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Pancreatic cancer (PC) is notorious for its parallel morbidity and mortality rates. Recently, necroptosis, a form of programmed cell
necrosis, has gained popularity for its role in tumorigenesis and metastasis. In this study, we explored the expression of
necroptosis-related genes in PC and normal pancreatic tissues and identified 52 differentially expressed genes (DEGs). The Cox
regression analysis was applied to construct the prognostic risk model, which divided patients into high- and low-risk groups.
PC patients in the low-risk group showed a significantly better overall survival (OS) than those in the high-risk group. We
further validated the prognostic role in ICGC cohort. Further, Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and tumor microenvironment (TME) analysis were used to explore
the underlying mechanisms. Notably, based on the gene signature, we revealed that the risk score was strongly related to the
sensitivity of chemotherapy. In conclusion, necroptosis-related genes serve as an important immune mediator, and the risk
model could be used to predict the survival and to guide the development of precision drugs for patients with PC.

1. Introduction

Pancreatic cancer (PC) is an extremely poor survival diges-
tive system malignancy. PC has high recurrence, metastasis,
and mortality rates, which causes 466 000 deaths all over the
world in 2020 [1]. Due to insidious symptoms and the diffi-
culty of early diagnosis, 80% of the patients with PC have no
chance of surgery at the time of diagnosis [2]. Despite
numerous studies being focused on PC, the 5-year overall
survival (OS) rate of PC was only 10% [3]. Systemic treat-
ment is the only choice of treatment for PC patients who
had lost the chance of surgery. However, the current treat-
ment strategies only marginally improve the survival of PC

patients. Moreover, the progress in the treatment of PC is
slow when compared to other malignancies. Accordingly, it
is imperative to innovate a prognostic model for managing
pancreatic cancer.

Necroptosis, a novel programmed form of necrotic cell
death, plays a significant role in the host’s defense against
pathogenic invasion [4]. Necroptosis is morphologically
similar to necrosis and mechanistically resembles apoptosis
[5]. Apart from its key role in viral infection and inflamma-
tory diseases, it has been demonstrated to show vital effect in
tumor biological behavior, tumorigenesis, immunity, inva-
sion, and metastasis [4, 6]. Necroptosis can activate RIPK1
and RIPK3 in the tumor microenvironment (TME) to pro-

Hindawi
Disease Markers
Volume 2022, Article ID 9737587, 15 pages
https://doi.org/10.1155/2022/9737587

https://orcid.org/0000-0002-7273-6282
https://orcid.org/0000-0002-8900-1688
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9737587


mote antitumor immunity [7]. Koo et al. reported that the
expression of RIPK3 is reduced in breast cancer tissues,
and low RIPK3 level indicates poor survival in patients with
breast cancer [8]. Similarly, RIPK3 was decreased in colorec-
tal cancer and acute myeloid leukemia and the downregula-
tion of RIPK3 hampered the survival of patients. In contrast,
it is reported that RIPK1 and RIPK3 are overexpressed in
pancreatic cancer tissues, and downregulation of RIPK1 or

deletion of RIPK3 in vivo inhibited tumor progression via
enhancing immune cell infiltration [9].

Given the interesting reports, we hypothesize that
necroptosis might play a dual role in both the progression
of tumor and antitumor processes; however, to date, only a
few researches have systematically analyzed the effect of
necroptosis-related genes in patients with PC. Hence, we
conducted an integrative research to evaluate and compare

SampleGroup

GSDMD
MLKL
RIPK 3
TP53I3
CASP 6
CASP 8
PDCD6IP
FASN
SPATA2
PITPNA
RIPK 1
SERTAD1
TRAF 2
GSK 3B
CHMP 4B
RALBP 1
TXN
FADD
ITPK 1
XIAP
DIABLO
PTGES3
TIMM 50
HTRA 2
FLOT 1
FLOT 2
TP53
SLC39A7
AIFM 1
HSPA5
IPMK
CYLD
RB 1
DNM 1L
MAP 3K7
MAPK 14
UCHL1
PRKN
GNLY
STING 1
AXL
TNFRSF 1A
FKBP 1A
PANX 1
PELI 1
FAS
CFLAR
CXCL 5
ZBP 1
TNF
FASLG
BCL 2

