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Background. Liver metastasis is an important cause of death in patients with colorectal cancer (CRC). Increasing evidence
indicates that microRNAs (miRNAs) are involved in the pathogenesis of colorectal cancer liver metastasis (CRLM). This study
is aimed at exploring the potential miRNA-mRNA regulatory network. Methods. From the GEO database, we downloaded the
microarray datasets GSE56350 and GSE73178. GEO2R was used to conduct differentially expressed miRNAs (DEMs) between
CRC and CRLM using the GEO2R tool. Then, GO and KEGG pathway analysis for differentially expressed genes (DEGs)
performed via DAVID. A protein-protein interaction (PPI) network was constructed by the STRING and identified by
Cytoscape. Hub genes were identified by miRNA-mRNA network. Finally, the expression of the hub gene expression was
assessed in the GSE81558. Results. The four DEMs (hsa-miR-204-5p, hsa-miR-122-5p, hsa-miR-95-3p, and hsa-miR-552-3p)
were identified as common DEMs in GSE56350 and GSE73178 datasets. The SP1 was likely to adjust the upregulated DEMs;
however, the YY1 could regulate both the upregulated and downregulated DEMs. A total of 3925 genes (3447 upregulated
DEM genes and 478 downregulated DEM genes) were screened. These predicted genes were mainly linked to Platinum drug
resistance, Cellular senescence, and ErbB signaling pathway. Through the gene network construction, most of the hub genes
were found to be modulated by hsa-miR-204-5p, hsa-miR-122-5p, hsa-miR-95-3p, and hsa-miR-552-3p. Among the top 20
hub genes, the expression of CREB1, RHOA, and EGFR was significantly different in the GSE81558 dataset. Conclusion. In this
study, miRNA-mRNA networks in CRLM were screened between CRC patients and CRLM patients to provide a new method
to predict for the pathogenesis and development of CRC.

1. Introduction

Colorectal cancer (CRC) is a common malignant tumor
[1, 2]. Metastasis is a major contributor to resulting in
the mortality of patients with CRC, especially, liver metas-
tasis, which has been shown as one of the leading causes
of death in patients with CRC [3, 4]. Despite advances
in hepatectomy and adjuvant therapy, the 5-year survival
rate for colorectal cancer liver metastasis (CRLM) is still
only 25-50% [5]. Hence, it is necessary to study the molecular

mechanism regulating CRLM, providing evidence for the
prevention to improve prognosis of patients.

MicroRNAs (miRNAs) are a class of noncoding RNAs
composed of 20-24 nucleotides. They specifically bind to
the 3′ untranslated regions of target genes through the
principle of base complementary pairing, block the tran-
scription of mRNA, and inhibit protein synthesis, thereby
participating in the regulation of biological functions of
target genes [6, 7]. Studies believed that miRNAs are closely
related to tumor regulation, including CRLM [8–10]. miR-
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623 inhibits interleukin-8- (IL-8-) induced epithelial inter-
stitial transformation of pancreatic cancer cells by inhibiting
extracellular regulatory protein kinase (ERK) phosphoryla-
tion, demonstrating the important role of miR-623 in inhi-
biting in vitro migration and invasion of pancreatic cancer
cells and in vivo metastasis [11].

In this study, we screened DEMs in CRLM compared to
CRC without liver metastasis by analyzing two datasets
(GSE5635 and GSE73178) from the GEO database. We ver-
ified the DEMs, identified the differential expression profile
of miRNAs with a gradual increasing trend in transcription
factor-DEM-target gene, and analyzed these target genes
and hub gene network. The risk of colorectal cancer was
analyzed using the demographic data and clinicopathologi-
cal characteristics of patients with colorectal cancer and
colorectal adenoma. Moreover, the expression of hub genes
in combination with GSE81558 dataset was further con-
firmed and used to construct a relationship with miRNA-
mRNA to improve the diagnosis and treatment of CRLM.

2. Methods

2.1. miRNA Microarray and DEG Identification. GEO [12]
(http://www.ncbi.nlm.nih.gov/geo) is an international public
functional dataset including high-throughput microarray
and sequence-based data. The miRNA expression profiles
of GSE56350 and GSE73178 of between CRC and CRLM
were screened. The detailed dataset information is shown
in Table 1. DEMs between CRC and CRLM across different
GEO datasets. jlog 2FCj > 1 and a P value of <0.05 are con-
sidered significantly by the GEO2R tool. Then, the overlap of
DEMs in the two datasets was identified by a Venn diagram
(GSE56350 and GSE73178). All methods were carried out in
accordance with relevant guidelines and regulations.

2.2. Predicting of Target Genes. miRNet (https://www.mirnet
.ca/) analyzed the miRNA target interactions and displayed
correlations in the network to predict downstream target
genes of DEMs.

