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Purpose. Head and neck squamous cell carcinoma (HNSCC) exhibits a high mortality and morbidity rate, and its treatment is
facing clinical challenges. Cuproptosis, a copper-dependent cell death process, can help derive new forms of cancer therapies.
However, the potential of cuproptosis-related genes (CRGs) as novel biomarkers for risk prediction, screening, and prognosis
remains to be further explained in HNSCC. Methods. We built a prognostic multigene signature with CRGs, which is
associated with the tumor immune microenvironment (TME) by gene set enrichment analysis (GSEA), in the TCGA cohort.
Furthermore, we systematically correlated risk signature with immunological characteristics in TME including tumor-
infiltrating immune cells (TIICs), immune checkpoints, T cell inflamed score, and cancer immunity cycles. We also thoroughly
investigated the biological functions of cuproptosis-associated lncRNAs and its immunological characteristics. Results. CRGs-
related prognostic model showed good prediction performance. A higher risk score was associated with a poorer overall
survival (OS) than those with low-risk scores, according to the results of the survival analysis (p < 0:0001). The risk score was
significantly related to the variable clinicopathological factors. Samples with high-risk scores had lower levels of CD8+ T cells
infiltration. Immune therapy might be effective for the low-risk subtype of HNSCC patients (p < 0:05). Moreover, 11
differentially expressed lncRNAs as the independent prognostic factor could also predict TME in an accurate manner.
Conclusion. Our study identified and validated novel cuproptosis-related biomarkers for HNSCC prognosis and screening,
which offer better insights into developing accurate, reliable, and novel cancer therapies in the era of precision medicine.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is
recorded to be the 8th most commonly occurring form of
cancer in the world, with a high mortality and morbidity rate
[1, 2]. Approximately 600,000 new HNSCC cases and
350,000 HNSCC-related deaths take place every year across
the globe [3–5]. Though many new techniques have been
developed for diagnosing the patients during their early
stages, more than half of the HNSSC patients are diagnosed
only in their advanced stages [6]. In the past few years, many
significant breakthroughs have been achieved in the HNSCC
treatment, including chemotherapy, radiotherapy, and sur-
gery. Despite these breakthroughs, the 5-year survival rate

of HNSCC patients is still poor [7, 8]. Hence, it is essential
to consider alternative probable causes of cell death to over-
come the chemotherapy resistance and identify novel bio-
markers that can be used as therapeutic agents for
improving the prognosis of patients with HNSCC.

Many researchers are investigating the role of cupropto-
sis in cancer. Protein lipoylation is mainly responsible for
copper-induced cell death (i.e., cuproptosis). In their study,
Tsvetkov et al. identified a new type of copper-induced cell
death mechanism, where the Cu ions disrupted some partic-
ular mitochondrial metabolic enzymes, which was more
toxic in the actively respiring cells [9, 10]. An increase in
the number of respiratory cells increases the level of the
lipoylated enzymes, which, in turn, leads to the formation
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of more protein aggregates [10, 11]. It is concluded that cop-
per ions can sabotage the cell and cause the death of cells if
the metabolic pathway in the cells was disrupted [12, 13].
Hence, we believe that an investigation into the copper
toxicity-based pathology can help determine and uncover
the genetic diseases related to genetic copper overload and
derive new forms of cancer therapies.

Very few researchers have investigated the role played by
the cuproptosis-related molecular signatures in predicting
the overall survival (OS) rate of HNSCC patients. In this
study, we have evaluated the expression profile of
cuproptosis-related genes (CRGs), initially described by
Tsvetkov et al. [10], and developed a prognostic multigene
signature that was based on the CRGs. Additionally, we also
studied the role of the CRGs, immune tumor microenviron-
ment, lncRNAs, and immune responses in HNSCC.

2. Materials and Methods

2.1. Data Collection. In this study, we downloaded the data-
set that included the mRNA expression and the related clin-
ical data for 502 tumor tissues along with 44 adjacent
normal tissues of HNSCC, from The Cancer Genome Atlas
(TCGA; https://portal.gdc.cancer.gov/) (Table 1).