Expression

−2

−1

0

1

2

SampleGroup:
Normal
Tumor

(a)

ZBP1

FASLG

TXN

PITPNA

CXCL5
FASN

GNLY

FKBP1A

PTGES3
AXL

HTRA2

XIAP

CFLAR

RIPK3 FAS

RIPK1

FADD

MLKL TNFRSF1A

CASP8

CASP6
TNF

SPATA2

CYLD

UCHL1

TP53I3TP53

AIFM1 GSK3B
MAPK14

TRAF2

RB1

BCL2 IPMK

PDCD6IP

ITPK1

CHMP4B

PARK2

FLOT1FLOT2

DNM1L
TMEM173

PANX1

DIABLO

GSDMD

HSPA5
SLC39A7

SERTAD1

RALBP1

TIMM50

PELI1

(b)

1

0.5

0

–0.5

–1

(c)

Figure 1: Necroptosis-related gene expressions in PC and their correlations. (a) Heatmap displaying the DEGs between the PC tissues and
normal pancreatic samples (blue: low-expression level; red: high-expression level). (b) Protein-protein interaction (PPI) network constructed
using STRING database (interaction score = 0:90). (c) The correlation network of the differentially expressed necroptosis-related genes.
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Figure 2: Clusters based on the necroptosis-related DEGs. (a) Two different clusters were identified in patients with PC by unsupervised
clustering method. (b) Kaplan-Meier survival analysis showed that the cluster 1 PC patients had a significantly better overall survival
(OS) than cluster 2 (p = 0:008). (c) Heatmap of necroptosis-related DEGs and clinicopathologic features.
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Figure 3: TME analysis based on two clusters. (a) Violin plot displaying the difference in tumor infiltration of 22 types immune cells as
calculated by CIBERSORT algorithms between the two clusters. (b–d) Boxplot showing the difference of ImmuneScore, StromalScore,
and ESTIMATEScore between two clusters.
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the expression of necroptosis-related genes between PC and
normal pancreatic tissues. Moreover, we assessed the corre-
lation between necroptosis and TME in PC, as well as the
underlying mechanism, and provide an effective model for
prognosis of patients with PC.

2. Materials and Methods

2.1. Raw Data Gathering. RNA-seq data in TPM format of
pancreatic cancer samples from TCGA and normal pancreas
tissues from GTEx were obtained from UCSC XENA
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Figure 4: Risk model construction in TCGA cohort. (a) Univariate Cox regression analysis identified 12 necroptosis-related genes correlated
with OS. (b) Principal component analysis (PCA) for PC patients according to the risk score. (c) Comparing risk score level between low-
and high-risk groups. (d) Survival status for each PC patient. (e) Heatmap exhibiting the expression of the 3 identified necroptosis-related
genes expression in different groups. (f) K-M survival analysis based on risk group. (g) ROC curves evaluate the sensitivity and specificity of
1-year survival prediction.
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(https://xenabrowser.net/datapages/), and the RNA-seq data
were processed in unison by the Toil process [10]. The
RNA-seq data in TPM format and clinical information of
the external validation cohort were acquired from the ICGC
(https://icgc.org) database. No ethics approval was required
as all the raw data was sourced from the public databases.

2.2. Selection of Differentially Expressed Necroptosis-Related
Genes. The 68 necroptosis-related genes were extracted from
the GeneCards database (https://www.genecards.org) with
Z‐score > 1 (Supplementary Table 1). The R Studio and
“limma” package were applied for screening differentially
expressed genes (DEGs) with the criteria of FDR < 0:01
and absolute log 2FC > 1. The protein-protein interaction
(PPI) network of the DEGs was constructed via the Search
Tool for the Retrieval of Interacting Genes (STRING)
(https://string-db.org). The “igraph” and “reshape2” pack-
ages were adopted to construct the correlation network of
DEGs.

2.3. Unsupervised Clustering of DEGs. To determine the dif-
ferent necroptosis modification patterns and classification of
PC patients for further analysis, we conducted unsupervised
cluster analysis according to the expression of DEGs. The
“ConsensusClusterPlus” package was used for the cluster
identification analysis.

