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H1N1 influenza virus is a major factor in seasonal influenza outbreaks. After the body is infected with the influenza virus, the
expression of certain mRNAs, including miRNAs, could be affected. However, the association between these mRNAs and
miRNAs remains unclear. This study is aimed at identifying differentially expressed genes (DEGs) and miRNAs (DEmiRs)
caused by H1N1 influenza virus infection and constructing a miRNA-mRNA regulatory network. Nine GSE datasets were
downloaded from the Gene Expression Omnibus database, of which seven were mRNA data and two were miRNA data. The
limma package in R language package was used to analyze array data, and edgeR package was used to analyze high-throughput
sequencing data. At the same time, the genes related to H1N1 infection were further screened by WGCNA analysis. DEGs
were subjected to Gene Ontology and KEGG pathway enrichment analyses by DAVID database, while the STRING database
predicted the protein-protein interaction (PPI) network. The correspondence between miRNA and target mRNA was analyzed
by the miRWalk database. Cytoscape software was used to output PPI results, identify hub genes, and construct a miRNA-
mRNA regulatory network. 114 DEGs and 37 candidate DEmiRs were identified for subsequent analysis. These DEGs were
significantly enriched in response to the virus, cytokine activity, and symbiont-containing vacuole membrane. According to
KEGG analysis, DEGs were enriched in PD-L1 expression and PD-1 checkpoint pathway. The key point Cd274 (PD-L1) was
highly expressed in the H1N1-infected group. Finally, a potential miRNA-mRNA regulatory network (containing 8 candidate
DEmiRs and 69 candidate DEGs) and a PPI network were constructed. After that, three hub genes were identified: Ifit3, Stat2,
and Irf7. These hub genes and Cd274 were validated by another independent high-throughput dataset and were highly
expressed pattern. This study will help researchers gain insights into the intrinsic effects of H1N1 influenza virus infection on
the host and suggest a novel association of H1N1 virus with the host immune system.

1. Introduction

The influenza A virus belongs to the Orthomyxoviridae fam-
ily, and its genome consists of eight single-negative stranded
RNAs, encoding a total of 11 viral proteins [1]. According to
the antigenic properties of hemagglutinin (HA) and neur-
aminidase (NA) on the surface of the influenza A virus, it
is divided into different subtypes, including 16 HA subtypes
and nine NA subtypes [2]. The influenza A virus genome
mutation results in a small variation in the antigen called
antigenic drift, which is associated with the occurrence of
seasonal influenza in humans. The rearrangement of the

viral genome leads to a substantial change in the antigen,
called antigenic shift, which is often the main cause of influ-
enza pandemics [3]. The seasonal epidemic of the influenza
virus causes about 500,000 deaths per year [4], so the pre-
vention of the influenza A virus is highly valued. There is
evidence that the serum levels of IL-6, IL-8, IL-15, and TNFα
were significantly elevated in patients with influenza A virus
H1N1 infection, so these cytokines are also used as impor-
tant diagnostic indicators [5].

The pathogenicity of the influenza A virus is related to
viral load and inflammatory factor storm [6]. Intracellular
influenza virus RNA initiates the innate immune response
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to the virus through three intracellular immune pathways:
retinoic acid-inducible gene-1 receptor (RIG-1), Toll-like
receptor 3, and inflammasome [7]. Research on virus-host
interactions, host inflammatory pathways, host innate
immunity, and acquired immunity may provide new targets
for anti-influenza virus therapy [8].

MicroRNAs (miRNAs), a group of noncoding small
RNAs, are important regulators of pathogen-host interac-
tions and play important roles in inflammation and immune
responses [9]. Gene products of Epstein-Barr virus latency,
such as EBERS, BARF-0, EBNA-1, and LMP2A, directly lead
to downregulation of the host cell miR-200 family, critical
for EBV-associated gastric cancer development [10].