Thereafter, we retrieved 10 CRGs (Table 2) from the
published studies [10]. We used the Clinical Proteomic
Tumor Analysis Consortium (CPTAC, https://proteomics
.cancer.gov/programs/cptac), developed by the National
Cancer Institute, and a cBioPortal (http://www.cbioportal
.org/) for the purpose of comparing the methylation
sequences, RNAseq, and proteomics data between the tumor
and nontumor tissues. The correlation between the CRGs
and lncRNAs was determined with the help of the Pearson
correlation analysis. Based on the values of the correlation
coefficient, jR2j > 0:1, and p < 0:05, the cuproptosis-
associated lncRNAs were regarded as statistically significant
lncRNAs. Furthermore, we conducted the functional analy-
sis with the help of the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) databases, by
implementing the R language ggplot2 package for assessing
the roles of all identified CRGs.

2.2. Designing the Cuproptosis-Associated Prognostic Gene
Signature.We used the Lasso-penalized Cox regression tech-
nique for developing the cuproptosis-associated prognostic
gene and lncRNA signatures. We used the formula described
below for predicting the risk score of every HNSCC patient:

risk score = 〠
n

i=1
exp × coefð Þ, ð1Þ

where exp denotes the gene and the lncRNA expression
value, while coef refers to the coefficient of a gene and
lncRNA in LASSO analysis. We also downloaded and stud-
ied the related clinical data of HNSSC patients. We classified
this data as low-risk (with a value lesser than the median
number) or high-risk (with a value higher than the median
number) groups. We used the Kaplan-Meier survival analy-
sis for assessing the survival rate. Then, we tested these two

signatures with the help of the univariate and multivariate
Cox regression models for determining if they were indepen-
dent prognostic factors or not. Finally, we used the receiver-
operator characteristics (ROC) and the respective areas
under the curve (AUC) for analyzing the performance of
the prediction models.

2.3. Assessing the Immunological Characteristics of TME. We
estimated the stromal, immune, and ESTIMATE scores
using the R package “ESTIMATE.” Immunological features
of the TME include the inhibitory immune checkpoints,
immunomodulators, and tumor-infiltrating immune cells
(TIICs). We acquired the data regarding the 92 immuno-
modulators such as receptors, chemokines, and MHC from
an earlier study [14]. We used the MCP-counter, Cibersort,
Cibersort-ABS, quanTIseq, xCell, TIMER, and EPIC algo-
rithms for assessing the TIIC infiltration level in TME
[15–19]. We also derived the effector genes of the TIICs
from multiple earlier studies [20].

From an earlier study, we retrieved a group of 10 inhib-
itory immune checkpoints that displayed therapeutic effi-
cacy [21]. A gene set that showed a T cell-inflamed gene
expression profile (GEP) and included 18 inflammatory
genes was downloaded from an earlier study (Table 3)
[22]. We also derived the Shannon Entropy data of the T cell
receptor (TCR) and B cell receptor (BCR) from an earlier
report [23].

We acquired the Microsatellite Instability (MSI) for
somatic mutation analysis from an earlier report [24]. We
assessed the tumor mutation burden (TMB) and the
mutant-allele tumor heterogeneity (MATH) data, which

Table 1: Baseline information of TCGA.

TCGA (N = 501)

Age (%)

19-39 18 (3.6)

40-49 58 (11.6)

50-59 145 (28.9)

60-90 280 (55.9)

Gender (%)
Female 134 (26.7)

Male 367 (73.3)

Stage (%)

Stage I-II 113 (22.6)

Stage III-IV 374 (74.7)

NA 14 (3.7)

Table 2: 10 cuproptosis-related genes.

FDX1 LIAS LIPT1 DLD DLAT PDHA1 PDHB MTF1 GLS
CDKN2A

Table 3: 18 inflammatory genes in T cell-inflamed gene expression
profile (GEP).

CCL5 CD27 CD274 CD276 CD8A CMKLR1 CXCL9 CXCR6
HLA-DQA1 HLA-DRB1 HLA-E IDO1 LAG3 NKG7 PDCD1LG2
PSMB10 STAT1 TIGIT
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comprised the wound healing, silent and non-silent muta-
tion rate, lymphocyte infiltration signature score, fraction
altered, and macrophage regulation from the somatic muta-
tion data for 465 tumor samples, with the help of the “maf-
tools” R package [24, 25].