2.4. Enrichment Analysis. After identifying the differentially
expressed necroptosis-related genes between the subtypes
categorized by the risk score model, the Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were used to evaluate the potential bio-
logical functions and mechanistic pathways. The above anal-
ysis was performed by the “clusterProfiler” package with the
criteria of FDR < 0:05 and absolute log 2FC > 1. To deter-
mine the biological difference between the high- and low-
risk groups, we performed the Gene Set Enrichment Analy-
sis (GSEA) via GSEA software. “c2.cp.kegg.v7.4.sym-
bols.gmt” and “h.all.v7.4.symbols.gmt” gene sets were
selected as the reference.

2.5. Building and Validating the Prognostic Necroptosis-
Related Gene Model for PC. After determining the DEGs,
firstly, we first applied the univariate Cox regression analysis
to identify necroptosis-related genes significantly associated
(p < 0:05) with overall survival (OS). Then, to narrow down
the candidate markers, we performed multivariate Cox
regression analysis to identify ultimate necroptosis-related
genes and predict the regression coefficients (β) of the risk
model. Finally, a prognostic risk model according to three
genes was constructed. Risk score = ðβ1 × the expression of
GSK3BÞ + ðβ2 × the expression of UCHL1Þ + ðβ3 × the
expression of AIFM1Þ. Based on the median risk score, all
PC patients were divided into high- and low-risk groups.
To further validate the accuracy and stability of the risk
model, the PACA-CA cohort of ICGC database was
extracted. We applied the same formula and cutoff value
according to the risk model of TCGA cohort. Kaplan-
Meier (K-M) survival curves and receiver-operating charac-
teristic (ROC) curves were used to evaluate the predictive
values of the risk model. Furthermore, we evaluated the pro-
tein level of these three genes in PC via the human protein
atlas (HPA) database (https://www.proteinatlas.org).

2.6. Independent Prognostic Analysis. To assess whether
necroptosis-related risk model is an independent risk factor
for the prognosis of PC patients, we performed univariate
and multivariate Cox regression analysis combined with
age, sex, grade, stage, and risk score in TCGA cohort.

2.7. Tumor Immune Microenvironment Analysis. CIBER-
SORT [11, 12], a deconvolution algorithm based on support
vector regression, was applied to calculate the tumor
immune infiltration cells in PC patients. We also used the
“estimate” package to calculate the ratio of immune-
stromal cells in TME. We exhibited the results of Immune-
Score, StromalScore, and ESTIMATEScore with boxplot.
Increasing focus on the level of immune checkpoint genes
and the chosen of immunotherapy, hence, we further com-
pared the common key immune checkpoint genes, PD1
(PDCD1), PD-L1 (CD274), B7-H3 (CD276), CTLA4,
LAG3, and TIGIT included, between the high- and low-
risk groups. We adopted boxplots to demonstrate the differ-
ences between these two groups.

2.8. Associations between Risk Score and Drug Treatment. To
evaluate the association between the necroptosis-related

Table 1: Univariate cox regression analysis of prognostic
necroptosis-related genes.

Gene HR
Lower 95%

CI
Upper 95%

CI
p value

AXL 1.010093718 1.000087323 1.020200232 0.048024195

TXN 1.002597231 1.000971072 1.004226032 0.001736857

RALBP1 1.021427284 1.004527217 1.038611675 0.012752644

PANX1 1.045866466 1.010251877 1.082736581 0.011181604

FAS 1.024210222 1.000253627 1.04874059 0.047595289

FADD 1.030214753 1.00287693 1.058297788 0.030058221

GSK3B 1.063476705 1.031149984 1.096816874 9.32E-05

PELI1 1.02926048 1.006791772 1.052230624 0.010436169

UCHL1 0.992053365 0.985960785 0.998183593 0.011136171

CASP8 1.029288755 1.00460173 1.054582438 0.019773034

AIFM1 0.968478239 0.938876822 0.999012947 0.043143615

CASP6 1.02628684 1.003862695 1.049211893 0.021335452

HR: hazard ratio; CI: confidence interval.

Table 2: Multivariate Cox regression analysis of prognostic
necroptosis-related genes.