Although scientists classify influenza A viruses by hem-
agglutinin and ceramidase, we have always believed that
each strain has its own characteristics. An in-depth study
of the expression differences of host genes after virus infec-
tion and analysis of internal regulatory networks are of great
significance for antiviral therapy. For influenza A virus
H1N1 infection, the host-intrinsic gene changes, and related
miRNA-mRNA regulatory networks remain unclear. There-
fore, this study analyzed multiple samples infected by vari-
ous H1N1 virus strains to screen for identifying DEGs and
miRNAs, and constructing a miRNA-mRNA regulatory net-
work will help us understand the intrinsic effects of H1N1
on host cells.

2. Materials and Methods

2.1. Microarray Data. The mRNA expression profiles
GSE31022 [11], GSE36328 [12, 13], GSE54048 [13],
GSE40091 [14], GSE69945 [15], and GSE70445 [16] and
miRNA expression profiles GSE69944 and GSE62495 were
downloaded from the GEO database. The data were
extracted from GSE datasets, which contained 139 samples
(mouse infected with multiple H1H1 influenza virus strains)
and 59 mock infection samples. We normalized these data
using the quantile method.

2.2. High-Throughput Sequencing Data. GSE98527 was data-
sets gathered by high-throughput sequencing, involving 15
H1N1-infected mouse samples and three mock samples.
These data were normalized by the function log2
(counts + 1).

2.3. Identification of DEGs and miRNAs. In order to ensure
that batch effects were not a problem, all data were prepro-
cessed [17]. We analyzed microarray data using limma pack-
age (version 3.40.6) and high-throughput sequencing data
using the edgeR package (H1H1 influenza virus strain-
infected group vs. mock-infected group). DEGs and miR-
NAs were identified with a jFold Changej ≥ 1. Adjusted p
value cutoff < 0.05 was defined as statistically significant.

2.4. Gene Ontology and Pathway Enrichment Analysis. Gene
Ontology (GO) analysis is a widely used method for anno-
tating genes and gene products and identifying characteristic
biological attributes for high-throughput genome or tran-
scription data. To analyze the genes at the functional level,
GO enrichment and KEGG pathway analyses were per-
formed using DAVID online tool (https://david.ncifcrf.gov/).
p < 0:05 was considered statistically significant.

2.5. Weighted Gene Coexpression Network Analysis. The
dataset was analyzed according to the methods published
by the contributors to the WGCNA package [18]. The best
soft threshold power was set to identify the module-trait
relationship, module membership (MM), and gene signifi-
cance (GS) [19].

2.6. Integration of the Protein-Protein Interaction (PPI)
Network. To evaluate the interactive relationships between
genes, we input the gene list into the STRING (http://www
.string-db.org/).

2.7. Analysis of Hub Genes. We used CytoHubba (a Cytos-
cape built-in app) to analyze the hub gene; the top three
genes were the resulting output.

Table 1: Main information of the samples.

GEO DataSets ID mRNA/miRNA Experiment type platforms H1N1 virus strain Number of samples

GSE31022 mRNA GPL6887 A/Mexico/4108/2009 18

GSE36328 mRNA

GPL7202

A/California/04/2009 9

MA1-A/California/04/2009 9

A/Mexico/4482/09 9

A/Brisbane/59/07 7

A/New Jersey/8/76 7

1918 pandemic H1N1 influenza virus 9

GSE40091 mRNA A/California/04/2009 9

GSE54048 mRNA A/Mexico/4482/2009 15

GSE70445 mRNA 1918 pandemic H1N1 influenza virus 12

GSE69945 mRNA GPL11202 A/California/04/2009 20

GSE69944 miRNA GPL19970 A/California/04/2009 9

GSE62495 miRNA GPL19117 A/Puerto Rico/8/34 6
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2.8. miRNA-mRNA Network Construction. miRWalk is a
comprehensive miRNA target gene database that compares
prediction results with 12 other miRNA databases (DIANA-
microTv4.0, DIANA-microT-CDS, miRanda-rel2010, mir-
Bridge, miRDB4.0, miRmap, miRNAMap, and doRiNA,
i.e., PicTar2, PITA RNA22v2, RNAhybrid2.1, and Targets-
can6.2). We employed miRWalk (version 3.0) to predict
the targets of screened miRNAs, and the output results were
intersected with the list of hub genes [20].