The anticarcinoma immune response was reflected in
the cancer immunity cycle using 7 steps (Table 4). The fate
of tumor cells was determined throughout the procedure.
Thereafter, we used a single-sample gene set enrichment
analysis (ssGSEA) technique for assessing the gene expres-
sion of single samples [19].

2.4. Prediction of the Response of Comprehensive Therapy. By
constructing the ridge regression model based on Genomics
of Drug Sensitivity in Cancer (GDSC) (http://www
.cancerrxgene.org/) cell line expression spectrum and TCGA
gene expression profiles, the “pRRophetic” package in R
could be applied to predict the half-maximal inhibitory con-
centration (IC50) of chemotherapy in the high- and low-risk
groups of HNSCC patients and to infer the sensitivity of the
different patients [26].

2.5. Statistical Analysis. All statistical analyses were done on
R version 3.6.0. Continuous variables were compared
between the two groups using Wilcoxon rank sum test. Cat-
egorical variables were compared between the groups using
the chi-square test. The prognostic value of categorical vari-
ables was assessed using the log-rank test. For all analyses,
two-paired p value ≤ 0:05 indicated statistically significant
differences. ∗, ∗∗, ∗∗∗, and ∗∗∗∗ indicate p value ≤ 0:05,
<0.01, <0.001, and<0.0001, respectively.

3. Results

3.1. Identification of CRGs and Expression Profile in HNSCC.
The results showed that a majority of CRGs (8/10, 80%)
were expressed differentially in the tumor and adjacent non-
tumor tissues (Figures 1(a) and 1(b)), which was validated
(9/10, 90%) with the help of the CPTAP RNAseq
(Figure 1(c)) and CPTAC Proteomics data (Figure 1(d)).
Moreover, differential CDKN2A and LIAS methylation
levels were noted in the tumor and adjacent nontumor tis-
sues (Figure 1(e)). Next, we studied the genetic mutations
in the CRGs and identified CDKN2A as the gene that under-
went the most frequent mutations (Figure 1(f)).

3.2. Development of a Prognostic Cuproptosis-Related Gene
Model. We implemented the LASSO Cox regression analysis

for developing a prognostic model that was based on the
expression profile of the 10 abovementioned genes. They
identified a 7-gene signature based on the optimal λ value
(Figure 2(a)). Table 2 presents a list of the coefficients of
every gene.

We carried out the survival analyses using the values of
the risk score and observed that a higher risk score was asso-
ciated with a poor prognosis (p < 0:05, Figures 2(b), S1(a),
and S1(b)), which was further validated using the CPTAC
clinical data (Figure 2(c)). It has been reported the expres-
sion of CRGs may be correlated with disease grade in clear
renal cell carcinoma, hepatocellular carcinoma, and mela-
noma [27–29]. In our study, the high-risk group was signif-
icantly related to a higher clinical T stage (Figure 2(d)),
HPV-(Figure 2(e)), PD/SD (Figure 2(f)), higher pathologic
T stage (Figure S1(c)), a higher number of positive lymph
nodes (Figure S1(d)), and higher grade and shorter PFS
(Figure S1(e)) in the TCGA cohort. We determined the
risk factors for establishing a 7-CRG-based prognostic
model. Our results confirmed that the age, risk score, and
radiation therapy could be considered independent
prognostic factors for OS (Figures 2(g) and 2(h)). We used
the molecular signature for predicting the AUC values of
the 1-, 3-, and 5-year survival rates of the patients to be
0.605, 0.662, and 0.621, respectively (Figure 2(i)).
Thereafter, we combined the prognostic and clinical
pathology models for constructing a nomogram
(Figure 2(j)). This combination improved the predictive
value of OS over 1, 3, and 5 years and can be effectively
used for informing the clinical management about the ideal
predictive performance (Figures 2(k) and 2(l)) and clinical
advantages (Figure 2(m)). Furthermore, we used a heat
map library for determining the risk scores. While
assessing the predictive ability of the risk scores, we
classified the patients into the low-risk and high-risk
groups. We presented the gene heat maps and population
follow-up time in order of the ranking (Figure S1(f)). It
was noted that the survival rate of the patients decreased
with an increase in the risk score.