Gene Coef HR
Lower 95%

CI
Upper 95%

CI
p value

GSK3B 0.05479 1.0563 1.0237 1.0899 0.000608

UCHL1 -0.00712 0.9929 0.9864 0.9994 0.033536

AIFM1 -0.03392 0.9667 0.9362 0.9981 0.037630

Coef: coefficient; HR: hazard ratio; CI: confidence interval.
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gene risk model and drug sensitivity in patients with PC, we
adopted pRRophetic and ggplot2 packages. Additionally, we
compared the half-maximal inhibitory concentration (IC50)
of conventional chemotherapy drugs between the low- and
high-risk groups for PC.

3. Results

3.1. DEG Identification. The flow chart of this study is dis-
played in Figure S1. To acquire the DEGs between PC
samples and normal pancreatic tissues, we compared the
level of 68 necroptosis-related genes in 178 PC samples
and 171 normal tissues obtained from TCGA and GTEx
databases. 52 DEGs were identified, and all of these genes
were overexpressed in PC tissues (Figure 1(a)). To further
analyze the interactions between these necroptosis-related
DEGs, we constructed the protein-protein interaction (PPI)
network by the STRING database with the highest
confidence (0.90) (Figure 1(b)). Additionally, we built a
correlation network of these DEGs (Figure 1(c)).
Furthermore, we applied GO and KEGG enrichment
analysis for these DGEs. As shown in Figure S2, the DEGs

were enriched in “regulation of apoptotic signaling
pathway,” “membrane region,” “ubiquitin-like protein
ligase binding,” and “necroptosis.”

3.2. Cluster and TME Analysis. We performed an unsuper-
vised clustering analysis based on the expression of 52
necroptosis-related DEGs in the TCGA datasets. By increas-
ing the clustering variable (k) from 2 to 9, we identified that
PC patient could be divided into 2 subgroups (Figure 2(a)).
K-M survival analysis indicated that PC patients in cluster1
had a better OS than those in cluster (Figure 2(b)). In addi-
tion, the association between necroptosis-related genes and
clinicopathological features was evaluated (Figure 2(c)).

Additionally, we evaluated the TME via CIBERSORT
method. As displayed in Figure 3, in TCGA cohort, the clus-
ter 1 subtype generally had higher “B cells naive” (p = 0:017),
while lower “NK cells resting” (p = 0:022), “monocytes”
(p = 0:036), and “macrophages M0” (p = 0:005) when com-
pared to cluster 2 subgroup. Besides, the cluster 1 subgroup
had a higher ImmuneScore (p = 3:5e − 05), StromalScore
(p = 3:4e − 05), and ESTIMATEScore (p = 9:8e − 06) than
cluster 2 subgroup.
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Figure 5: Risk model validation in ICGA cohort. (a) Risk score level between the low- and high-risk groups. (b) Survival status for each PC
patient. (c) Heatmap displaying the expression of GSK3B, AIFM1, and UCHL1 in the two groups. (d) K-M survival analysis based on risk
group. (e) ROC curves evaluate the 1-year survival predictive efficiency.
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3.3. Necroptosis-Related Prognostic Gene Model
Construction. Primarily, we adopted univariate Cox regres-
sion analysis to determine the prognosis-related genes. 12
genes (AXL, TXN, RALBP1, PANX1, FAS, FADD, GSK3B,
PELI1, UCHL1, CASP8, AIFM1, and CASP6) with p value
< 0.05 were recruited for further analysis. Among these,
AIFM1 and UCHL1 were correlated with decreased risk
with HR < 1, while the remaining 10 genes were harmful
for the prognosis of PC (Figure 4(a) and Table 1). To further
narrow the potential gene numbers and build the risk model,
we used multivariate Cox regression analysis. Ultimately, a
3-gene signature (GSK3B, AIFM1, and UCHL1) was con-
structed. The risk score = ð0:05479 × the expression of GSK3
BÞ + ð−0:00712 × the expression of UCHL1Þ + ð−0:03392 ×
the expression of AIFM1Þ (Table 2). Based on the median
score in the TCGA cohort, we divided PC patients into high-
and low-risk groups. The principal component analysis
(PCA) suggested that the high- and low-risk groups were
classified into two apparent forms of distribution, which

