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Gliomas including astrocytomas, oligodendrogliomas, mixed oligoastrocytic, and mixed glioneuronal tumors are an important
group of brain tumors. Based on the 2016 WHO classification for tumors in the central nervous system, gliomas were classified
into four grades, from I to IV, and brain lower grade glioma (LGG) consists of grade II and grade III. Patients with LGG may
undergo recurrence, which makes clinical treatment tough. Stem cell-like features of cancer cells play a key role in tumor’s
biological behaviors, including tumorigenesis, development, and clinical prognosis. In this article, we quantified the stemness
feature of cancer cells using the mRNA stemness index (mRNAsi) and identified stemness-related key genes based on
correlation with mRNAsi. Besides, hallmark gene sets and translate factors (TFs) which were highly related to stemness-related
key genes were identified. Therefore, a recurrency-specific network was constructed and a potential regulation pathway was
identified. Several online databases, assay for transposase-accessible chromatin using sequencing (ATAC-seq), single-cell
sequencing analysis, and immunohistochemistry were utilized to validate the scientific hypothesis. Finally, we proposed that
aurora kinase A (AURKA), positively regulated by Non-SMC Condensin I Complex Subunit G (NCAPG), promoted E2F
target pathway in LGG, which played an important role in LGG recurrence.

1. Introduction

Gliomas are an important group of brain tumors, which
include astrocytomas, oligodendrogliomas, mixed oligoastro-
cytic, and mixed glioneuronal tumors. They often originate
from supporting glial or precursor cells in the brain [1, 2]. Gli-
omas account for 25.5% of all central nervous system (CNS)
tumors, and 80.8% of these are malignant [3]. According to

the 2016 WHO classification of tumors of the CNS, gliomas
were classified into several different types and four grades
from grade I to grade IV based on their phenotype and geno-
type. Brain lower grade glioma (LGG) consists of grade II and
grade III, commonly occurring in people from 30 to 40 years
old, with various symptoms and mass effects like invasions,
compression, or obstructions [4, 5]. Generally, patients with
LGG have various clinical outcomes: some patients follow a
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longer lifetime, while other patients undergo recurrence, dete-
rioration, and malignant transformation, which make the
therapy tough [6]. The overall survival rates at 5, 10, and 15
years of patients with LGG were 38%, 18%, and 1%, respec-
tively, and recurrence rates of grade I and grade II were
84.5% and 57.6% [7]. Previous research has shown that several
genes were altered in LGG, which played important roles in
clinical progress and prognosis. The alteration of IDH1/2
and chromosomes 1 and 19 has been wildly proved to have
close relationship with increased survival and recurrent rate
[8, 9]. However, the present information is far from enough
to understand the genetic regulation mechanism of biological
characteristics like recurrence and how that affects clinical
prognosis. Therefore, more researches still need to be done.

In silico techniques have been widely used in precision
medicine researches; it utilizes high-throughput screening tech-
niques based on genomics, transcriptomics, proteomics, meta-
bolomics, or multiomics to explore the biological mechanism
and potential treatment of diseases [10]. Rajendran et al. have
applied in silico techniques to the diagnosis and treatment of
various diseases, such as tuberculosis, dengue, and cancer
[11–14]. Besides, computational single-cell RNA sequencing
(scRNA-seq) analysis was very popular in studying the cellular
composition and heterogeneity within the tumors based on
transcriptomics [15–17]. Assay for transposase-accessible chro-
matin with high-throughput sequencing (ATAC-seq) and chro-
matin immunoprecipitation sequence (ChIP-seq) are valuable
tools to study the relationship between translational factors
and gene expression [18, 19]. What is more, in silico models
have been widely used to investigate biological events within
tumor tissues [20, 21].

It is widely accepted that cancer cells possess stem cell-like
features including loss of the differentiated phenotype and the
capacity to self-renew, which play a key role in tumorigenesis,
development, and clinical prognosis [22]. The stemness fea-
ture of cancer cells could be quantified using the mRNA stem-
ness index (mRNAsi) at the gene expression level [23]. In this
article, the differential expression genes (DEGs) between pri-
mary and recurrent LGGs were identified using edgeR, and
the mRNAsi of every DEGs was calculated by machine-
learning algorithm. Then, using weighted correlation network
analysis (WGCNA), DEGs were classified into several mod-
ules and genes in the same module were strongly correlated.
Phenotypic characteristics of each module were annotated
through coanalysis with hallmark gene sets, mRNAsi, and
modules. Genes with high correlation with mRNAsi were
defined as stemness-related key genes, and hallmark gene sets
remarkably correlated with modules were defined as key hall-
mark gene sets. Then, the univariate and multivariate Cox
proportional hazard regression was conducted to select prog-
nostic genes. To illuminate the contribution of immunity in
LGG recurrence, CIBERSORT estimation was applied to ana-
lyze the infiltrating immune cells in LGG. The coanalysis for
prognostic genes, differentially expressed translate factors
(TFs), and key hallmark gene sets was conducted using the
Pearson correlation analysis. Then, a recurrency-specific net-
work was constructed and a potential regulation pathway
was identified. Finally, to validate the scientific hypothesis,
single-cell sequencing analysis was conducted to validate the

distribution of key gene expression in LGG cells at a cellular
level, and immunohistochemistry was conducted to validate
the expression level of key TFs and key genes at the histological
level. What is more, assay for transposase-accessible chromatin
using sequencing (ATAC-seq), chromatin immunoprecipita-
tion sequence (ChIP-seq), andmultiple databases were applied.