3.3. Functional Analyses in the TCGA Cohort. After the
above steps, we carried out the functional annotation using
GSEA and identified 5 enriched KEGG pathways. We noted
that the intestinal immune network for T cell receptor sig-
naling pathway, Fc epsilon RI signaling pathway, IgA pro-
duction, B cell receptor signaling pathway, and the primary
immunodeficiency pathways were subjected to enrichment
in the low-risk group (Figure 3(a)). Additionally, the Gene
Ontology (GO) terms such as immune response regulating
cell surface receptor signaling pathway, cell recognition, B
cell-mediated immunity, Fc epsilon receptor signaling path-
way, Fc receptor signaling pathway, Fc receptor-mediated
stimulatory signaling pathway, and the humoral immune
response were enriched in the HNSC samples and exhibited
a low-risk score (Figure 3(b)). Figure 3(c) presents the 5
CRGs that were enriched in the cancer-related pathway,
such as the NF-κB pathway. For determining the relation-
ship between the risk scores and immune status, we deter-
mined the enrichment scores of various immune cell sub-

Table 4: The seven steps of cancer immunity cycle.

The seven steps of cancer immunity cycle

Step 1 Release of cancer cell antigens

Step 2 Cancer antigen presentation

Step 3 Priming and activation

Step 4 Trafficking of immune cells to tumors

Step 5 Infiltration of immune cells into tumors

Step 6 Recognition of cancer cells by T cells

Step 7 Killing of cancer cells
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populations using ssGSEA. We assessed the immune land-
scape of 22 immune cell types in the HNSCC patients with
the help of the ssGSEA technique (Figure 3(d)). Comparing
the data in the TCGA cohort highlighted the varying num-
ber of activated CD4 T cells, activated B cells, activated
CD8 T cells, follicular helper CD8 T cells, effector memory
CD8 T cells, and natural killer cells in the two risk groups
(p < 0:05, Figure 3(e)). This study showed that the ESTI-
MATE and immune scores were inversely linked to the risk
scores (Figure 3(f)). For avoiding any errors in the calcula-
tions, we estimated the infiltration level of the TIICs using
7 algorithms, i.e., MCP-counter, Cibersort, Cibersort-ABS,
TIMER, xCell, quanTIseq, and EPIC (Figure 3(g)).

3.4. Prediction of the Tumor Immune Microenvironment
Using the Risk Model. Here, we noted that the risk signature
was inversely related to the B cell and CD8+ T cells effector
genes (Figures 4(a) and 4(b)). This risk signature was nega-
tively related to a majority of the immune checkpoint inhib-
itors, like TIGIT, LAIR, PDCD1, LAG3, KIR3DL1,
HAVCR2, IDO1, and CTLA-4 (Figure 4(c)). Additionally,
the risk signature exhibited a strong correlation with the T
cell-inflamed GEP in the HNSCC, which further showed
an increase in the low-risk score group (Figure 4(d)). The
anticancer immune response is reflected in the cancer
immunity cycle consisting of seven phases [14]. A majority
of the components in the immune cycle, like the priming
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Figure 1: Expression profile of cuproptosis-related genes. (a), (b) Box plots present the differentially expressed cuproptosis-related genes
between HNSCC and normal sample. (c), (d) Box plots validated the expression profile from CPTAC RNAseq and proteomics data. (e)
The methylation degree of CDKN2A and LIAS. (f) Mutation status.
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and activation (Step 3), as well as immune cell transporta-
tion to the tumors (Step 4) (recruiting monocytes, CD4 T
cells, Th2 cells, Th17 cells, and Tregs), were found to be
higher in the low-risk score group (Figure 4(e)).

The abilities of the TCR and BCR from the TCGA
high-grade serous ovarian cancer (HGSOC) cohort were
then examined. The mean TCR and BCR diversity values
were variable based on the risk signature, wherein the
low-risk score group showed the maximal diversity
(Figure 5(a)). Then, we investigated MATH, TMB, and
MSI data and observed that the patients in the high-
risk score group showed a higher MATH score (which
included the silent mutation rate, non-silent mutation
rate, wound healing, macrophage regulation, fraction