indicated that necroptosis had significantly different role in
two subgroups (Figure 4(b)). Scatter diagrams show the risk
scores of each PC patient, and patients in the high-risk
group had higher mortality than those in the low-risk group
(Figures 4(c) and 4(d)). Besides, the heatmap plot displayed
the 3 necroptosis-related genes’ expression in different risk
groups, as shown in Figure 4(e), GSK3B was overexpressed
in high-risk group, while AIFM1 and UCHL1 were overex-
pressed in low-risk group. K-M survival analysis indicates
that PC patients in the high-risk group had a significantly
(p < 0:001) shorter OS than those in the low-risk group
(Figure 4(f)). We used time-dependent receiver-operating
characteristic (ROC) and the area under the ROC curve
(AUC) to evaluate the specificity and sensitivity of the above
results. And the AUC was 0.662 for 1-year, 0.666 for 3-year,
and 0.802 for 5-year survival prediction (Figure 4(g),
Figure S3 A, B). Furthermore, we explored the protein level
of AIFM1, GSK3B, and UCHL1; immunohistochemistry
(IHC) staining indicated that these three proteins were
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Figure 6: GO and KEGG enrichment analysis of DEGs based on risk groups. (a) GO: biological process (BP); (b) GO: cellular component
(CC); (c) GO: molecular function (MF); (d) KEGG pathway analysis.
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commonly overexpressed in PC tissues than in normal
pancreatic samples (Figure S4).

3.4. Validation of the Necroptosis-Related Gene Risk Model.
To further validate the prognostic efficacy of risk evaluation
model, we selected the PACA-CA cohort from ICGC data-
base. According to the median risk score of TCGA cohort,
we classified the ICGA PC patients into low-risk group
(100 patients) and high-risk group (115 patients)
(Figure 5(a)). Similar to the TCGA cohort, the low-risk
group patients had lower mortality than the high-risk group
patients (Figure 5(b)). Moreover, the expression of GSK3B,
AIFM1, and GSK3B was also displayed in the heatmap
(Figure 5(c)). K-M survival analysis also indicates that the
PC patients in the low-risk group had a significantly
(p < 0:001) better OS than those in the high-risk group
(Figure 5(d)). ROC curve also showed the risk signature
had an effective sensitivity and specificity in the ICGC
cohort (AUC = 0:649 for 1-year, 0.639 for 3-year, and
0.680 for 5-year survival prediction) (Figure 5(e), Figure S3
C, D).

3.5. Independent Prognostic Value of the Risk Signature. We
performed univariate and multivariate Cox regression anal-
ysis to evaluate whether the risk model could serve as an
independent prognostic factor for PC patients. As displayed
in Figure S5, both univariate and multivariate Cox

regression indicated that the risk score was an independent
risk factor for PC patients in TCGA cohort.

3.6. Enrichment Analysis Based on the Risk Signature. To
explore the differences in biological functions in the risk
subgroups, we applied the “limma” package to screen the
DEGs between these two groups with the criteria of FDR <
0:05 and absolute log 2FC > 1. And the DEGs were shown
in the form of a volcano map (Figure S6). GO and KEGG
enrichment analysis showed that the DEGs mainly
participate in “signal release,” “presynapse,” “passive
transmembrane transporter activity,” and “neuroactive
ligand-receptor interaction” (Figure 6). We also carried out
GSEA to identify the biological pathways correlated with
high- and low-risk groups in TCGA cohort. The results
reveal that when “c2.cp.kegg.v7.4.symbols.gmt” was used as
a reference, the high-risk group was enriched in “cell
cycle,” “pancreatic cancer,” and “ECM receptor
interaction,” while the low-risk group was participated in
“neuroactive ligand receptor interaction,” “long term
depression,” and “maturity onset diabetes of the young”
(Figures 7(a) and 7(b)). When the “h.all.v7.4.symbols.gmt”
was used as a reference, the high-risk group was associated
with “G2M checkpoint,” “epithelial mesenchymal
transition (EMT),” and “TNFα signaling via NF-κB,” while
the low-risk was enriched in “pancreas beta cells,”
“spermatogenesis,” and “allograft rejection” (Figures 7(c)
and 7(d)).