Puromycin works on inhibiting protein synthesis by inter-
fering the translation process [24]; previous studies have
proven its antibiotic properties and its antitumor effects [25,
26]. In this study, ConnectivityMap (CMap) analysis was used
to screen the specific inhibitors of the potential pathway, and
puromycin was proven to be the specific inhibitor working
on the potential pathway in LGG, which provided a potential
treatment strategy for LGG.

Since the present information is not enough to understand
the genetic regulation mechanism and predict prognosis of
LGG patients, our study is aimed at constructing the
recurrent-specific regulation network of prognostic stemness-
related signatures to reveal the underlying stemness-related
mechanism and predict prognosis of LGGpatients. In our study,
we quantified the stemness feature of cancer cells using the
mRNA stemness index (mRNAsi) and identified stemness-
related key genes. Besides, we constructed a recurrency-specific
network and identified a potential regulation pathway to predict
the potential biological mechanism in LGG recurrence. In sum-
mary, our study may provide biological mechanism and poten-
tial therapy target for LGG recurrence.

2. Methods

2.1. Data Acquisition. The Cancer Genome Atlas (TCGA) data-
base (https://portal.gdc.cancer.gov/) is an authoritative and
freely accessible platform that provides comprehensive informa-
tion about cancer genetics [27, 28]. RNA sequencing data and
clinical information of 531 LGG samples were downloaded from
TCGA database, including 511 samples of the primary tumor
and 20 samples of recurrent tumor. Data of 2,498 immune genes
were downloaded from the ImmPort (https://www.immport
.org/) and MsigDB (https://software.broadinstitute.org/gsea/
msigdb/) database. Data of 318 transcription factors were down-
loaded from the Cistrome database (http://cistrome.org). 50
hallmark gene sets were downloaded from the Molecular Signa-
tures Database (MSigDB) v7.0 (https://www.gsea-msigdb.org/
gsea/msigdb/genesets.jsp?collection=H) [29]. Additionally, to
validate the gene expression level on the cellular level, the
single-cell sequencing (scRNA-seq) data was downloaded from
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih
.gov/geo/query/acc.cgi?acc=GSE164041).

2.2. Identification of Differentially Expressed Genes. Based on
the edgeR package, DEGs, including differentially expressed
TFs, between samples of the primary tumor and recurrent
tumor were screened out. Two criteria must be fitted at the
same time: the absolute value of log2 fold change ðlog2FCÞ >
1, and the false discovery rate ðFDRÞ < 0:05. To clarify the
annotations of DEGs, the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were performed.
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2.3. Acquisition of the mRNA Stemness Index. The mRNA
stemness index (mRNAsi) of 536 primary and recurrent
LGG samples was obtained by using the one-class logistic
regression machine learning algorithm (OCLR) following
Malta et al.’s method [23].

2.4. Weighted Gene Coexpression Network Analysis. Weighted
correlation network analysis (WGCNA) has been widely used
to build and summarize modules consisting of high intercon-
nected genes [30]. DEGs were classified into several modules
using the WGCNA R package, and a gene coexpression net-
work was constructed using Pearson correlation analysis. Here,
a soft threshold was utilized to define the power parameter. The
principal component of a specific module represented the gene
expression profiling in the module, and module eigengenes
(MEs) were defined as the principal component. Module mem-
bership (MM) showed the correlation between the gene expres-
sion profile of a given module and its module eigengenes.

To find the biological phenotype of each module, coana-
lyses for hallmark gene sets, mRNAsi, and modules were con-
ducted. Gene significance (GS) was a measurement for the
correlation between phenotypes and genes, and the higher the
absolute value of GS, the greater the significance of the biologi-
cal correlation between phenotypes and genes. The module sig-
nificance (MS) was a measurement of the correlation between
modules and phenotypes, and it was obtained by calculating
the average absolute GS of all genes in a specific module.

Stemness-related key genes were selected from modules
for further analysis. The criteria for selecting were as follows:
the absolute value of GS between mRNAsi and genes was
more than 0.50, and the MM was more than 0.50. Also,
according to the GS with key genes, the key hallmark gene sets
were selected as the potential pathway for further analysis.

2.5. Construction of Multivariate Prognosis Model. Firstly,
the univariate Cox proportional hazard regression was used
to select prognostic genes, and stemness-related key genes
with HR > 1 and P value < 0.5 were considered as prognostic
genes. The Least Absolute Shrinkage and Selection Operator
(LASSO) regression was used to eliminate overfitting. And
for each sample with LGG, the risk score was calculated by
the following formula:

Risk score = C1 × DEG1 + C2 × DEG2 + C3 × DEG3⋯ +Cn × DEGn:
ð1Þ

For every single sample, “n” represented the number of
DEG in the multivariate model, “C” represented the regres-
sion coefficient of each DEG, and DEGn represented the
expression level of the Nth DEG in the corresponding sam-
ple. According to the median risk score, all patients were
classified into two groups: high-risk and low-risk groups.
Receiver operating characteristic (ROC) curve was con-
ducted to assess the accuracy. The Kaplan-Meier curve was
conducted to predict the prognosis value of the risk score.
Besides, univariate Cox proportional hazard regression was
performed to validate the prognostic value of the risk score
and other factors like age, gender, and race. Multivariate

Cox proportional hazard regression was conducted to assess
whether the risk score was an independent prognostic factor.