altered, and the lymphocyte infiltration signature score),
TMB score, and MSI score (Figures 5(b)–5(d)). We used
the TIDE algorithm for predicting the immune check-
point blockade (ICB) responses to help identify patients
who might benefit from immunotherapy. Compared to
the patients in the high-risk score group, patients belong-
ing to the low-risk group showed a significantly better
response to immunotherapy (Figures 5(e)–5(f)). Further-
more, we estimated the IC50 for every subtype using
the predictive model of gemcitabine, cisplatin, doxorubi-
cin, and docetaxel, similar to the technique proposed by
Wang [26]. The results of these experiments indicated
that the patients with a high-risk score were more sus-
ceptible to chemotherapy than the low-risk patients
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Figure 2: Construction of CRGs prognostic model and survival analysis. (a) The 7 CRGs used for construction of the gene risk model. (b),
(c) In TCGA and CPTAC cohorts, low-risk group patients had favorable OS rates compared with those in the high-risk group. (d–f)
Correlation analysis of risk score and clinical characteristics. (g), (h) Cox analyses, univariate and multivariate, showing the independent
prognostic significance of the risk signature in predicting the OS of HNSCC patients in the TCGA cohort. (i) The ROC curve for 1-, 3-,
and 5-year OS of HNSCC patients in the TCGA cohorts. (j) The predicted the 1-year, 3-year, and 5-year OS of HNSCC patients based
on the constructed nomogram. (k), (l) Calibration curve of the OS predicted by the nomogram model. The dashed diagonal line
represents the ideal nomogram. (m) DCA curve for 1- and 3-year prognosis.
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(gemcitabine: p = 9:7E6; cisplatin: p = 8:0E − 4; docetaxel:
p = 6:0E − 5; and doxorubicin, p = 3:1E3; (Figures 5(g)–
5(h)) and S2(a) and S2(b)).

3.5. Identifying the Cuproptosis-Associated lncRNAs Based on
their Prognostic Value in TCGA. Here, we established the
CRGs and lncRNA networks (Figure 6(a)). They identified
109 cuproptosis-related lncRNAs using the Pearson corre-
lation analysis ðjcorj > 0:1, Pp < 0:05Þ. Thereafter, they
used the univariate Cox regression and identified the 18
lncRNAs which showed an expression level that was asso-
ciated with the prognosis of the patients, thus demonstrat-
ing that they exhibited a prognostic predictive value
(p < 0:05, Figure 6(b)). The results showed that all
cuproptosis-related lncRNAs (11/11, 100%) were expressed

differentially between the tumor and adjacent nontumor
tissues (Figure 6(c)).

3.6. Classification Subtypes Using the Homogeneous
Cuproptosis-Related lncRNAs. We used an unsupervised
clustering technique for classifying 501 HNSCC samples
into two groups from the TCGA cohort (Figure 6(d)). A sur-
vival analysis, depending on the subtype, showed that cluster
2 was associated with a poor prognosis (Figure 6(e)).
Figure 6(f) depicts the expression of the 18 lncRNAs, as well
as risk scores and clinicopathological variables. In addition,
PD-L1 was significantly associated with most of the
lncRNAs mentioned above (Figure 6(g)). Patients with
TCGA in the cluster 2 had higher ratios of naive B cell
(p = 0:004), CD8 T cell (p < 0:001), and activated resting
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Figure 3: Correlation between the risk signature and immune microenvironment of HNSCC. (a)–(c) Enrichment plots from gene set
enrichment analysis (GSEA). (d) Relative proportion of immune infiltration in HNSCC patients. (e) Box plot shows the differential
immune infiltration between low-risk and high-risk groups. (f) Box plot present the differential stromal score, immune score, and
ESTIMATE score between low-risk and high-risk groups. (g) Relationship between the risk score and infiltration levels of severe TIICs,
as determined by seven separate algorithms.
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Figure 4: Immune-related functions and in high- and low-risk groups. (a) Relationship between risk score and B cell effector genes. (b)
Relationship between risk score and T cell effector genes. (c) Relationship between risk score and 10 inhibitory immune checkpoints. (d)
Differences in GEP (T cell-inflamed gene expression profile) between low- and high-risk groups. (e) Difference between low- and high-
risk groups at distinct stages of the cancer immunity cycle.
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CD4 T cells (p < 0:001) (Figures 6(h)–6(i) and S3(a)–S3(e)).
The ESTIMATE and stromal scores were lower in cluster 2
(Figures 6(j) and S3(f)).

