor-
relation with cellular polarization and actin reorganization,
which played important roles in tumor migration and inva-
sion (Figure 7(b)).

3.5. Validation of cfDNA-Derived Markers with
Pyrosequencing. K-S test was performed on the processed
WGBS data of TRAF1, RPTOR, and SPON2 in cfDNA sam-
ples and normal controls (Table S6). Besides,
pyrosequencing was also performed in 6 tissue samples,
considering that methylations patterns of cfDNA are
supposed to be highly correlated to tissues where they
originate. Finally, lower methylation levels were found at
all of the selected CpG sites in lung cancer samples
compared to normal controls, showing a high consistency
of methylation patterns at cfDNA-derived markers
between cfDNA and tissue samples (Figure S3).

4. Discussion

It is well established that epigenetic abnormalities, including
changes in DNA methylation patterns, contribute to the dys-
regulation of gene expression, which is related to the initia-
tion and progression of tumorigenesis [20]. CfDNA
methylation patterns are highly correlated to their originated
cells. Besides, detection of cfDNA, one of the liquid analytes,
is minimally invasive. Therefore, aberrant cfDNA methyla-
tion patterns are one of the most promising targets for can-
cer diagnosis [21]. However, previous studies tended to use
methylation data from tissue as the source of candidate
markers for cancer diagnosis, which may lose the unique
features of cfDNA methylation patterns [11, 22, 23].

In this study, we identified 4072 DMRs (HMFDR < 0:01)
and 3134 DMGs of patients with lung cancer compared to
healthy individuals using the Infinium MethyaltionEPIC
array data. The biological functions of DMGs were signifi-
cantly enriched in physiological and pathological processes,
including TNF signaling pathway, Notch signaling pathway,
and Fc gamma R-mediated phagocytosis. Then, we merged
the M-value of neighboring CpG sites in RRBS data as
weighted averages based on the DMRs identified in cfDNA
set 1 and regressed out the DMRs with poor discrimination
ability using lasso regression with 10-fold cv. Finally, a 10-
DMR marker panel was established, achieving an AUROC
of 0.922 and AUPR of 0.899.

Inspired by single-cell sequencing data clustering, the XL-
mHG test was introduced to evaluate the single marker con-
sidering the similarity between classifying patients and cell
types. As a rank-based, nonparametric method, XL-mHG
binarizes theM-value of DNA methylation data at a dynamic
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cutoff and introduces two parameters X and L to control the
number of true positives and false positives [24]. Consequen-
tially, the XL-mHG test is appropriate to reveal the robustness
of our novel markers. As shown in Table 3, all of the 10 DMRs
could function as independent diagnostic markers. DMR_7,
which is located in chromosome 9: 123688715 – 123689193,
owns the lowest p value. Based on hg19, DMR_7 was anno-
tated as TNF Receptor Associated Factor 1 (TRAF1), a mem-
ber of the TRAF family. TRAF1 is crucial in activating the
BRAF/MEK/ERK signaling pathway and nonsmall cell lung
(NSCLC) carcinogenesis [25]. Research showed overexpres-
sion of TRAF1 in human lung cancer cells, which is consistent
with our analysis outcome. Knockdown of TRAF1 could
inhibit proliferation of NSCLC cells and induce cellular apo-
ptosis, and thus, TRAF1 was a promising diagnostic and ther-
apeutic target for NSCLC.

We then performed lasso regression on the 36 CpG sites
from tissue set 2 that was overlapping with DMRs of marker
panel to assess the performance of cfDNA-derived markers
in tissue samples. An AUROC of 0.973 and an AUPR of
0.990 were obtained, suggesting the robustness of 10 DMR
markers. However, the cfDNA-derived panel may not be the
optimal solution to the lasso regression based on the methyla-
tion levels of tissue samples, so it was different from the tissue-
derived panel. Given that the majority of studies concerning
the identification of cfDNA based markers start with primary
tissue, we also evaluated tissue-derived marker panel in RRBS
data. Although AUROCwas calculated to be 0.863, AUPRwas
only 0.363 because of the highly imbalanced data. In fact, only
one sample was predicted to be the patient in the dataset
which included 29 lung cancer and 74 normal samples indeed.
Therefore, our findings suggest that markers derived directly
from cfDNA samples would be more robust than those
derived from primary tissue.

Apart from epigenetic features, tumor-related elements
have various forms in blood circulation [26]. Alterations in
messenger RNA profiles were found in platelets in patients
with cancer, which could function as biomarkers for detec-
tion [27]. Engineered immune cells were also leveraged for
the early detection of cancer [28]. Combining these elements
comprehensively may contribute to a diagnostic classifier
with greater accuracy. Krug et al. found that a combination
of ctDNA and exosomal RNA could increase the sensitivity
of detecting EGFR mutation in plasma [29]. Protein markers
incorporating with mutations in ctDNA were superior to
any single element in the early diagnosis of pancreatic cancer
[30]. Cancer detection may also benefit from an integrative
analysis of methylation alternations of cfDNA and other fea-
tures, such as cfDNA fragmentation landscapes, SNVs, and
SCNAs, which need further investigations [31].