The correlation between the risk groups and clinical char-
acteristics was analyzed, and the χ2 test was applied to the cen-
sor group and immune subtype group. What is more, to
further explore the potential downstream pathway of patients
in the high-risk group, the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were performed, and by using GSEA, the expression
levels of 50 hallmark gene of cancers, KEGG pathway, and
GO pathway were identified.

2.6. CIBERSORT Estimation to Analyze the Infiltrating
Immune Cells. CIBERSORT algorithm was used to identify
the infiltrating immune cells and immune function in LGG
cells [31]. After the CIBERSORT processing, the inclusion cri-
teria were P < 0:05, and the eligible samples were used for fur-
ther studies. The Wilcoxon rank test was used to identify
immune cells, which were distributed and significantly differ-
ent between patients with high risk and low risk, and the cor-
relation of those different distributed immune cells and the
overall survival of patients with LGG were explored using
Kaplan-Meier analyses.

2.7. Identification of Potential Signal Axis. Using GSVA, the
quantification of gene expression in 50 hallmark gene sets of
each sample was calculated. Then, differential expression

Table 1: Clinical data in LGG.

Variables Total patients (N = 536)
Age (years)

Mean ± SD 42:67 ± 13:32
Median (range) 40.00 (14-87)

Gender

Female 242 (45.23%)

Male 293 (54.77%)

Race

American Indian or Alaska Native 1 (0.18%)

Asian 8 (1.50%)

Black or African American 22 (4.11%)

Not reported 10 (1.87%)

White 494 (92.34%)

Future time (days)

Mean ± SD 1004:83 ± 990:15
Median (range) 714 (1–6423)

NA 5

Primary or recurrent

Primary 516 (96.27%)

Recurrent 20 (3.73%)

IDH1_mutation

Yes 127 (23.69%)

No 315 (58.77%)

NA 94 (17.54%)

Abbreviations: SD: standard deviation; NA: not available.
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analysis between primary and recurrent patients was con-
ducted. Based on these 50 hallmark gene sets, Gene Set
Enrichment Analysis (GSEA) was applied to investigate the
expression level of each hallmark gene set in primary and
recurrent samples [32], and upregulated hallmark gene sets
in recurrent samples were obtained. Finally, the intersection
of differential expressed hallmark gene sets in GSVA, GSEA,
and module phenotypic traits was defined as the key path-
way for the following analysis.

The Pearson correlation analysis was applied between key
pathways, TFs, and prognostic genes. Eventually, the regulatory
network among TFs, prognostic genes, and key pathways was
constructed. What is more, a protein-protein interaction net-
work (PPI) was obtained by using the STRING database [33].

2.8. Connectivity Map Analysis. To clarify the systematic con-
nection between potential pathways and drug actions, the Con-
nectivity Map (build 02) (https://portals.broadinstitute.org/
cmap/) was used to screen out the inhibitors of the potential
pathway [34]. Differentially expressed mRNAs (DEmRNAs)
identified in our study using WGCNA and DEGs in 33 TCGA
pancancer were input as queries into CMap. CMap instance
was measured by an enrichment score, which ranged from -1
to 1. When enrichment score was more close to -1, those
queries were anticorrelated to the drug action, which means

the drug could be considered as a promising therapeutic agent
that acts as a specific inhibitor of the key pathway [35, 36].

2.9. ATAC-seq and ChIP-seq Validation. ATAC-seq is a
powerful approach to clarify genome-wide chromatin acces-
sibility, based on the use of Tn5 transposase with adaptors to
fragment open chromatin and tag sequencing adaptors in
genome [37]. In this study, ATAC-seq data of LGG samples
were downloaded from the chromatin accessibility land-
scape of primary human cancers in TCGA database
(https://gdc.cancer.gov/about-data/publications/ATACSeq-
AWG) to explore the accessible chromatin of LGG cells and
the specific interactive location of key TFs and prognostic
key genes [18], and the binding relationship between the
key TFs and prognostic key genes was performed using Gviz
package [38, 39]. What is more, chromatin immunoprecipi-
tation sequencing (ChIP-seq) data was downloaded from the
Cistrome database to validate the directly binding relation-
ship between key TFs and key genes [19].

2.10. Single-Cell RNA Sequencing Analysis. To validate the
expression level and distribution of the key genes in LGG cells
on cellular level, the single-cell sequencing (scRNA-seq) data
was downloaded from Gene Expression Omnibus (GEO)
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164
041). We used the Seurat pipeline to analyze those data [15].

Gene expression profiling of LGG available from TGCA database

Screening DEGs by edgeR

Finding differential
expressed TFs

Selecting the most related
hallmark gene sets 

Selecting the up-regulated and
differential expressed hallmark

gene sets by GSEA/GSVA analysis

Defining different modules by
WGCNA analysis

Annotating the phenotypes of modules, and calculating ME/MM/GS/MS

Defining the key hallmark gene sets

Immunohistochemistry
validation

ATAC-seq analysis, ChIP-seq analysis,
and other multidimension validation

Single cell sequencing
validation

Finding potential inhibitors of
potential pathway using CMap

Constructing the regulatory network using co-analysis

Downloading TFs
from cistrome

database

Calculating mRNAsi of
DEGS by OCLR

Infiltrating immune cells
identification by

CIBERSORT
estimation

Screening the prognostic
genes by

univariate/multivariate cox
regression analysis

Selecting the key genes by
mRNAsi

Downloading Hallmark
gene sets from MSigDB

Figure 1: Work flowchart of the study.
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Figure 2: Differentially expressed genes (DEGs) in primary and recurrent low-grade glioma (LGG): (a) mRNA stemness index (mRNAsi) of
DEGs in primary and recurrent LGG samples and their demographics data; (b) the heat map of gene expression level in primary and
recurrent gliomas; (c) the volcano plots showed DEGs in primary versus recurrent samples; (d, e) the GO and KEGG enrichment
analysis for DEGs to clarify the annotation; BP means biological process, CC means cellular component, and MF means molecular function.
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After normalizing the data by removing cells that did not meet
the criteria and identifying variable genes using “vst” method,
principal component analysis (PCA) was applied to filter genes
based on the expression level of variable genes, and top 15 PCs
were selected and the Uniform Manifold Approximation and
Projection (UMAP) method was utilized to reduce dimension
and identify different cell clusters. Furthermore, each cluster
was annotated using the SingleR method [40] and CellMarker
database [41].