2.3. GO and KEGG Analysis. The Database for Annotation,
Visualization and Integrated Discovery (DAVID) is an
online bioinformatics tool that can provide GO and KEGG
pathway enrichment analysis [13–15]. DAVID showed the
unique biology of common DEGs and analyze the DEGs
(P < 0:05).

2.4. Construction of Protein-Protein Interaction (PPI) and
miRNA Hub Genes Network. The protein interaction net-
work of target genes was constructed using STRING and
Cytoscape tools in the version of 3.7.2. Hub genes were
considered to be the top 30 genes using the Maximal Clique

Centrality (MCC) method. The miRNA hub genes network
was constructed by the Cytoscape software.

2.5. Evaluation of DEGs by GSE81558 Dataset. As there was
no other data on mRNA expression between CRC and
CRLM, we selected GSE81558 in the GEO database to
analyze the DEGs. The dataset analyzed gene expression
data, and we selected 23 cases of CRC and 19 cases of
CRLM. Student’s t-test was used to identify the DEGs
between CRC and CRLM.

3. Results

3.1. Identification of DEMs in CRC and CRLM. As men-
tioned above, we found 32 DEMs (17 upregulated and 15
downregulated) that were identified in GSE56350 and 190
DEMs (84 upregulated and 106 downregulated) that were
identified in the GSE73178 dataset (Figures 1(a) and 1(b));
the specific information is shown in Supplementary
Tables S1–2. Between two DEMs, two upregulated (hsa-
miR-204-5p and hsa-miR-122-5p) and two downregulated
(hsa-miR-95-3p and hsa-miR-552-3p) DEMs were screened
(Figures 1(c)–1(e)).

3.2. Target Prediction and Analysis of Downstream Genes of
DEMs. The miRNet database predicted a total of 3925 target
genes as candidate DEMs, among which 3447 target genes
are upregulated and 478 target genes are downregulated.
For a better visualization, the DEMs and its target genes
are depicted in Figures 2(a) and 2(b). We counted the genes
shown in Table 2 and plotted the target genes presented
(Supplementary Table S3).

3.3. GO and KEGG Analysis. Then, the 3925 target genes
were used for GO analysis and KEGG pathway enrichment
analysis. For GO analysis, considering biological process
(BP), upregulated genes were found to be enriched in
positive regulation of chromosome organization, covalent
chromatin modification, histone modification, and peptidyl-
lysine modification. Upregulated DEM target genes’ cellular
component (CC) concentrated on focal adhesion, cell-
substrate junction, and cell-substrate adherence junction.
The molecular function (MF) analysis demonstrated that
upregulated DEM target genes were significantly concentrated
in cadherin binding, cell adhesion molecule binding, and
DNA-binding transcription activator activity (Figure 3(a)).
Moreover, downregulated genes were enriched in the
double-stranded RNA binding, polysome, and glycolytic
process (Figure 3(b)).

Furthermore, upregulated genes pathway analysis indi-
cated that they are mainly enriched in platinum drug resis-
tance, cellular senescence, AGE-RAGE signaling pathway

Table 1: Details for GEO COPD data.

Accession Sample Primary colorectal tumor Colorectal liver metastasis Gene/microRNA

GSE536350 Tumor 46 15 microRNA

GSE73178 Tumor 2 2 microRNA

GSE81558 Tumor 23 19 Gene
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in diabetic complications, chronic myeloid leukemia, colo-
rectal cancer, and proteoglycans in cancer (Figure 3(c)).
Moreover, downregulated genes were significantly enriched
in HIF-1 signaling pathway, ErbB signaling pathway, and
protein processing in endoplasmic reticulum (Figure 3(d)).

3.4. Identification of 20 Hub Genes. To confirm the relation-
ship between DEGs and DEMs, we established a PPI net-
work through the STRING database. At the same time, we
uploaded the above-mentioned PPI network and imported
in Cytoscape. The top 30 upregulated genes and 30 down-
regulated genes are shown in Figures 4(a) and 4(b).

Next, we constructed a regulatory network between
upregulated DEMs and hub genes. hsa-mir-204-5p inter-
acted with seven hub genes, including MMP9, NOTCH1,
IL1B, HSP90AA1, CDH1, SMAD4, and CDC42, and hsa-

mir-122-5p interacted with six hub genes, including EGFR,
NOTCH1, RHOA, CDH1, IGF1R, and SMAD4. The corre-
lation between DEMs of downregulated and hub genes were
detected. Specifically, hsa-mir-552-3p was linked with six
hub genes, including HSPA4, FOS, MCL1, ERBB2, MAPK1,
and AR, and hsa-mir-95-3p was associated with CCND1,
MTOR, CDKN1A, and CREB1 (Figure 5).