We also acknowledged several limitations in our study.
First, the cfDNA set 2 is sparse, and the distribution of
detected CpG sites has a low consistency across samples.
Second, the sample size of the cfDNA dataset is relatively
small, which requires future studies in a larger independent
cfDNA database to validate our findings and improve the
generalization ability of the cfDNA marker panel. Finally,
RRBS and the Infinium array both have limited coverage
of CpG sites considering that around 28.3 million CpG sites

are present in the human genome, and thus, more accurate
detection techniques with high coverage for DNA methyla-
tion are needed [32].

In summary, our study performed a genome-wide meth-
ylation analysis on cfDNA methylation data directly. A
novel 10-DMR marker panel was constructed with high sen-
sitivity and specificity both in cfDNA and primary tissue
datasets, which could be heralded as promising diagnostic
markers in lung cancer.

Abbreviations

AUPR: Area under the PR curve
AUROC: Area under the ROC curve
cfDNA: Cell-free DNA
ctDNA: Circulating tumor DNA
CV: Cross-validation
DMG: Differentially methylated genes
DMP: Differentially methylated position
DMR: Differentially methylated region
GO: Gene Ontology
KEGG: Kyoto Encyclopedia of Genes and Genomes
PR: Precision-recall
ROC: Receiver operating characteristic
RRBS: Reduced representation bisulfite sequencing
TRAF1: TNF receptor-associated factor 1
XL-mHG: XL-minimal hypergeometric.

Data Availability

The datasets analyzed in this study are available in the GEO
database [http://www.ncbi.nlm.nih.gov/geo/] and the TCGA
database [https://portal.gdc.cancer.gov/].

Additional Points

Code Availability. Code will be available on reasonable
request from the corresponding author.

Ethical Approval

This study received ethics approval from Shanghai Chest
Hospital (Approve ID: KS(Y)1987).

Consent

Informed consent was obtained to collect tissue samples
from patients.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this article.

Authors’ Contributions

All authors are responsible for the integrity and accuracy of
the data. Conceptualization was done by H Zhao and YK.
Methodology was done by H Zhao, H Zhang, and WX. For-
mal analysis and investigation were done by H Zhao and

13Disease Markers

http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/


BW. Writing—original draft preparation was done by H
Zhao. Writing—review and editing was done by H Zhao,
H Zhang, WX, BW, and YK. Funding acquisition was done
by YK. Supervision was done by YK.

Acknowledgments

This study was supported by the Natural Science Foundation
of Shanghai (19ZR1476100), National Infrastructures for
Translational Medicine (Shanghai) (TMSK-2020-109),
Interdisciplinary Program of Medical Engineering Cross
Fund (YG2019QNB23, YG2019QNA49, and
YG2019QNA52), and Laboratory Innovative Research Pro-
gram of Shanghai Jiao Tong University (JCZXSJB2019002).

Supplementary Materials

Supplementary 1. Figure S1: methylation levels of the 10
cfDNA-derived markers.

Supplementary 2. Figure S2: assessment of the 10 cfDNA-
derived markers using XL-mHG test.

Supplementary 3. Figure S3: validation of selected CpG sites.

Supplementary 4. Table S1: differently methylated positions
detected in tissue samples.

Supplementary 5. Table S2: differently methylated regions
detected in cfDNA samples.

Supplementary 6. Table S3: GO analysis of DMGs in cfDNA
samples.

Supplementary 7. Table S4: KEGG analysis of DMGs in
cfDNA samples.

Supplementary 8. Table S5: primer sequences for
pyrosequencing.

Supplementary 9. Table S6: two-sample Kolmogorov-
Smirnov test in cfDNA samples.

References

[1] H. Sung, J. Ferlay, R. L. Siegel et al., “Global cancer statistics
2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries,” CA: A Cancer
Journal for Clinicians, vol. 71, no. 3, pp. 209–249, 2021.

[2] J. C. M. Wan, C. Massie, J. Garcia-Corbacho et al., “Liquid
biopsies come of age: towards implementation of circulating
tumour DNA,” Nature Reviews Cancer, vol. 17, pp. 223–238,
2017.

[3] M. Ignatiadis, G. W. Sledge, and S. S. Jeffrey, “Liquid biopsy
enters the clinic — implementation issues and future chal-
lenges,” Nature Reviews Clinical Oncology, vol. 18, pp. 297–
312, 2021.