2.11. Immunohistochemistry Validation. Paraffin-embedded
and fixed tissues of diagnostic biopsies from LGG patients
(primary patients and recurrent patients) were collected and
were incubated with antibodies overnight at 4°C, the anti-
bodies came from Abcam, and the contribution was 1 : 300.
Then, after three times washing with PBS, those tissues were
incubated with secondary antibody for 1 hour. The slides were
stained with 3,3-diaminobenzidine tetrahydrochloride (DAB),
and the nuclei were counterstained with haematoxylin. Immu-
nostaining level was accessed in each slide to detect the expres-
sion level of AURKA and NCAPG in tumor cells between
primary patients and recurrent patients. Besides, immunohis-
tochemistry staining data of brain normal tissues and gliomas
tissues were downloaded from the Human Protein Atlas
(https://www.proteinatlas.org).

2.12. Multidimensional Validation. To further validate the
hypothetical signal pathway from several aspects, the top five
genes from the key pathways were selected by GeneCards

(https://www.genecards.org/). Then, correlations between
LGG and those genes in the scientific hypothesis were fur-
ther validated by multiple online databases including Gene
Expression Profiling Interactive Analysis (GEPIA) [42],
Oncomine [43], cBioPortal [44], UALCAN [45], LinkedO-
mics [46], and TISIDB [47].

3. Results

3.1. Identification of Differentially Expressed Genes. The RNA
sequencing of 536 LGG patients was obtained from TCGA
database. All patients’ clinical information was summarized
in Table 1. The analysis process is summarized in Figure 1.

DEGs were screened out by using edgeR, and 2,147 DEGs
were found. The mRNAsi (Figure 2(a)), the heat map of gene
expression information (Figure 2(b)), and the volcano plots of
DEGs (Figure 2(c)) were presented. What is more, the GO
(Figure 2(d)) and KEGG (Figure 2(e)) enrichment analyses
for DEGs were conducted. The results showed that pattern
specification process (BP, gene ratio = 0:081, P < 0:001, count
= 93), collagen-containing extracellular matrix (CC, gene ratio
= 0:061, P < 0:001, count = 73), and RNA polymerase II-
specific (MF, gene ratio = 0:064, P < 0:001, count = 72) were
the most remarkable GO items, and neuroactive ligand-
receptor interaction (gene ratio = 0:097, P < 0:001, count = 51)
was the most remarkable KEGG item.

3.2.WGCNA.DEGs were divided into eight modules based on
WGCNA package (Figures 3(a) and 3(b)). The results of
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Figure 3: Weighted correlation network analysis (WGCNA) of DEGs: (a, b) the DEGs were divided into eight modules based on WGCNA;
each colors represented a module; (c) co-expression analysis for 50 hallmark gene sets, mRNAsi, and modules.
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coexpression analysis for 50 hallmark gene sets, mRNAsi, and
modules are presented in Figure 3(c). On the basis of correla-
tion with mRNAsi, genes in all modules except green and grey
modules were selected as stemness-related key genes for the
subsequent analysis. Moreover, six hallmark gene sets which
were remarkably correlated with those modules were selected
as the key hallmark gene sets, including hallmark E2F targets,
hallmarkmyc targets V2, hallmark G2M checkpoint, hallmark
DNA repair, hallmark unfolded protein response, and hall-
mark spermatogenesis.

3.3. Construction of Multivariate Prognostic Model. The heat
map (Figure 4(a)) and volcano (Figure 4(b)) plot of stemness-
related key genes were displayed. And the prognostic key genes
were selected using univariate Cox regression analysis, and the
results were presented in the forest plot (Figure 4(c)). Then,
the multivariate Cox regression analysis was conducted for
prognostic genes to obtain the risk score of each patient
(Figure 5(a)), and the risk line plot (Figure 5(b)) illuminated
the distribution of patients in low-risk and high-risk groups.

To assess the accuracy, the area under the curve (AUC)
of the ROC curve was 0.984 (Figure 5(c)). The Kaplan-
Meier survival analysis (Figure 5(d)) showed a significant
difference between low-risk and high-risk groups, and the
high-risk group had a worse prognosis. The univariate Cox

regression (Figure 5(e)) (HR = 276:97, 95% CI (81.653-
939.550), P < 0:001) showed a high prognostic value of risk
score. Then, the multivariate (Figure 5(f)) (HR = 1:063,
95% CI (1.047-1.080), P < 0:001) Cox regression confirmed
that the risk score was an independent prognostic factor.

According to the clinical risk analysis, patients in high-risk
group tend to have a worse prognosis (P < 0:001) (Figure 6(a)),
patients older than 65 and patients with IDH mutation were
more likely to belong to the high-risk group (Figure 6(a)).
The χ2 test of the relationship between patients’ outcome and
the risk group and the worse outcome was significantly related
to the high-risk group (Figure 6(b)). As the χ2 test result
showed (Figure 6(c)), the C3 immune subtype group of LGG
was positively correlated with high risk, and the correlation
was statistically significant (P < 0:001).