Based on the above results, the top 10 upregulated genes
were MMP9, EGFR, NOTCH1, IL1B, RHOA, HSP90AA1,
CDH1, IGF1R, SMAD4, and CDC42. The top 10 downregu-
lated genes were CCND1, MTOR, HSPA4, FOS, MCL1,
ERBB2, CDKN1A, CREB1, MAPK1, and AR (Table 3).

3.5. Identification of Hub Gene Expression. Hub genes
(MMP9, EGFR, NOTCH1, IL1B, RHOA, HSP90AA1,
CDH1, IGF1R, SMAD4, CDC42, CCND1, MTOR,
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Figure 1: Identification of the potential DEMs. (a) DEMs in the GSE56350 dataset; (b) DEMs in the GSE73178 dataset; (c) Venn diagram
for upregulated DEMs in the GSE56350 dataset and GSE73178 dataset; (d) for downregulated DEMs in the GSE56350 dataset and
GSE73178 dataset; and (e) Heat map of the common DEMs in between the GSE56350 dataset and GSE73178 dataset.
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HSPA4,FOS, MCL1, ERBB2, CDKN1A, CREB1, MAPK1,
and AR) were then from the GSE81558 dataset. For these
hub genes, compared with CRC, the expressions of CREB1
and RHOA were decreased in CRLM; however, only the
EGFR expression was increased in CRLM (Figures 6(a)–6(t)).

4. Discussion

In recent years, increasing studies in CRLM have been
reported. However, the prognosis of the CRC patients is still
poor because of the liver metastasis. Recently, with the
development of the microarray technology, genetic alter-
ations have been found during the progression of various
diseases. In this study, the GSE56350 and GSE73178 datasets
were used to identify DEMs between primary colorectal
tumor and colorectal liver metastasis. Two upregulated
DEMs (hsa-mir-204-5p and hsa-mir-122-5p) and two
downregulated DEMs (hsa-mir-552-3p and hsa-mir-95-
3p), which were significantly changed, were selected as
candidate DEMs. Besides, from the upregulated DEMs,
hsa-mir-204-5p could effectively restrain cancer cell pro-
liferation [16]. miR-204-5p can inhibit cell proliferation,

(a)

(b)

Figure 2: The predicted potential target genes by miRNet. (a) For upregulated DEMs and (b) for downregulated DEMs.

Table 2: Potential genes of the upregulated and downregulated
DEMs.

Upregulated
miRNA

Number
Downregulated

miRNA
Number

hsa-mir-204-5p 985 hsa-mir-552-3p 291

hsa-mir-122-5p 2462 hsa-mir-95-3p 187

Total 3447 Total 478
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Figure 3: GO and KEGG pathway analysis. GO analysis of (a) upregulated DEMs and (b) downregulated genes; KEGG pathway analysis of
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promote apoptosis, and enhance drug sensitivity by down-
regulating RAB22A expression in CRC [17]. The literature
reports that miR-122-5p regulated CDC25A expression in
CRC cells [18]. For downregulated DEMs, miR-552-3p was
highly expressed in various types of tumor cells and can be
used as a specific molecular marker, especially in CRC. A
large number of bioinformatics studies also showed that
miR-552-3p can be used as a biomarker for diagnosis and
treatment of CRC [19]. Using RNA sequencing analysis
(RNA-seq), miR-95-3p has been found to be linked to
cisplatin resistance in gastric cancer via increasing the
PI3K/Akt pathway [20, 21]. Notably, to better understand
the mechanisms of these miRNAs involved, further studies
for their roles in CRLM were needed.

miRNA expression is abnormal in almost all malignant
tumors, which acts as oncogenes or tumor suppressor genes
and is regulated by transcription factors [22–24]. SP1 has
been detected in CRC [25–27]. ADEM10, EPHB2, HDAC4,
and SEPP1 in CRC inhibit cell migration, invasion, tumor
growth, and liver metastasis through the SP1 [27]. YY1 reg-
ulated the expressions of both upregulated and downregu-
lated DEMs. In the study, YY1 as a member of the PcG
protein family can be widely expressed in a variety of tissues
and cells and is involved in cell tissue differentiation,
chromatin remodeling, and tumor genesis and progression
[28–31]. YY1 is closely associated with tumor including
metastatic breast cancer [32, 33], colon cancer [34], gastric
cancer [35], and prostate cancer [36]. In CRC, through
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Figure 4: The top 30 hub genes in PPI network. (a) For upregulated DEM-hub genes and (b) for downregulated DEM-hub genes.
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the NF-κB/YY1 axis, LINC01578 enhanced its promoter
activity.

Triptolide regulates E2F activity by potentially inducing
G1 cell cycle [37]. Apart from SP4, EGR1, ARID3A, and
NKX6-1, the remaining transcription factors have been
reported in colorectal cancer [38–42], which supports the
importance of these candidate DEMs in the mechanism of
CRC tumor.