2.9. Software Environment and Data Visualization. A soft-
ware installation was downloaded, and R (version 4.2.1)
was installed as described at https://www.r-project.org/.
Both R and RStudio must be installed. All R analysis
and visualization packages are freely accessible from the
library.

The miRNA-mRNA network and PPI network data were
automatically output by online tools and saved in txt format
as nodes and edges. The txt files were exported into
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Figure 1: Dataset merging and moving batch effects. (a) UpSet plot of data intersection. (b, c) Boxplots of mRNA datasets before and
after moving batch effect, sample number (x-axis) vs. gene expression (y-axis). (d, e) Umap of mRNA datasets before and after moving
batch effect, UMAP1 (x-axis) vs. UMAP2 (y-axis). (f, g) Boxplots of miRNA datasets before and after moving batch effect, sample
number (x-axis) vs. gene expression (y-axis). (h, i) Umap of miRNA datasets before and after moving batch effect, UMAP1 (x-axis)
vs. UMAP2 (y-axis).
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Figure 2: Gene Ontology and KEGG analysis results of differentially expressed genes associated with H1N1 infection. (a) Volcano plot of
DEGs. (b) Boxplot of Cd274 expression difference between H1N1-infected group and mock-infected group. (c) Histogram of GO analysis
for DEGs. (d) Volcano plot of DEmiRs. (e) Lollipop illustration of KEGG enrichment analysis for DEGs.
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Cytoscape software (version 3.9.1), respectively. The visuali-
zation results were output after adjusting the layout.

The ggplot2 R package (version 3.3.3) and UpSetR pack-
age (Version 1.4.0) were used to show the other analysis
results.

3. Results

3.1. Extracting H1N1 Influenza Virus-Infected Mouse
Samples and Moving Batch Effects. We searched for samples
from GEO database, and eight microarray datasets were
screened. We extracted H1N1 influenza virus-infected
mouse samples and mock-infected samples (Table 1).

For the 6 mRNA datasets, we merged the matrices
(Figure 1(a)), and as described above, we obtained merged
dataset without batch effects. The data distribution among
the various databases tends to be consistent, and the median
was on a line (Figures 1(b) and 1(c)). And all sample points
were evenly distributed together, suggesting a better removal
of batch effects (Figures 1(d) and 1(e)).

Based on the same method, we also obtained the final
data of miRNA (Figures 1(f)–1(i)).

3.2. Difference Analysis of DEGs and miRNA. We analyzed
microarray data using the limma package to screen for
DEGs and miRNAs (DEmiRs) (Figures 2(a) and 2(c)).
Finally, we obtained 114 DEGs including 100 upregulated
and 14 downregulated genes. Also, we obtained 37 DEmiRs
including 26 upregulated and 11 downregulated miRNAs
(Table 2).

Following that, 114 DEGs were uploaded to the web-
based tool DAVID to identify overrepresented GO catego-
ries and KEGG pathways. GO analysis results showed that
DEGs were significantly enriched in multiple biological pro-
cesses (BP), including response to the virus, defense
response to the virus, and cytokine-mediated signaling
pathway. DEGs were also involved in multiple molecular
functions (MF), including cytokine activity, chemokine
activity, and chemokine receptor binding. For cellular
components, DEGs were involved in symbiont-containing
vacuole membrane, symbiont-containing vacuole, and extra-
cellular membrane-bounded organelle (Figure 2(b)). Accord-
ing to KEGG analysis, DEGs were enriched in viral protein
interaction with cytokine and cytokine receptor, TNF signal-
ing pathway, and NOD-like receptor signaling pathway
(Figure 2(d)). Surprisingly, we found that DEGs were also
enriched in PD-L1 expression and PD-1 checkpoint pathway
(Figure 2(e)). In particular, Cd274 (PD-L1) was highly
expressed in the H1N1-infected group (Figure 2(b)).