The GSEA of hallmark genes of cancer showed that allo-
graft rejection, E2F targets, epithelial mesenchymal transition,
G2M checkpoint, and inflammatory response were enriched
in the high-risk group. Also, the GSEA of GO pathway dis-
played that adaptive immune response, adaptive immune
response based on somatic recombination of immune recep-
tor, antigen receptor-mediated signaling pathway, and blood
vessel morphogenesis were enriched in the high-risk group.
The GSEA of KEGG pathway analysis showed that cell cycle,
cytokine-cytokine receptor interaction, ECM receptor
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Figure 4: Identification of prognosis-related key genes. (a) The heat map plot showed the expression level of stemness-related genes in
primary and recurrent LGG. (b) The volcano plot showed different expressed genes of stemness-related genes. (c) The forest plot showed
the results of the univariate Cox regression analysis, and 11 stemness-related genes were identified as prognosis-related key genes.
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interaction, focal adhesion, and systemic lupus erythematosus
were enriched in the high-risk group (Figure 6(d)).

3.4. Infiltrating Immune Cells in LGG. The results of distribu-
tion of 22 immune cells identified by CIBERSORT estimation
are displayed in Figure 7(a); several immune cells, including
CD8 T cells, CD4 memory resting T cells, M0 macrophages,

and M1 macrophages had a significantly higher fraction in
the high-risk group (P < 0:001) (Figure 7(b)). Specifically,
monocytes had a lower fraction in the high-risk group
(P < 0:001). For immune function, lots of that scored signifi-
cantly higher in the high-risk group, which includes CD8+ T
cells, inflammation promotion, macrophages, mast cells, T cell
coinhibition, and T cell costimulation (Figure 7(b)).
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Figure 5: Model validation of the risk score as an independent prognostic factor of LGG recurrency. (a) Risk score of each patients was
obtained using multivariate Cox regression analysis for prognosis-related genes. (b) The risk line plot showed the distribution of patients
between low- and high-risk groups according to risk score. (c) The area under curve (AUC) of ROC curve was 0.838, indicating a good
predict power of the model. (d) Overall survival analysis of patients with LGG between low- and high-risk groups; the high-risk group
had a worse clinical outcome. (e) The univariate Cox regression model showed risk score was significantly related prognosis. (f) The
multivariate Cox regression model confirmed that the risk score of prognosis-related genes was an independent prognostic factor of LGG
recurrency.

12 Disease Markers



Alive

> 65

< = 65

Dead

Gender

Gender

Male

Race

Race

IDH_mutation⁎

IDH_mutation⁎

YES
Not reported

No
Risk

Risk

Low

High

American indian or alaska native

Asian
Black or african amercian

Not reported

Female
Age⁎

Age⁎

Censor⁎⁎⁎

Censor⁎⁎⁎

White

(a)

506 TCGA patients

Alive

Risk
groups

Risk-low
(n = 253)

Alive
(n = 380, 75%)

28(11%)225(89%)

Risk-high
Risk-low

98(39%)155(61%)

Dead
(n = 126, 25%) P-value

0.001
Risk-high
(n = 253)

Dead

Censor group (n = 506)

(b)

Risk
groups

C4 C5

Risk-low
(n = 252)

119(47%)123(49%)9(4%)

0.001

229(91%)23(9%)0(0%)

C4
(n = 146, 29%)

Subtype group (n = 503)

C5
(n = 348, 69%)

C3
(n = 9, 2%) P-value

Risk-high
(n = 251)

Risk-high
Risk-low

503 TCGA patients

C3

(c)

Figure 6: Continued.

13Disease Markers



Furthermore, the survival analysis showed that the higher
fraction of macrophages, M1 macrophages, CD4 memory
resting T cells, and CD8 T cells in LGG was associated with
worse clinical prognosis, and the higher fraction of monocytes
in LGG was associated with better clinical prognosis. The
higher score of CD8+ T cells and inflammation promotion
in LGG was associated with worse clinical prognosis
(Figure 7(c)).

3.5. Identification of Potential Signal Axis. Results of hallmark
gene set expression levels were presented in a heat map plot
(Figure 8(a)). The result of the quantification of gene expres-
sion of hallmark gene sets by GSVA is displayed in
Figure 8(b), and 46 significantly expressed hallmark gene sets
were screened out. 32 significantly differential expressed TFs
were identified based on coexpression analysis, and the results
were shown in the heat map (Figure 9(a)) and the volcano plot
(Figure 9(b)). The heat map in Figure 9(c) displayed the coa-
nalysis results for those key TFs, prognostic genes, and hall-
mark gene sets. An intersection model was constructed
within the GSVA, GSEA, and WGCNA, and the result was
shown in the Venn plot (Figure 9(d)). What is more, a net-
work for TFs, prognostic key genes, and hallmark gene sets
was constructed (Figure 9(e)). The most significant TF-DEG
pair was NCAPG-AURKA (correlation coefficient = 0:914, P
< 0:001), and the DEG-hallmark gene set pair was AURKA-
E2F targets (correlation coefficient = 0:669, P < 0:001).

Therefore, a scientific hypothesis was put forward:
AURKA was upregulated by NCAPG, then promoting the
E2F target pathway, which might be a key biological mecha-
nism in LGG recurrence.

