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EPAS1 plays an important role in the development and progression of multiple tumor types by interacting with a series of other
molecules. However, the prognostic and diagnostic values of EPAS1 in acute myeloid leukemia (AML) remain unknown. Here, we
systematically explored and clarified the potential functions of EPAS1 in AML using data from Xena Browser and TCGA database.
The expression of EPAS1 was significantly lower in AML patients than that in healthy people. The GO, KEGG, GSEA, and GSVA
were performed to explore the potential functions and signaling pathways. The survival analysis was conducted using Cox
regression analysis and the Kaplan-Meier method. Immune cell infiltration was evaluated via single-sample GSEA (ssGSEA).
The results of enrichment analyses suggested that low-EPAS1 expression was related to the initiation, development, and
prognosis of AML. The immune microenvironment landscape in AML was described by ssGSEA. ROC analysis of EPAS1
showed high discrimination ability between AML patients and healthy people. Kaplan-Meier method indicated that low-EPAS1
expression correlated significantly with a poor overall survival. Multivariate Cox regression analysis revealed that both age and
EPAS1 expression were independent prognostic factors in AML patients. Furthermore, the nomogram based on these two
variables performed well in discrimination and calibration. In summary, our study may provide new insights into the
molecular mechanisms underlying AML and demonstrate the diagnostic and prognostic value of EPAS1 in AML for the first time.

1. Introduction

Acute myeloid leukemia (AML) is an aggressive hemato-
logic neoplasm characterized by abnormal proliferation
and differentiation of hematopoietic precursors, resulting
in the accumulation of leukemic cells in the bone marrow
and peripheral blood. There are estimated 19940 new
AML cases and 11180 deaths in 2020, making it the most
common and deadliest form of acute leukemia in adults
[1]. The 5-year relative survival for AML patients declines
with increasing age, from 47.5% in patients younger than
65 years old to just 8.2% in those aged 65 years and older
[2]. With the continuous advancement in conditional treat-
ments for AML, including chemotherapy, allogeneic stem
cell transplantation (SCT), and supportive care, the outcome

improvement in younger patients has been reported in sev-
eral trials [3]. While in elderly patients who cannot tolerate
intensive chemotherapy regimens, the effect is not satisfac-
tory [3–5]. Thus, it is an urgent need to explore potential
prognostic markers and therapeutic targets that can contrib-
ute to patient-tailored treatment plan making and clinical
management.

EPAS1, the gene encoding hypoxia-inducible factor-
(HIF-) 2α, plays a critical role in a wide range of pathophys-
iological processes. Genome-wide studies have shown that
the mutation of EPAS1 is closely linked to human adaptation
to high-altitude hypoxia, with a particular focus on Tibetans
[6]. There is growing evidence showing that EPAS1 is related
with cancer initiation and progression. Mutations in EPAS1
are considered to be drivers in pheochromocytoma and
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paraganglioma [7–9]. In renal cell carcinoma (RCC), the
HIF-2α regulation is linked to the cancer development
in vivo and in vitro [10–12]. And preclinical studies and clin-
ical data validate that HIF-2α inhibitors have antitumor
activity in RCC cell lines and heavily pretreated patients
[13–16]. On the other hand, HIF-2α has been reported to
suppress tumor growth in undifferentiated pleomorphic sar-
coma, fibrosarcoma, and dedifferentiated liposarcoma, where
EPAS1 is largely considered to be epigenetically silenced [17].
In addition, HIF-2α is found to contribute to the tumor cell
apoptosis in hepatocellular carcinoma through the TFDP3/
E2F1 pathway, and lower HIF-2α expression level in tissue
is always accompanied by poorer survival [18]. These find-
ings suggest the potential role of EPAS1 as a therapeutic tar-
get and as a prognostic marker for patients with cancers.
However, the underlying functions and molecular mecha-
nisms of EPAS1 in AML are still poorly understood. In this
research, we aimed to determine whether EPAS1 could serve
as a prognostic marker to guide clinical decision-making in
AML and explore the role of EPAS1 in AML disease mecha-
nism, which is the key to identify novel diagnostic and ther-
apeutic avenues.

2. Materials and Methods

2.1. Study Design. Gene expression data and clinical infor-
mation were extracted from the common databases. Then,
the computational biology tools were applied to evaluate

the diagnostic and prognostic values of EPAS1 in AML
patients. The R code used for our analysis is available in Sup-
plementary Materials. The schematic flow chart of the pres-
ent study was summarized in Figure 1.

2.2. Preprocessing for RNA-Sequencing Data. Genotype-Tis-
sue Expression (GTEx) TOIL RSEM transcript per million
(tpm) data, TCGA Pan-Cancer TOIL RSEM tpm data, and
corresponding clinical information were obtained from
Xena Browser (https://xenabrowser.net/datapages/) [19].
The data of 70 GTEx normal samples and 173 TCGA-
AML samples were processed through TOIL in a uniform
manner and then transformed into log2ðTPM + 1Þ for differ-
ential expression analysis and receiver operating characteris-
tic (ROC) analysis.

The clinical data of 200 AML patients were obtained from
TCGA database (https://portal.gdc.cancer.gov/repository).
Cases without corresponding RNA-seq data (n = 49) were
excluded. Finally, we compiled log2ðTPM + 1Þ gene expres-
sion data of 151 AML cases for further analysis. The data
were collated into Table 1, and unavailable or unknown clin-
icopathological features were treated as missing values. This
study is entirely based upon data generated from TCGA
and meets the TCGA publication guidelines. (http://www
.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga). This article does not contain any studies
with human participants or animals performed by any of
the authors.