3.3. WGCNA Analysis. All 174 samples and 7387 genes
retrieved from the mRNA datasets were used for the coex-
pression network analysis. An eigengene correlation coeffi-
cient square and a soft threshold power of 4 were set to
identify gene modules (Figure 3(b)). To further analyze the
module, we calculated the dissimilarity of module eigen-
genes, chose a cut line for module dendrogram, and merged
some module. Fourteen modules were identified when the
DissThres was set as 0.25 after merging dynamic modules, as
shown in the clustering dendrograms (Figure 3(a)). As shown
in Figure 3(c), the turquoise module was significantly associ-
ated with H1N1 virus infection (correlation coefficient =
0:69). Based the cutoff criteria (jMMj > 0:8 and jGSj > 0:1),
286 genes with high connectivity in the turquoise module were
identified as potential hub genes (Figure 3(d)).

Using the same method to analyze the miRNA dataset,
15 infected samples and 9 mock samples were included in
the analysis (Figure 4(a)). With a soft threshold power of
12, we finally obtained 6 modules (Figure 4(b)). The black
module was significantly associated with H1N1 virus infec-
tion (correlation coefficient = 0:59) (Figure 4(c)). In the
black module, 27 miRNAs with high connectivity were iden-
tified as potential hub miRNAs (Figure 4(d)).

3.4. miRNA-mRNA Regulatory Networks and Hub Gene
Analysis. To further evaluate the interaction of DEGs and
DEmiRs in mice after H1N1 influenza virus infection, we
intersected turquoise module potential hub mRNAs with
DEGs and black module potential hub miRNAs with
DEmiRs (Figures 5(a) and 5(b)). A secondary list is
obtained, which contains 78 candidate DEGs and 8 candi-
date DEmiRs. Further, we predicted the targets of 8 candi-
date DEmiRs by using the miRWalk database. After the
intersection of these target genes and 78 candidate DEGs, 8
candidate DEmiRs targeted a total of 63 candidate DEGs
(Table 3), and miRNA-mRNA regulatory network was con-
structed and output by Cytoscape software (Figure 5(c)).

On the other hand, we analyzed the 78 candidate DEGs
according to the STRING database (Figure 5(d)). Cyto-
Hubba output results show three top real hub genes, which
were Ifit3 (interferon-induced protein with tetratricopeptide
repeats 2), Stat2 (signal transducer and activator of tran-
scription 2), and Irf7 (interferon regulatory factor 7). These
hub genes have a variety of biological activities such as
RNA-binding activity, DNA-binding transcription factor
activity, and RNA polymerase II-specific and cis-regulatory
region sequence-specific DNA-binding activity (Table 4).

3.5. Validation of Four Real Hub Genes Expression Using
High-Throughput Sequencing Data. To validate the previous

Table 2: Differentially expressed gene and miRNA list.

Type Condition Number Gene symbol (top 5)

DEGs
Upregulated 100 Saa3, Ccl4, Cxcl10, Cxcl1, and Ccl2

Downregulated 14 Glb1l2, Aox3, Tff2, Neurog1, and Scgb3a1

DEmiRs
Upregulated 26 mmu-miR-21a-3p, mmu-miR-7a-5p, mmu-miR-223-5p, mmu-miR-5620-5p, and mmu-miR-147-3p

Downregulated 11 mmu-miR-205-5p, mmu-miR-31-3p, mmu-miR-3060-3p, mmu-miR-224-3p, and mmu-miR-744-3p
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analysis results, we used another high-throughput sequenc-
ing dataset, GSE98527. We used edgeR package to analyze
this dataset. The volcano plot showed that in GSE98527,
Ifit3, Stat2, Irf7, and Cd274 were all high expression patterns
(Figure 6(a)). But the box diagram showed that there was no
significant difference in Cd274 expression between the two
groups (Figure 6(b)).