3.6. ATAC-seq and ChIP-seq Validation. Multiple open chro-
matin loci on different chromosomes of LGG cells were identi-

fied (Figure 10(a)), and the promoter area took the largest part
(Figure 10(b)). Also, the distribution of binding loci according
to transcription start sites (TSS) was displayed (Figure 10(c)).
The transcripts per million (TPM) of AURKA and NCAPG
had a notably positive correlation (R = 0:89, P < 0:001)
(Figure 10(d)), and strong ATAC-seq binding peaks of
AURKA and NCAPG in LGG cells were found (Figures 10(e)
and 10(f)), indicating that those regions may act as potential
interactive areas and that NCAPG upregulates AURKA and
influences the biological behavior of LGG cells. Furthermore,
the ChIP-seq results revealed the directly binding relationship
of DNA fragment between AURKA and NCAPG (Figure 11).

3.7. Single-Cell RNA Sequencing Validation. We took the
single-cell sequencing analysis to detect the expression pattern
of AURKA, NCAPG, TP53, CCND1, CDK4, RB1, and E2F1 in
the cellular level, and the results are displayed in Figure 12. The
results showed that those genes were expressed in different
levels in 7 cell types including astrocyte, endothelial cell,
malignant cell, malignant cell/mesenchymal, malignant cell/
proneural, myeloid, and oligodendrocyte. CDK4 and TP53
were highly expressed in malignant cell/proneural, and RB1
was expressed in all 7 cell types, especially highly expressed
in myeloid.

3.8. Immunohistochemistry Validation. Immunohistochemical
staining results (Figure 13) showed that AURKA and NCAPG
expression levels in recurrent LGG patients were much higher
than those in primary LGG patients, and the Pearson correla-
tion coefficient between AURKA and NCAPG was 0.642
(P < 0:001).

3.9. Connectivity Map Analysis. To explore the connection
between the potential axis and drug action, the CMap anal-
ysis was conducted. The heat map (Figure 14) showed that
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Figure 6: Identification of clinical feature between the low- and high-risk score groups: (a) Clinical risk analysis between the low- and high-
risk groups; the patients in the high-risk group had a worse prognosis; (b, c) the χ2 test of the relationship between patients’ outcome and the
risk group and between the immune subtype group and risk group and the worse outcome was significantly related to the high-risk group;
the C3 immune subtype group was positively correlated with the high-risk group. (d) The GSEA of hallmark genes, GO pathway, and KEGG
pathway.
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MG-262, valinomycin, and puromycin could be promising
therapeutic agents in LGG.

3.10. Multidimensional Validation. Based on GeneCards, the
top five genes in E2F targets were E2F1, TP53, RB1, CCND1,
and CDK4. The summarized results of multidimensional
validation are displayed in Table 2, and detailed information
is displayed in Figures S1–S5.

AURKA as the stemness-related genes and its upstream
transcription factor NCAPG were proven to have a higher
expression level in tumor samples than normal sample in
the Oncomine database (Figure S2). The higher expression
levels of AURKA (Figure S3, P < 0:001; Figure S5, P < 0:001)
and NCAPG (Figure S3, P < 0:001; Figure S5, P < 0:001)
were also associated with higher grades in LGG, which was
proven by UALCAN (Figure S3) and TISIDB (Figure S5).
From the clinical level, AURKA (Figure S1H, HR ðhighÞ =
2:6, P < 0:001; Figure S3, P < 0:001; Figure S4, P < 0:001;
Figure S5, P < 0:001) and NCAPG (Figure S1G, HR ðhighÞ
= 2:9, P < 0:001; Figure S3, P < 0:001; Figure S4, P < 0:001;
Figure S5, P < 0:001) showed a positive correlation with

worse clinical outcome in the results form GEPIA
(Figure S1), UALCAN (Figure S3), LinkedOmics (Figure S4),
and TISIDB (Figure S5).