3.7. Construction of Prognostic Cuproptosis-Related lncRNA
Signature. To construct an optimal cuproptosis-related
lncRNA risk model for predicting HNSCC prognosis, the
11 cuproptosis-related lncRNA were identified using LASSO
regression analysis (Figure 7(a)). Meanwhile, the 501
HNSCC patients were divided into the train group and test
group for internal verification. The coefficients of each
lncRNA are listed in Table 3.

The results for both the train and the test groups indi-
cated that the low-risk patients experienced a longer OS
period in comparison to the high-risk patients
(Figures 7(b) and 7(c)). We used the ROC curves for asses-
sing whether the expression profiles of cuproptosis-related
lncRNAs could be employed as a potential biomarker for
predicting the onset and progression of HNSCC. An AUC
of 0.731 was observed in the train group, while the test group
showed an AUC of 0.596, implying that this prognostic
model is specific and fairly sensitive (Figures 7(d) and 7(e)).

Figure 7(f) depicts the expression of 11 cuproptosis-
related lncRNAs, as well as clinicopathological variables,
clusters, and risk scores. Then, we carried out the univariate
and multivariate Cox regression analyses for determining if
the cuproptosis-related lncRNAs could be applied as an
independent prognostic model for assessing the OS in

HNSCC patients. The results indicated that the
cuproptosis-related lncRNA risk model was an effective
independent prognostic indicator in the test and the train
groups (Figures 7(g)–7(j)). Furthermore, the risk-score
values were quantified with the aid of the heat map library,
demonstrating that high-risk scores were related to shorter
survival times (Figures S3(g)–(h)). According to the
survival analysis, the low-risk patients showed a longer
survival time than the high-risk patients (Figures 8(a) and
8(b) and S4(a)–(i)). We further observed that the stage,
grade, immune scores, and clusters were differently
distributed between the high and low-risk groups, which
were further demonstrated in Figures 8(c)–8(d) and S5(a)–
S5(b). Additionally, we investigated the relationship
between the lncRNA risk model and immune cells and
observed that the risk model was negatively correlated to
the CD8 T cells, CD4 memory-activated T cells, and naive
B cells (Figures 8(e)–8(g)). However, it was positively
related to the CD4 memory resting T cells (Figure S5(c)).

4. Discussion

In the past decade, reports showed that mammalian cells are
harmed by essential trace metals. Metals have emerged as a
promising new method of killing cells other than via apopto-
sis. The new mechanism reported by Tsvetkov et al. suggests
that the use of copper may be particularly beneficial for can-
cer patients that are naturally resistant to apoptosis,
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Figure 5: Correlation of the risk score with immune scores, immunotherapy biomarkers, and conventional therapy. (a) Differences in TCR
and BCR diversity values between low- and high-risk groups. (b) Differences in MATH (including silent mutation rate, non-silent mutation
rate, fraction altered, wound healing macrophage regulation, and lymphocyte infiltration signature score) between low- and high-risk
groups. (c)–(d) Differences in MSI and TMB between low- and high-risk groups. (e) Differences in TIDE score between low- and high-
risk groups in the TCGA cohort. (f) The anticipated immunotherapy (TRUE/FALSE) response rate to anti-PD-L1 in low- and high-risk
groups in the TCGA cohort. (g)–(h) The IC50 of cisplatin and gemcitabine in the low-risk group were higher than those in the high-risk
group.
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Figure 6: Identification of cuproptosis-associated 18-lncRNAs with prognostic value and immune response in HNSCC patients. (a) A
coexpression network of cuproptosis-related lncRNAs and genes was constructed and visualized. (b) 18 independent prognostic predictor
lncRNA signatures with different expressions of HNSCC. (c) Box plot presents the differentially expressed cuproptosis-related lncRNAs
between HNSCC and normal sample. (d) 501 HNSCC samples from the TCGA cohort were classified into 2 clusters using an
unsupervised clustering method. (e) The Kaplan-Meier curve showed that patients in cluster 2 displayed a shorter overall survival than
those in cluster 1. (f) Heat map of the prognostic characteristics and clinicopathological correlation of cuproptosis-related lncRNAs. (g)
Correlation analysis of PD-L1 expression and 18 independent prognostic predictor lncRNA signatures. (h) Violin plot of immune-
infiltrating lymphocytes between cluster 1 and cluster 2. (i) Box plot presents the differentially infiltrated CD8 T cells between cluster 1
and cluster 2. (j) Differences in ESTIMATE score between cluster 1 and cluster 2.
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Figure 7: Construction of prognostic cuproptosis-related lncRNA signature. (a) The 11 cuproptosis-related lncRNA used for construction
of the gene risk model. (b)–(c) Survival analysis show the prognosis of high-risk and low-risk patients in the train group (b) and the test
group (c). (d)–(e) The ROC for risk score with OS for HNSCC cohorts in the train group (d) and the test group (e). (f) Heat map of the
prognostic characteristics and clinicopathological correlation based on lncRNA-related risk score. (g)–(j) Univariate and multivariate Cox
regression analyses for the lncRNA-related risk score model as an independent prognostic factor both in the train group (g), (h) and the
test group (i), (j).
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representing a new method to kill cancer cells as well as offer
a potential treatment for tumors [10].