GO and KEGG pathway enrichment analysis were con-
ducted via DAVID. GO analysis revealed that these DEGs
were particularly enriched in the positive regulation of
chromosome organization, covalent chromatin modifica-
tion, histone modification, and peptidyl-lysine modification

and regulation of chromosome organization. For the
molecular function, these genes were also significantly
enriched in cadherin binding, cell adhesion molecule bind-
ing, DNA-binding transcription activator activity, RNA
polymerase II-specific, protein serine/threonine kinase activ-
ity, and enhancer binding.

KEGG analysis showed that the hub genes mainly
focused on the platinum drug resistance, cellular senescence,
AGE-RAGE signaling pathway in diabetic complications,
HIF-1 signaling pathway, ErbB signaling pathway, and
protein processing in endoplasmic reticulum.

In previous studies, drug resistance has been docu-
mented to be associated with liver metastasis of CRC. A
study showed that a lack of E-cadherin promotes CRC cell
growth, invasion, and drug resistance, contributing to CRC
progression and metastatic dissemination [43]. Cellular
senescence is also an important factor in tumor metastasis.
Cancer stem cells could change their phenotypic and
functional appearance. These changes are caused by chemo-
therapy and radiation, leading to changes in the tumor
microenvironment [44]. Research reported that HIF-1α
(hypoxia inducible factor-1α) expression in liver metastasis
determines poor prognosis of CRC liver metastasis patients
[45]. Therefore, drug resistance, cellular senescence, and
HIF-1 signaling pathway may represent and be developed
as a novel therapeutic strategy for treating patients with
CRC liver metastasis. However, many of the target genes
were downregulated without difference in GO analysis,
suggesting that upregulated DEMs may play a more critical
role in the liver metastasis of CRC.

To screen the DEM-hub genes of CRLM, we found
that these genes could be potentially targeted by hsa-miR-
204-5p, hsa-miR-122-5p, hsa-miR-95-3p, and hsa-miR-

MTOR CDKN1A CCND1 AR ERBB2 HSPA4 MAPK1 MCL1 FOSCREB1

EGFR IGF1R RHOA SMAD4 CDH1 NOTCH1 MMP9 IL1B CDC42 HSP90AA1

hsa-mir-95-3p

hsa-mir-122-5p hsa-mir-204-5p

hsa-mir-552-3p

Figure 5: Identified potential miRNA-hub genes network.

Table 3: The top 10 hub genes of the significantly upregulated and
downregulated DEMs by MCC.

Upregulated Downregulated
Gene Score Gene Score

MMP9 3:29E + 09 CCND1 6732

EGFR 3:28E + 09 MTOR 6489

NOTCH1 3:17E + 09 HSPA4 6422

IL1B 3:04E + 09 FOS 6047

RHOA 2:89E + 09 MCL1 3675

HSP90AA1 2:70E + 09 ERBB2 3510

CDH1 2:64E + 09 CDKN1A 3420

IGF1R 2:47E + 09 CREB1 3335

SMAD4 1:97E + 09 MAPK1 3288

CDC42 1:93E + 09 AR 3029
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552-3p. Among the top 20 hub genes, the expression of three
genes (CREB1, RHOA, and EGFR) was significantly different
in the GSE81558 dataset. CREB1 binds to the conserved
cAMP response element (CRE) on the promoter to promote
gene transcription and activate phosphorylation [46, 47]. The
literature reports that CREB1 could suppress CRC prolifera-
tion, invasion, and metastasis [48]. Li et al. showed that
knockdown of CREB1 exerts effects on proliferation, migra-
tion, and invasion of CRC cells [49]. RHOA, a member of
the ras homolog gene family, might affect the domain of
E-cadherin and endocytosis [50]. Epidermal growth factor
receptor (EGFR) was associated with the FOXK2 and
mediated CRC metastasis. Moreover, CRC metastasis was
inhibited significantly via the EGFR monoclonal antibody
cetuximab [51].

In the present study, we investigated the potential
miRNA-mRNA regulatory network in CRLM. But there

are still limitations. Firstly, we targeted to miRNA-mRNA
network between CRC and CRLM; however, some of these
underlying mechanisms of CRLM should be further con-
firmed. Secondly, compared with the number of the sample
usually required for biomarker analysis, the sample size of
the current article was small. Thirdly, the miRNA-mRNA
network was only associated with public databases, and
experiments in vivo and in vitro were required to validate
our analysis.

5. Conclusion

In summary, through the GEO database and bioinformatics
analysis, we identified 4 DEMs and 20 hub genes using PPI
analysis, potential miRNA-mRNA network in CRLM, hop-
ing that these findings will contribute to improving the
prognosis of patients with CRLM.
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Figure 6: The expression of the top 20 target genes in primary tumor compared to liver metastasis of colorectal tumor. (a) AR, (b) CCND1,
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