The top five genes in the downstream pathway were also
identified to have a close association with LGG. In the GEPIA
and Oncomine database, TP53 (Figure S1D, Figure S2), RB1
(Figure S1E, Figure S2), CCND1 (Figure S1F, Figure S2), and
CDK4 (Figure S1G, Figure S2) showed a higher expression
level in tumor samples than normal samples in LGG. The
UALCAN and TISIDB databases have proven that the
higher expression of E2F1 (Figure S3, P < 0:001; Figure S5, P
< 0:001), TP53 (Figure S3, P < 0:001; Figure S5, P < 0:001),
RB1 (Figure S3, P < 0:001; Figure S5, P < 0:001), CCND1
(Figure S3, P < 0:001; Figure S5, P < 0:001), and CDK4
(Figure S3, P < 0:001; Figure S5, P < 0:001) was also related
to higher grade in LGG. What is more, in GEPIA,
UALCAN, LinkedOmics, and TISIDB databases, E2F1
(Figure S1I, HR ðhighÞ = 2:9, P = 0:0014; Figure S3, P <
0:001; Figure S4, P < 0:001; Figure S5, P < 0:001) showed a
positive correlation with worse clinical outcome. As for TP53
and RB1, data form GEPIA and LinkedOmics showed that
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Figure 7: Identification of infiltrating immune cells in LGG and the relationship between immune cells and the risk group: (a) the
distribution of 22 immune cells in LGG which was identified using CIBERSORT estimation; (b) the score of immune function and the
fraction of immune cells between the high- and low-risk score groups; T cell CD8, CD4 memory resting T cells, and M0 macrophages.
M1 macrophages had significantly higher fraction in the high-risk group (P < 0:001). Monocytes had lower faction in the high-risk group
(P < 0:001); CD8+ T cells, inflammation promotion, macrophages, mast cells, T cell coinhibition, and T cell costimulation scored
significantly higher in the high-risk group; macrophages, M1 macrophages, CD4 memory resting T cells, and T cell CD8 scored
significantly high in the low-risk group; (c) the overall survival analysis of monocytes, macrophages, M1 macrophages, inflammation
promotion, CD4 memory resting T cells, T cell CD8, and CD8+_T_cells between the high- and low-risk score groups; the higher
fraction of macrophages, M1 macrophages, CD4 memory resting T cells, and T cell CD8 in LGG was associated with worse clinical
prognosis, and the higher faction of monocytes in LGG was associated with better clinical prognosis. The higher score of CD8+ T cells
and inflammation promotion in LGG was associated with worse clinical prognosis.
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Figure 8: The expression levels of hallmark gene sets in primary and recurrent LGG. (a) The heat map plot showed the expression levels of
50 hallmark gene sets in primary and recurrent LGG. (b) The quantification of hallmark gene set expression using GSVA; 46 significantly
expressed hallmark gene sets were screened out.
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Figure 9: Continued.
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TP53 (Figure S1J, HR ðhighÞ = 1:6, P = 0:0072; Figure S4, P
< 0:001), RB1 (Figure S1K, HR ðhighÞ = 1:7, P = 0:0025;
Figure S4, P < 0:001) had a positive correlation with worse
clinical outcome, and other databases did not show obvious
relation between these two genes and clinical outcome in
LGG. For CCND1 and CDK4, data from UALCAN,
LinkedOmics, and TISIDB showed that CCND1 (Figure S3, P
= 0:002; Figure S4, P < 0:001; Figure S5, P < 0:001), and
CDK4 (Figure S3, P = 0:002; Figure S4, P < 0:001; Figure S5,
P < 0:001) had a positive correlation with worse clinical
outcome.

4. Discussion

LGG is an important group of primary tumors in the CNS that
mainly affects young people aged 20-40 years old [5]. They
account for about 3%-15% among all brain tumors [5]. LGG

was classified into several groups like astrocytoma, oligoastro-
cytoma, and oligodendroglioma, based on their histologic fea-
tures [48]. LGG often grows slowly. Patients with LGG
usually have long-term neurological symptoms, and more than
80% suffer seizures. However, it is worth mentioning that some
patients with LGG do not have any symptoms [5]. Despite its
slow growth and a long lifetime, most of patients will suffer
recurrence and metastasis [6]. Previous studies have proven
the importance of the alteration of IDH1/2 and chromosomes
1 and 19 in long-term survival and a high recurrence rate [8, 9].
But the specific biological mechanism is still unclear, and that
makes clinical treatment tough. Therefore, further researches
are very necessary.

In this study, differences between primary and recurrent
LGG samples were analyzed to find out the potential regula-
tion mechanism of LGG recurrence and provide new clues
for future researches and clinical practice. Univariate and
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Figure 9: (a) The heat map showed the expression level of 38 differently expressed TFs in primary and recurrent LGG. (b) The volcano plot
showed different expressed genes of 38 TFs. (c) The heat map showed the coanalysis for key TFs, prognostic genes, and hallmark gene
sets.(d) The Venn plot showed the result of the intersection model among GSVA, GSEA, and WGCNA. (e) A regulated network for 8
TFs, prognostic key genes, and 10 hallmark gene sets.
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Figure 10: ATAC-seq validation: (a) identification of open chromatin loci in 24 chromosomes of LGG cells; each picks represented an open
chromatin loci; (b) identification of pick types (including genic, intergenic, exon, upstream, intron, and distal intergenic); (c) the distribution
of binding loci according to transcription start sites (TSS); (d) the transcripts per million (TPM) of AURKA and NCAPG had a notably
positive correlation (R = 0:89, P < 0:001); (e, f) the strong binding peaks of AURKA and NCAPG were found in LGG.
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Figure 11: ChIP-seq result revealed the directly binding relationship of DNA fragment between AURKA and NCAPG.
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multivariate Cox proportional hazard regression analyses were
utilized to screen out prognostic key genes. Pearson correla-
tion analyses were conducted to select significantly correlated
TF and downstream signaling pathway. Then, a recurrence-
specific network was constructed and a potential regulatory
pathway was identified: NCAPG worked as TF upregulating
prognostic key gene AURKA and drove E2F target pathway.
Single-cell sequencing analysis and immunohistochemistry
validated the expression of AURKA and NCAPG on a cellular
level and histological level, respectively. What is more, several
online databases were used to testify the accuracy of the scien-

tific hypothesis. Based on data in ChIP-Atlas and the results of
ATAC-seq analysis, AURKA might be a potential target gene
of NCAPG. Besides, the STRING database also showed a
potential relationship between NCAPG and AURKA. Accord-
ing to Oncomine, NCAPG, AURKA, TP53, RB1, CCND1, and
CDK4 were upregulated in tumor samples compared to para-
tumor samples. UALCAN and TISIDB showed that the higher
expression of all these 7 genes was associated with a higher
grade of LGG. Moreover, based on several online databases,
upregulated expression of these 7 genes all displayed high cor-
relation with worse clinical outcome of patients with LGG.
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Figure 12: Single-cell RNA sequencing validation to detect the expression pattern of AURKA, NCAPG, TP53, CCND1, CDK4, RB1, and
E2F1 in the cellular level; those genes expressed in 7 cell types including astrocyte, endothelial cell, malignant cell, malignant cell/
mesenchymal, malignant cell/proneural, myeloid, and oligodendrocyte. CDK4 and TP53 are highly expressed in malignant cell/
proneural; RB1 is expressed in all 7 cell types, especially highly expressed in myeloid.
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Non-SMC Condensin I Complex Subunit G (NCAPG) is a
chromosomal condensing protein related to mitosis [49] and
was encoded by NY-MEL-3 gene located on chromosome 4p
[50]. A previous study has shown that NCAPG expression level
was much higher in pediatric high-grade gliomas (pHGG) than
in pediatric LGG (pLGG), and the knockdown of NCAPG slo-

wed cell proliferation, which has indicated that NCAPG play
an important role in gliomagenesis [51].