In this study, we investigated the CRG expression pro-
files and TCGA dataset to determine the cuproptosis-
related prognostic gene signatures. A clinical dataset of
HNSCC patients from the CPTAC was used for validating
the signature. Moreover, we also identified the role of
cuproptosis-related genes and constructed a corresponding
lncRNAs signature. The study also examined TIICs, TMEs,
immune function, immune checkpoints, and immunother-
apy as the possible immune responses. Additionally, this
study investigated novel therapeutic targets based on the
potential and novel biomarkers of the cuproptosis-related
pathways in HNSCC.

Recent advances in high throughput DNA sequencing have
made it possible to fully characterize the somatic mutations of
cancer. As with other cancers associated with solid and
smoking-related cancers, HNSCC is formed by the accumula-
tion of a variety of genetic and epigenetic changes [30–32].
Our study demonstrates the mutation of cuproptosis-related
genes in HNSCC, with the greatest extent of mutations in
CDKN2A, suggesting a possible involvement in the develop-
ment and progression of HNSCC. A differential expression
was noted in eight out of 10 hub CRGs between the tumor
and normal tissues, as per the data derived from the TCGA
and CPTAC. These results suggested that 10 CRGs were associ-
ated with the development of HNSCC.

Then, we validated the accuracy of risk models in pre-
dicting the OS of HNSCC patients. The prognostic signature
was regarded as a trustworthy technique for anticipating the
prognosis of patients with HNSCC and showed satisfactory
prognostic discrimination in patients with clinical and path-
ological T stage, HPV status, positive lymph node number,
and clinical outcome.

Analysis of the novel gene signature and its potential
functions exhibited that KEGG was primarily enriched in

primary immunodeficiency, intestinal immune network for
IgA production, B cell receptor signaling pathway, and T cell
receptor signaling pathway. Several immune pathways were
observed in the low-risk group, indicating that the immune
system was activated.

In terms of immune infiltration, the count of the effector
memory CD8 T cells, activated B cells, activated CD8 T cells,
follicular helper CD8 T cells, activated CD4 T cells, and nat-
ural killer cells were significantly different between the high-
and low-risk groups. Interestingly, we also noted that the
patients in the high-risk group displayed higher TMB and
MSI scores. These findings suggested that the infiltration of
a few specific immune cell subtypes could considerably affect
the prognosis of HNSCC patients.

In HNSC, immune checkpoint blockade therapeutic
strategies are of great clinical significance [12]. The nega-
tive relationship between risk scores and immune check-
points, like TIGHT, PDCD1, CTLA4, LAG3, and IDO1,
showed that the patients having low-risk scores could have
a better immune microenvironment, which made them
more likely to respond to ICIs. We also noted that the
low-risk group responded to immunotherapy significantly
better than the high-risk group, which led to the conclu-
sion that patients with low risk were most likely to benefit
from immunotherapy.