4. Discussion

The new type A H1N1 virus discovered in 2009 has caused a
worldwide epidemic and is transmitted from person to per-
son through the respiratory tract by direct or indirect con-
tact. The strain contains the genes of swine flu, avian flu,
and human flu fragments [21]. In 1918, the Spanish influ-
enza A (H1N1) influenza virus infected one-third of the
world’s population and had a mortality rate 25 times that
of other influenza viruses. Worldwide, approximately 40
million people died from the virus [22]. To evaluate the
impact of the H1N1 influenza virus on the host, research
teams performed gene chip and high-throughput sequencing
analysis on H1N1 influenza virus-infected mice [11–16]. In
this study, we analyzed six mRNA microarray datasets and
two miRNA datasets. In order to ensure the correctness of
the analysis results, all datasets were normalized and have
been moving batch effects. Additionally, we validated results
using the high-throughput sequencing dataset GSE98527.
Finally, we screened out 114 DEGs and 8 candidate DEmiRs.

Paquette et al. (contributors to GSE31022) found that
infection of mice with A/Mexico/4108/2009 (H1N1pdm)

resulted in elevated levels of IL-6 and was mediated through
JAK/STAT3 signaling inflammatory response. DEGs were
significantly enriched in three prominent functional clusters:
cell growth and metabolism, interferon response, and
inflammatory response [11]. Our combined analysis of five
other datasets showed that DEGs were also significantly
enriched in response to the virus, defense response to the
virus, and negative regulation of JAK-STAT cascade and
other multiple BP, which is also consistent with the results
observed by Paquette et al. These DEGs were also involved
in multiple molecular functions (MF), including cytokine
activity, chemokine activity, and chemokine receptor binding.
For cellular components, DEGs were involved in symbiont-
containing vacuole membrane, symbiont-containing vacu-
ole, and extracellular membrane-bounded organelle. More
importantly, we found that DEGs were enriched in TNF
signaling pathways, suggesting that TNF is an important
indicator of H1N1 infection. Multiple meta-analyses have
also revealed that TNF gene polymorphisms are associated
with H1N1 virus susceptibility and severity of infection
[22–26]. On the other hand, no elevated levels of TNF-
related factors were detected in the plasma of pregnant
women vaccinated against the H1N1 virus. However, the
vaccine’s components also contained HA, suggesting that
vaccination against H1N1 virus is safe and effective against
H1N1 virus infection [27].

Also, we found that DEGs were also enriched in PD-L1
expression and PD-1 checkpoint pathway. This was an
unexpected discovery: Cd274 (PD-L1) was highly expressed
in the H1N1-infected group (both in the training dataset and
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Figure 3: WGCNA analysis for mRNA datasets. (a) Dendrogram obtained by hierarchical clustering of genes based on their topological
overlap. (b) The best soft threshold power for WGCNA analysis. (c) Each colored row represents a color-coded module that contains a
group of highly connected genes. (d) Scatterplot shows a highly significant correlation between GS and MM with H1N1 infection in
turquoise module.
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the validation dataset). PD-L1 is the ligand of PD-1 (pro-
grammed cell death 1). Various tumor cells evade antitumor
immunity by overexpressing PD-L1 and utilizing PD-L1/

PD-1 signaling [28]. Since PD-L1 upregulation inhibits
the immune response of T cells to HBV, highly expressed
PD-L1 is a negative regulator of the antiviral immune

Table 3: Targets of candidate DEmiRs.

miRNA Target genes

mmu-miR-21a-3p Ccl4, Rgs1, Cd274, and Tppp3

mmu-miR-7a-5p Slfn1

mmu-miR-5620-5p
Atf3, Socs3, Cfb, Ifi47, Ifit1, Xcl1, Ly6f, Cxcl9, Ccr5, Ddx4, Gbp2, Lgals3bp, Eif2ak2, Ccl2, Slfn1, Oasl2, Usp18, Gzmb,
Ccl4, Igtp, Mefv, Cxcl10, Cd274, Ubd, Ms4a6c, Batf2, Mlkl, Gpr84, Bcl3, Zbp1, Apol9b, Slc2a6, Prss22, Pla1a, Fcgr4,