0.5
0.4
0.3
0.2
0.1
0.0

2 left

right

0 2,000 4,000 6,000
Rank in Ordered DataSet

8,000

0
–2
–4

En
ric

hm
en

t s
co

re
Ra

nk
ed

 li
st 

m
et

ri

(a)

0.0
–0.1
–0.2
–0.3
–0.4
–0.5
–0.6

2 left

right

0 2,000 4,000 6,000
Rank in Ordered DataSet

8,000

0
–2
–4

En
ric

hm
en

t s
co

re
Ra

nk
ed

 li
st 

m
et

ri

(b)

0.0 0.5 1.0 1.5 2.0

NES = 2.618

NES = 2.455

NES = 2.440

NES = 2.419

NES = 2.386

HALLMARK G2M CHECKPOINT

HALLMARK EPITHELIAL
MESENCHYMAL TRANSITION

HALLMARK INTERFERON ALPHA
RESPONSE

HALLMARK TNFA SIGNALING VIA
NFKB

HALLMARK E2F TARGETS

(c)

NES = –2.315

NES = –1.492

NES = –1.355

NES = –1.347

NES = –1.310

HALLMARK PANCREAS BETA CELLS

HALLMARK SPERMATOGENESIS

HALLMARK ALLOGRAFT REJECTION

HALLMARK BILE ACID METABOLISM

HALLMARK KRAS SIGNALING DN

–5 –4 –3 –2 –1 0

(d)

Figure 7: Gene Set Enrichment Analysis (GSEA). (a, b) Related signaling pathways in c2.cp.kegg.v7.4.symbols.gmt; (c, d) Related signaling
pathways in h.all.v7.4.symbols.gmt.

9Disease Markers



0.5

p=0.001

p=0.684

p=0.122
p<0.001

p=0.692

p=0.328

p=0.087
p=0.817

p=0.565

p=0.971p=0.302

p=0.886

p=0.207

p<0.001

p=0.022

p=0.720
p=0.095

p=0.564
p=0.558

p=0.772

p=0.990

p=0.419

0.4

0.3

Fr
ac

tio
n

0.2

0.1

0.0

B ce
lls 

naiv
e

B ce
lls 

mem
ory

Plas
ma c

ells

T ce
lls 

CD8

T ce
lls 

CD4 n
aiv

e

T ce
lls 

CD4 m
em

ory 
res

tin
g

T ce
lls 

CD4 m
em

ory 
act

iva
ted

T ce
lls 

follic
ular

 help
er

T ce
lls 

reg
ulat

ory 
(Treg

s)

T ce
lls 

gam
ma d

elt
a

NK ce
lls 

res
tin

g

NK ce
lls 

act
iva

ted

Monocyt
es

Macr
ophage

s M
0

Macr
ophage

s M
1

Macr
ophage

s M
2

Den
driti

c c
ells

 re
stin

g

Den
driti

c c
ells

 ac
tiv

ate
d

Mast
 ce

lls 
res

tin
g

Mast
 ce

lls 
act

iva
ted

Eosin
ophils

Neutro
phils

Low Risk
High Risk

(a)

Low Risk

0.013

High Risk

Low
High

Risk

Im
m

un
eS

co
re

3000

2000

1000

–1000

0

(b)

0.061

Low
High

Risk
Low Risk High Risk

St
ro

m
al

Sc
or

e

2000

1000

–1000

0

(c)

Figure 8: Continued.
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3.7. TME Analysis Based on Risk Model. We used CIBER-
SORT and ESTIMATE methods to further evaluate the
tumor immune cell infiltration difference between two sub-
groups. The results show that the high-risk group generally
had higher “macrophages M0” (p < 0:001), “macrophages
M2” (p = 0:022), and lower “B cells naive” (p = 0:001) and
“CD8+ T cells” (p < 0:001), “when compared to the low-
risk group (Figure 8(a)). In addition, the low-risk group
had a higher ImmuneScore (p = 0:013) and ESTIMATE-
Score (p = 0:019) than the high-risk group (Figures 8(b)–
8(d)). Furthermore, we explored the difference of immune
checkpoint gene expression between two risk groups. As
shown in Figure 9, the low-risk group was associated with
a higher expression of CTLA4, LAG3, PD1(PDCD1), and
TIGIT, while a lower expression of B7-H3 (CD276) than
high-risk group. However, there was no difference in the
expression of PD-L1 (CD274) in two subgroups.