LncRNA plays an important regulatory role in several
tumor types [33–36]. Most of the lncRNAs have a close
association with the genes coded in the vicinity of certain
mRNAs, and the interactions between the lncRNA-mRNA
pairs [37, 38]. Extensive research has been done on the
potential role of lncRNAs as novel biomarkers. Based on
the current situation where only a handful of lncRNAs
have been reported for HNSCC, our findings will offer a
new approach to developing lncRNAs-related therapies
for HNSCC. In our study, 109 cuproptosis-related
lncRNAs were identified for constructing the lncRNA
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Figure 8: Prognostic value of cuproptosis-associated lncRNA signature and the correlation with relevant immune cells. (a), (b) The Kaplan-
Meier curve showed that patients in different groups ((a) patients with different age; (b) patients with T stage) with high risk displayed a
shorter overall survival than those with low risk. (c), (d) Correlation analysis of lncRNA-related risk score and clinical characteristics.
(e)–(g) lncRNA-related risk score was inversely correlated with CD4 memory activated T cells (e), CD8 T cells (f), and naive B cells (g).
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signature. 11 hub lncRNAs were selected for designing the
model equation for risk assessment. This model was cali-
brated and validated using internal validation data. We
noted that the cuproptosis-related lncRNA risk model
was an effective and independent prognostic factor and
could be used as an early marker for predicting the onset
and progression of HNSCC with a good prediction perfor-
mance. Additionally, we determined a significant correla-
tion between the clinical-pathological features and risk
signature. Furthermore, the lncRNA risk score showed a
higher correlation with the tumor cells such as the CD4
memory-activated T cells, CD8 T cells, and naive B cells,
which indicated an active anti-tumor immune response.

Cuproptosis, a novel and cryptic cell death model, pre-
sents a new therapeutic approach for cancer treatment.
However, very few researchers have studied the relation-
ship between cuproptosis and other cell death models
[39]. In this study, we have integrated the cuproptosis bio-
markers for predicting the treatment outcomes in HNSCC
patients as well as identifying the potential therapeutic tar-
gets. The risk model we built is a novel cuproptosis-related
biomarker for HNSCC prognosis and screening. The risk
model demonstrates good prognostic predictive power. It
can help clinical doctors to differentiate between high
and low risk HNSCC patients to help individualize treat-
ment. Additionally, it also showed tight correlation with
TIICs, TME, immune function, immune checkpoints, and
immunotherapy as the possible immune responses. The
drawbacks of this study include that our prognostic model
was both constructed and validated with retrospective data
from public databases. A small sample size was used that
limited its statistical significance. In addition, the results
were not clinically verified. More prospective real-world
data should be warranted to verify its clinical utility. Gen-
erally, we have identified novel cuproptosis-related bio-
markers for HNSCC prognosis. These results could offer
insights that could help in developing accurate and robust
cancer therapy strategies.
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Figure S1. Survival analysis of CRG risk model. (a), (b)
Survival analysis showed the prognosis of high-risk and
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ease specific survival. (c)–(e) Correlation analysis of risk
score and clinical characteristics. (f) Distribution of
HNSCC patients based on the risk score. Risk curve and
scatter plot for the risk score and survival status of each
HNSCC case. The red and green dots represent death
and survival, respectively. Heat map showing the expres-
sion profiles of cuproptosis-associated seven-genes in the
high-risk group and the low-risk group. Figure S2. The
IC50 of common chemotherapy agents between gene-
related low- and high-risk groups. The IC50 of doxorubi-
cin (a) and docetaxel (b) in the low-risk group were higher
than those in the high-risk group. Figure S3. Evaluation of
infiltrating immune cells and distribution of HNSCC
patients based on the risk scores. (a)–(e) Box plot presents
the differentially naive B cells (a), CD4 memory resting T
cells (b), follicular helper T cells (c), memory activated
CD4 T cells (d), and Tregs (e) between cluster 1 and clus-
ter 2. (f) Differences in stromal score between cluster 1
and cluster 2. (g)–(h) Distribution of HNSCC patients
based on the risk score in the train group (g) and the test
group (h). Figure S4. Prognostic value of cuproptosis-
associated lncRNA signature. The Kaplan-Meier curve
showed that patients in different groups ((a) male patients;
(b) patients with M0; (c)–(d) patients with different grade;
(e)–(f) patients with different N; (g)–(h) patients with dif-
ferent stage) with high risk displayed a shorter overall sur-
vival than those with low risk. Figure S5. Prognostic value
and correlation of the risk score with immune cells. (a),
(b) Correlation analysis of lncRNA-related risk score and
clinical characteristics. (c) lncRNA-related risk score was
positively correlated with CD4 memory resting T cells.
(Supplementary Materials)
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