[4] P. B. Gahan and M. Stroun, “The virtosome—a novel cytosolic
informative entity and intercellular messenger,” Cell Biochem-
istry and Function, vol. 28, pp. 529–538, 2010.

[5] S. A. Leon, B. Shapiro, D. M. Sklaroff, and M. J. Yaros, “Free
DNA in the serum of cancer patients and the effect of therapy,”
Cancer Research, vol. 37, pp. 646–650, 1977.

[6] G. Siravegna, S. Marsoni, S. Siena, and A. Bardelli, “Integrating
liquid biopsies into the management of cancer,” Nature
Reviews Clinical Oncology, vol. 14, pp. 531–548, 2017.

[7] J. A. Shaw, B. M. Smith, T. Walsh et al., “Microsatellite alter-
ations plasma DNA of primary breast cancer patients,” Clini-
cal Cancer Research, vol. 6, no. 3, pp. 1119–1124, 2000.

[8] K. Fujiwara, N. Fujimoto, M. Tabata et al., “Identification of
epigenetic aberrant promoter methylation in serum DNA is
useful for early detection of lung cancer,” Clinical Cancer
Research, vol. 11, p. 1219, 2005.

[9] K. D. Robertson, “DNA methylation and human disease,”
Nature Reviews Genetics, vol. 6, pp. 597–610, 2005.

[10] M. Kulis and M. Esteller, “DNA methylation and cancer,”
Advances in Genetics, vol. 70, pp. 27–56, 2010.

[11] W. Li, Q. Li, S. Kang et al., “CancerDetector: ultrasensitive
and non-invasive cancer detection at the resolution of indi-
vidual reads using cell-free DNA methylation sequencing
data,” Nucleic Acids Research, vol. 46, no. 15, article e89,
2018.

[12] K. C. A. Chan, P. Jiang, C. W. M. Chan et al., “Noninvasive
detection of cancer-associated genome-wide hypomethylation
and copy number aberrations by plasma DNA bisulfite
sequencing,” Proceedings of the National Academy of Sciences,
vol. 110, p. 18761, 2013.

[13] J. Moss, J. Magenheim, D. Neiman et al., “Comprehensive
human cell-type methylation atlas reveals origins of circulating
cell-free DNA in health and disease,”Nature Communications,
vol. 9, no. 1, p. 5068, 2018.

[14] F. Fece de la Cruz and R. B. Corcoran, “Methylation in cell-free
DNA for early cancer detection,” Annals of Oncology, vol. 29,
no. 6, pp. 1351–1353, 2018.

[15] S. R. Sturgeon, R. Balasubramanian, C. Schairer, H. B. Muss,
R. G. Ziegler, and K. F. Arcaro, “Detection of promoter meth-
ylation of tumor suppressor genes in serum DNA of breast
cancer cases and benign breast disease controls,” Epigenetics,
vol. 7, no. 11, pp. 1258–1267, 2012.

[16] J. Ellinger, K. Haan, L. C. Heukamp et al., “CpG island hyper-
methylation in cell-free serum DNA identifies patients with
localized prostate cancer,” The Prostate, vol. 68, pp. 42–49,
2008.

[17] J. Ellinger, P. Albers, F. G. Perabo, S. C. Müller, A. von
Ruecker, and P. J. Bastian, “CpG island hypermethylation of
cell-free circulating serum DNA in patients with testicular
cancer,” Journal of Urology, vol. 182, no. 1, pp. 324–329, 2009.

[18] R. A. Hlady, X. Zhao, X. Pan et al., “Genome-wide discovery
and validation of diagnostic DNA methylation-based bio-
markers for hepatocellular cancer detection in circulating cell
free DNA,” Theranostics, vol. 9, pp. 7239–7250, 2019.

[19] F. Yu, K. Li, S. Li et al., “CFEA: a cell-free epigenome atlas in
human diseases,” Nucleic Acids Research, vol. 48, pp. D40–
D44, 2020.

[20] P. A. Jones and S. B. Baylin, “The epigenomics of cancer,” Cell,
vol. 128, no. 4, pp. 683–692, 2007.

[21] CCGA Consortium, “Sensitive and specific multi-cancer
detection and localization using methylation signatures in
cell-free DNA,” Annals of Oncology, vol. 31, no. 6, pp. 745–
759, 2020.

[22] R. H. Xu, W. Wei, M. Krawczyk et al., “Circulating tumour
DNA methylation markers for diagnosis and prognosis of
hepatocellular carcinoma,” Nature Materials, vol. 16,
pp. 1155–1161, 2017.