3.8. Drug Susceptibility Analysis between Risk Groups. Note-
worthy, despite the dominance of chemotherapy in the non-
surgical treatment of PC, their sensitivity is unsatisfactory to
data. In order to make chemotherapy more precise, we eval-
uated the IC50 of various chemotherapeutic drugs between
the low- and high-risk groups. The results of drug sensitivity
analysis reveal that the patients in high-risk group have
lower IC50s for gemcitabine, paclitaxel, cytarabine, and
doxorubicin than those in the low-risk group, which indi-
cated that the PC patients with high risk may profit from
the above treatments (Figures 10(a)–10(d)).

4. Discussion

PC is a tumor with an extremely poor end worldwide due to
its rapid progression, metastasis, ease of recurrence, and
insensitivity to treatment, imposing a financial burden
[13]. Additionally, majority of patients with PC are diag-
nosed at an advanced stage and hence lose the opportunity
for surgery [2]. Although several chemotherapy options
were applied for PC, such as nab-paclitaxel plus gemcitabine
and mFOLFIRINOX [14, 15], the long-term survival of PC

patients is still very disappointing. Moreover, the molecular
mechanism of PC is still largely unknown, and novel bio-
markers to predict the survival of PC patients are still
unavailable. Owing to this dilemma of treatment and prog-
nosis of PC, there is an urgency to identify an effective bio-
marker or model for PC.

Necroptosis, a novel defined form of necrotic cell death,
was found to show a dual-effect in cancer progression and
therapy target. On one hand, necroptosis could promote
tumor cell necrotic and favor the antitumor immunoactivity.
On the other hand, necroptosis could release immunosup-
pressive factors and promote tumor invasion and metastasis
[16–18]. However, the interaction between necroptosis-
related genes and prognosis of PC is largely unclear.

In the current research, we primarily explored the
mRNA expression of 68 necroptosis-related genes in both
PC and normal pancreatic tissues and identified 52 DEGs.
Interestingly, all the 52 DEGs were overexpressed in PC
samples when compared to normal tissues. By applying
unsupervised clustering on these DEGs, we divided PC
patients in the TCGA cohort into two clusters. Although
the two clusters showed no significant differences in the clin-
icopathological features, PC patients in cluster 1 had a better
survival and a higher ImmuneScore, StromalScore, and
ESTIMATEScore than patients in cluster 2. To further inves-
tigate the prognostic effect of these necroptosis-related genes
in PC, we employed univariate and multivariate Cox regres-
sion to construct a 3-gene (AIFM1, GSK3B, and UCHL1)
risk signature for the survival prediction of PC patients.
Among them, high expression of AIFM1 and UCHL1 facili-
tates long-term survival, while overexpression of GSK3B
hampers prognosis of PC patients. Based on the median risk
score, PC patients could be categorized into high- and low-
risk groups, with the low-risk group patients having a longer
OS than the patients of high-risk group. The PCA analysis
revealed that the two groups could be effectively distin-
guished from each other. Similar to the previous study
[19], we extracted PACA-CA dataset from the ICGC data-
base as an external validation cohort to validate this model
and obtained similar results. Moreover, univariate and
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Figure 8: TME analysis based on two risk groups. (a) Violin plot displaying the difference in tumor infiltration of 22 types immune cells as
calculated by CIBERSORT algorithms between the two groups. (b–d) Boxplot showing the difference of ImmuneScore, StromalScore, and
ESTIMATEScore between two groups.
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multivariate Cox regression analysis suggested that the risk
score could serve as an independent prognostic factor for
PC. To further explore the underlying mechanisms based
on the risk groups, we performed GO, KEGG, and GSEA
enrichment analysis. GSEA results reveal that the high-risk
group was associated with several cancer progression and
metastasis-related pathways, including “cell cycle,” “pancre-
atic cancer,” “ECM receptor interaction,” “p53 signaling
pathway,” “G2M checkpoint,” and “epithelial mesenchymal
transition (EMT).”We also investigate the tumor microenvi-
ronment difference between two groups. The high-risk
group had a higher M2 macrophages and lower CD8+ T cell
infiltration than the low-risk patients.