As a mitotic-related serine/threonine kinase, aurora A
(AURKA) plays a key role in both mitosis and nonmitosis
[52]. The abnormal expression of AURKA has been associ-
ated with a number of cancers [53]. The top five genes in
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Recurrent Primary

AURKA NCAPG

Recurrent Primary

(a)

NormalTumor

400 um

NormalTumor

(b)

Figure 13: Immunohistochemical staining: (a) immunohistochemical analysis of AURKA and NCAPG expression in LGG specimens
showing relatively higher expression in recurrent LGG samples. The Pearson correlation coefficient between AURKA and NCAPG was
0.642 (P < 0:001). (b) Immunohistochemical staining from the Human Protein Atlas: AURKA: normal tissues: glial cell staining: low,
neuronal cell staining: low; tumor tissues: staining: low; NCAPG: normal tissues: endothelial cell staining: low, glial cell staining: not
detected, neuronal cell staining: medium, neuropil staining: not detected; tumor tissues: staining: medium.
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the key hallmark gene sets were E2F1, TP53, RB1, CCND1,
and CDK4; all of those genes play a prominent part in cell
cycle and are closely related to amounts of tumors, such as
prostate cancer, breast cancer, sarcomas, and brain tumors
[54–57]. However, how NCAPG, AURKA, and the down-
stream pathway interact and how that causes LGG recur-
rence are still unclear.

Immunity plays a crucial role in therapy and prognosis
in tumor management [58]. In the tumor, six immune sub-
types, including C1-C6, were identified [59]. Our results
showed that the C3 immune subtype (inflammatory, defined
by higher expression of Th1 and Th17 genes) of LGG was
positively related to the high-risk group. According to the
GSEA of GO pathway, inflammatory response was enriched
in patients in the high-risk group, and the GSEA of KEGG
pathway showed that systematic lupus erythematosus was
related to high-risk scores. What is more, the results of
CIBERSORT estimation showed that the scores of CD8+ T
cells and inflammation promoting were significantly higher
in the high-risk group than those in the low-risk group.
Overall, it is reasonable to assume that the recurrence of
LGG was related to an inflammatory response conducted
by CD8+ T cells. Besides, autoimmune diseases could trigger
chronic inflammation, which was associated with developing
cancer [60], and Th17 produced by activated CD8+ T cells
played a crucial role in the development of autoimmunity
disease [61]; therefore, autoimmune may be a potential
mechanism in the recurrence of LGG.

By using CMap analysis, MG-262, valinomycin, and
puromycin were screened out as specific inhibitors of the
key pathway. Particularly, puromycin is a protein synthesis
inhibitor, and its structure is similar to tyrosyl-tRNA and
could interfere translation process [24]. Puromycin has
been proven its antibiotic properties, and it also could be
used in cancer diagnosis and treatment [25]. Previous
research has shown the antitumor effects against leukemic
cell lines in vitro of puromycin and its analogs [26].
Besides, puromycin proved to promote the function of far-
nesiferol c in downregulating CCND1 and CDK4 in non-
small-cell lung cancer cells [62], which not only supports
the scientific hypothesis but also provides a new clue for
LGG treatments.

However, there are still some limitations in our
researches that should be mentioned. Firstly, although the
total sample size was sufficient, the number of recurrent
samples was not enough, which meant some DEGs might
not have been found. Secondly, genetic data related to
LGG recurrence were insufficient in online databases, which
limited the further multidimensional validation. What is
more, despite the strict selective criteria in WGCNA and
multidimensional analysis, error cannot be avoided. Last
but not least, the scientific hypothesis has been validated
only from bioinformatics level and there is still a long way
to clinical practices. Therefore, experiments in molecular,
cellular, and individual levels should be done in future
studies.
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Figure 14: Connectivity Map analysis: the heat map showed that MG-262, valinomycin, and puromycin were significantly correlated
with LGG.
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5. Conclusion

Since the present information is not enough to understand the
genetic regulation mechanism of biological characteristics like
recurrence and how that affects clinical prognosis, therefore,
we conducted our study. In summary, we constructed a spe-
cific regulatory network based on stemness-related genes to
predict the potential biological mechanism in LGG recurrence.
We proposed that AURKA, positively regulated by NCAPG,
promoted E2F target pathway in LGG, which played an
important role in LGG recurrence. And puromycin might be
a specific inhibitor of the NCAPG-AURKA-E2F signal path-
way. Besides, we also figured out that an inflammatory
response conducted by CD8+ T cells might play a role in the
recurrence of LGG. However, there are still some limitations
in our researches such as insufficient sample size, insufficient
genetic data, and lack of wet experiments. Therefore, experi-
ments in molecular, cellular, and individual levels should be
done in future studies.
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