14 Disease Markers

https://downloads.hindawi.com/journals/dm/2022/9619357.f1.pdf
https://downloads.hindawi.com/journals/dm/2022/9619357.f2.pdf
https://downloads.hindawi.com/journals/dm/2022/9619357.f3.pdf
https://downloads.hindawi.com/journals/dm/2022/9619357.f4.pdf
https://downloads.hindawi.com/journals/dm/2022/9619357.f5.pdf
https://downloads.hindawi.com/journals/dm/2022/9619357.f6.pdf
https://downloads.hindawi.com/journals/dm/2022/9619357.f7.pdf
https://downloads.hindawi.com/journals/dm/2022/9619357.f8.pdf
https://downloads.hindawi.com/journals/dm/2022/9619357.f9.pdf


[23] S. Kang, Q. Li, Q. Chen et al., “CancerLocator: non-invasive
cancer diagnosis and tissue-of-origin prediction using methyl-
ation profiles of cell-free DNA,”Genome Biology, vol. 18, no. 1,
p. 53, 2017.

[24] C. Delaney, A. Schnell, L. V. Cammarata et al., “Combinatorial
prediction of marker panels from single-cell transcriptomic
data,” Molecular Systems Biology, vol. 15, no. 10, article
e9005, 2019.

[25] Q. Wang, G. Gao, T. Zhang et al., “TRAF1 is critical for regu-
lating the BRAF/MEK/ERK pathway in non–small cell lung
carcinogenesis,” Cancer Research, vol. 78, p. 3982, 2018.

[26] Y. van der Pol and F. Mouliere, “Toward the early detection of
cancer by decoding the epigenetic and environmental finger-
prints of cell-free DNA,” Cancer Cell, vol. 36, pp. 350–368,
2019.

[27] M. G. Best, N. Sol, I. Kooi et al., “RNA-Seq of tumor-educated
platelets enables blood-based pan-cancer, multiclass, and
molecular pathway cancer diagnostics,” Cancer Cell, vol. 28,
pp. 666–676, 2015.

[28] A. Aalipour, H. Chuang, S. Murty et al., “Engineered immune
cells as highly sensitive cancer diagnostics,”Nature Biotechnol-
ogy, vol. 37, no. 5, pp. 531–539, 2019.

[29] A. K. Krug, D. Enderle, C. Karlovich et al., “Improved EGFR
mutation detection using combined exosomal RNA and circu-
lating tumor DNA in NSCLC patient plasma,” Annals of
Oncology, vol. 29, pp. 700–706, 2018.

[30] J. D. Cohen, A. A. Javed, C. Thoburn et al., “Combined circu-
lating tumor DNA and protein biomarker-based liquid biopsy
for the earlier detection of pancreatic cancers,” Proceedings of
the National Academy of Sciences, vol. 114, no. 38,
pp. 10202–10207, 2017.

[31] E. Heitzer, I. S. Haque, C. E. S. Roberts, and M. R. Speicher,
“Current and future perspectives of liquid biopsies in
genomics-driven oncology,” Nature Reviews Genetics, vol. 20,
pp. 71–88, 2019.

[32] Y. Luo, X. Lu, and H. Xie, “Dynamic Alu methylation during
normal development, aging, and tumorigenesis,” BioMed
Research International, vol. 2014, Article ID 784706, 12 pages,
2014.

[33] S. Guo, D. Diep, N. Plongthongkum, H. Fung, K. Zhang, and
K. Zhang, “Identification of methylation haplotype blocks aids
in deconvolution of heterogeneous tissue samples and tumor
tissue-of-origin mapping from plasma DNA,”Nature Genetics,
vol. 49, no. 4, pp. 635–642, 2017.

[34] A. Karlsson, M. Jönsson, M. Lauss et al., “Genome-wide DNA
methylation analysis of lung carcinoma reveals one neuroen-
docrine and four adenocarcinoma epitypes associated with
patient outcome,” Clinical Cancer Research, vol. 20, p. 6127,
2014.

15Disease Markers


	A Sight of the Diagnostic Value of Aberrant Cell-Free DNA Methylation in Lung Cancer
	1. Introduction
	2. Materials and Methods
	2.1. Data Acquisition and Preprocessing
	2.2. Identification of DNA Methylation Markers of Tissue Samples
	2.3. Identification of DNA Methylation Markers of cfDNA Samples
	2.4. Model Evaluation Using ROC and PR Curves
	2.5. Functional Annotation of cfDNA-Derived DMRs
	2.6. Validation of cfDNA-Derived Markers

	3. Results
	3.1. Dataset Information and Genomic Coverage Analysis
	3.2. Identification and Evaluation of Tissue-Derived Methylation Markers
	3.3. Identification and Evaluation of cfDNA-Derived Methylation Markers
	3.4. Overrepresentation Analysis of DMR-Related Genes
	3.5. Validation of cfDNA-Derived Markers with Pyrosequencing

	4. Discussion
	Abbreviations
	Data Availability
	Additional Points
	Ethical Approval
	Consent
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