Oas1f, Oas1a, Sectm1a, Gbp5, Gbp6, Rtp4, Iigp1, Tppp3, and Lcn2

mmu-miR-223-3p Slc2a6, Irf7

mmu-miR-5621-5p
Cxcl9, Serpina3n, Ifnb1, Rgs1, Igtp, Cxcl13, Oas1a, Tppp3, Eif2ak2, Slfn4, Usp18, Ly6i, Serpina3g, Pla1a, Gpr171,
Plac8, Gbp2, Ifit3, Saa3, Slfn1, Gbp3, Clec4e, Zbp1, Cd274, Rtp4, Ddx4, Slc2a6, Fcgr4, Gbp5, Iigp1, and Oasl2

mmu-miR-155-5p Oas1f, Gzmb

mmu-miR-5622-3p
Gbp2, Eif2ak2, Slfn1, Clec4e, Stat2, Cxcl10, Zbp1, Ms4a6c, Cfb, Iigp1, Apol9b, Fcgr4, Oas1a, Sectm1a, Gpr171, Gbp6,

Slfn4, Igtp, Oasl1, Atf3, Cyp7b1, Ccr5, Trex1, Oasl2, Ccl4, Aox3, Batf2, Mlkl, Pla1a, Gbp5, and Rtp4

mmu-miR-21a-5p Clec4e, Sectm1a, Pla1a, and Gbp2

Table 4: Main information of real hub genes.

Rank Gene symbol Full name Function

1 Ifit3
Interferon-induced protein with

tetratricopeptide repeats 3
Predicted to enable RNA-binding activity and to be involved

in interferon-beta pathway.

2 Stat2
Signal transducer and

activator of transcription 2
Involved in negative regulation of type I interferon-mediated
signaling pathway and type I interferon signaling pathway.

3 Irf7 Interferon regulatory factor 7
Enables DNA-binding transcription factor activity, RNA polymerase II-specific

and cis-regulatory region sequence-specific DNA-binding activity.
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response [29]. At present, SARS-CoV-2 virus is spreading
worldwide. The increased level of interferon-γ in the
peripheral blood of patients further induces the enhanced
expression of PD-L1 on the surface of T cells, making
the immune checkpoint lose its inhibitory effect on the
virus [30]. H1N1 virus can also cause acute respiratory
infectious diseases, but no study has reported the relation-
ship between highly expressed PD-L1 and H1N1 influenza
virus infection.

Next, we screened three hub genes from the PPI net-
work: Ifit3 (interferon-induced protein with tetratricopep-
tide repeats 3), Stat2 (signal transducer and activator of
transcription 2), and Irf7 (interferon regulatory factor 7).
Studies by Tran et al. have demonstrated that Ifit2, although
an interferon-stimulated gene with well-established antiviral
activity, can be exploited by the influenza virus to promote
the translation of viral mRNA. IFIT1, IFIT2, and IFIT3 form
hetero-oligomers and modulate each other’s activities. Loss
of IFIT3 also reduced influenza virus replication [31–33].
Our analysis found that Stat2 exhibited a high expression
pattern after H1N1 infection in mice, which may be the tran-
scriptional activation of related genes initiated by cellular pat-
tern receptors in response to virus infection [34]. However, Jia
et al. found that the influenza virus disrupts interferon signal-
ing through its own nonstructural protein 1 (NS1) and inhibits
nuclear translocation of phosphorylated STAT2 to enhance
viral replication [35]. On the other hand, Irf7 plays an impor-
tant role in the resistance to influenza A virus infection. If the
Irf7 gene is deleted, it will greatly increase the susceptibility of
the host to the H1N1 virus [36].

MicroRNAs (miRNAs) are important regulators of gene
expression and usually play a role in degrading target genes
by binding to 3′UTR of target genes [37]. However, gene
expression regulation is an extremely complex network,
and increasing evidence shows that miRNAs can also pro-
mote the expression of target genes [38]. In our analysis
results, 8 candidate DEmiRs target 63 candidate DEGs. This
indicated that H1N1 virus infection is a complex gene regu-
lation process.

Therefore, this study used bioinformatics methods to
analyze the changes in mRNA and miRNA in mice after
H1N1 infection, suggesting that H1N1 influenza virus may
promote the expression of CD274. Simultaneously, a
miRNA-mRNA regulatory network was constructed. All
analysis results will help researchers gain insights into the
intrinsic effects of H1N1 influenza virus infection on the
host and suggest a novel association of H1N1 virus with
the host immune system.
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