Previous research revealed that GSK3B could promote
DNA repair resulting in chemo- and radiotherapy resistance
in glioblastoma [20]. And in PC, Namba et al. reported that

inhibition of GSK3B could reverse the chemoresistance of
PC cells to gemcitabine [21]. In breast cancer, the expression
level of UCHL1 was negatively correlated with estrogen
receptor, and inhibition of UCHL1 could enhance the sensi-
tivity to endocrine therapy [22]. Jin et al. reported that high
expression of UCHL1 was positively correlated with invasive
tumor behavior and affected survival in hilar cholangiocarci-
noma [23], while, in pancreatic neuroendocrine tumors,
coexpression of UCHL1 and α-internexin predicts a better
OS and disease free survival [24]. Therefore, UCHL1 may
have a unique effect in different tumors. Notably, our
research suggested that UCHL1 may act as an antitumor
gene in PC; however, further experiments are still needed
to confirm this phenomenon.

Growing evidence indicates that TME plays a significant
role in the development and treatment of cancer [25, 26].
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M2 macrophages could promote tumor progression and
metastasis and affect therapeutic outcome of various cancer
types [27–29]. Immunosurveillance plays a critical effect in
the elimination of cancer cells, and CD8+ T cells have a vital
role in antitumor. Wang et al. revealed that high CD8+ T cell
infiltration in PC could predict a better survival [30].
Another study reported that the abundance of CD8+ T cells
was heterogenous in PC tissues, and higher CD8+ T cells
density was correlated with prolonged survival [31]. In our
risk model, the high-risk group had a higher M2 macro-
phages and lower CD8+ T cell infiltration, which could
partly explain the reason of worse prognosis of high-risk
group. Similarly, the low-risk group had a higher Immune-
Score and ESTIMATEScore and indicated that the low-risk
group patients had a higher abundance of immune infiltra-
tion. Besides, we assess the correlation between risk group
and the expression of checkpoint gene.

Previous research revealed that chemotherapy drugs
could inhibit tumor development via regulating the pathway
of cell necroptosis. For instance, researchers have found that
gemcitabine could induce RIPK1/RIPK3/MLKL-dependent
necroptosis in cholangiocarcinoma cells [32]. Diao et al. also
revealed that paclitaxel can induce phosphorylated-Casp8/

RIPK1/RIPK3-dependent necroptosis in lung adenocarci-
noma cells [33]. Hence, the necroptosis-related risk score
model, presented in this study could serve as a valid bio-
marker for predicting the effect of chemotherapy in PC
patients. In addition, it can provide new insights into the
research of chemotherapy and necroptosis in PC.

To date, we have not seen studies of the necroptosis-
related gene signature in PC, and we firstly provide insight
into the role of necroptosis-related gene set in PC. We have
to admit that some limitations are presented in our study.
Our research is based on public databases; although we
extract ICGC database as external validation, there were no
our data to prove our findings. Further experiments are
needed to explore the role and mechanism of the risk model
in PC and to validate its clinical application.

In conclusion, our study indicated that necroptosis
showed a contradictious role in PC as all the DEGs were
overexpressed in PC tissues, while they showed dual role in
the prognosis of PC. We successfully constructed the risk
score model according to the three necroptosis-related
genes; meanwhile, it could serve as an independent risk fac-
tor in the prognosis of PC patients. Based on the risk score
model, the abundance level of immune cell infiltration
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Figure 10: Chemotherapy sensitivity analysis between two risk groups. (a) IC50 of gemcitabine between two risk groups. (b) IC50 of
paclitaxel between two risk groups. (c) IC50 of cytarabine between two risk groups. (d) IC50 of doxorubicin between two risk groups.
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between two groups were significant difference. Our study
provides a novel gene signature for the prediction of progno-
sis and therapeutic markers for PC patients.
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