Normal (n = 70) AML samples (n = 173)
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Expression patternsROC analysis

TCGA database (n = 151)

DEGs

GO Clinical data analysisKEGGGSEAssGSEA
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Figure 1: Overall flow chart of this work.
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Table 1: Demographic and clinicopathological characteristics of AML patients based on EPAS1 expression level.

Characteristics Frequency (%)
EPAS1 expression

P
Low (n = 76) High (n = 75)

Age 56.00 [43.75,64.25] 57.00 [41.50,69.00] 0.549b

Gender 0.284

Female 68 (45.0) 38 (50.0) 30 (40.0)

Male 83 (55.0) 38 (50.0) 45 (60.0)

Race 0.564a

Asian 1 (0.7) 1 (1.3) 0 (0.0)

Black or African American 13 (8.7) 8 (10.5) 5 (6.8)

White 135 (90.6) 67 (88.2) 68 (93.2)

Cytogenetic risk 0.001∗

Favorable 31 (20.8) 8 (10.7) 23 (31.1)

Intermediate 82 (55.0) 52 (69.3) 30 (40.5)

Poor 36 (24.2) 15 (20.0) 21 (28.4)

Cytogenetics 0.002∗ ,a

+8 8 (5.9) 3 (4.2) 5 (7.8)

Complex 24 (17.8) 10 (14.1) 14 (21.9)

del (5) 1 (0.7) 1 (1.4) 0 (0.0)

del (7) 6 (4.4) 3 (4.2) 3 (4.7)

inv (16) 8 (5.9) 0 (0.0) 8 (12.5)

Normal 69 (51.1) 46 (64.8) 23 (35.9)

t (15; 17) 11 (8.1) 3 (4.2) 8 (12.5)

t (8; 21) 7 (5.2) 4 (5.6) 3 (4.7)

t (9; 11) 1 (0.7) 1 (1.4) 0 (0.0)

FAB classifications 0.048∗ ,a

M0 15 (10.0) 11 (14.5) 4 (5.4)

M1 35 (23.3) 20 (26.3) 15 (20.3)

M2 38 (25.3) 20 (26.3) 18 (24.3)

M3 15 (10.0) 4 (5.3) 11 (14.9)

M4 29 (19.3) 11 (14.5) 18 (24.3)

M5 15 (10.0) 10 (13.2) 5 (6.8)

M6 2 (1.3) 0 (0.0) 2 (2.7)

M7 1 (0.7) 0 (0.0) 1 (1.4)

FLT3 mutation 0.026∗

Negative 102 (69.4) 46 (60.5) 56 (78.9)

Positive 45 (30.6) 30 (39.5) 15 (21.1)

IDH1 R132 mutation 0.245a

Negative 136 (91.3) 66 (88.0) 70 (94.6)

Positive 13 (8.7) 9 (12.0) 4 (5.4)

IDH1 R140 mutation 0.369a

Negative 137 (91.9) 68 (89.5) 69 (94.5)

Positive 12 (8.1) 8 (10.5) 4 (5.5)

IDH1 R172 mutation 0.238a

Negative 147 (98.7) 76 (100.0) 71 (97.3)

Positive 2 (1.3) 0 (0.0) 2 (2.7)

RAS mutation 0.276a

Negative 142 (94.7) 70 (92.1) 72 (97.3)

Positive 8 (5.3) 6 (7.9) 2 (2.7)
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2.3. Differentially Expressed Gene (DEG) Analysis. According
to the median expression level of EPAS1, gene expression
data were divided into a high-expression group and a low-
expression group. To identify the DEGs in AML, we ana-
lyzed and compared the expression data between high- and
low-EPAS1 expression groups within the DESeq2 package
(version 1.28.1) [20]. Genes with jlog2 fold changej > 1:5
and adjusted P value < 0.05 were considered to be statisti-
cally significant. The results were visualized using volcano
plots and heat map.

2.4. Functional Enrichment Analysis. Metascape (http://
metascape.org) is a network-based tool integrating gene
annotation, enrichment analysis, and interactome analysis
capabilities [21]. In this study, we used Metascape to con-
duct Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis for EPAS1-
related DEGs in AML. Similar terms were grouped into a
cluster under the parameters that P value < 0.01, minimum
count > 3, and enrichment factor > 1:5.

2.5. Gene Set Enrichment Analysis. Gene Set Enrichment
Analysis (GSEA) is a powerful and robust analytical strategy
designed to reveal the collective behavior of functionally
related genes by identifying biological pathways at the gene-
set level, which makes it easier for researchers to interpret
the results in large-scale analysis [22, 23]. GSEA takes all gene
expression data as analysis objects to avoid the loss of key
information caused by unreasonable filtering parameters in
traditional enrichment analysis. In this study, GSEA was car-
ried out using clusterProfiler (version 3.16.0) package in R
(3.8.0) [24] to elucidate the significant differences in function
or pathway between high- and low-EPAS1 expression groups.
Gene set permutations were performed 1000 times for each
analysis. The enrichment analysis was based on the conditions
that adjusted P value <0.05, FDR q value <0.25, and jNESj > 1
.

2.6. Gene Set Variation Analysis. Gene set variation analysis
(GSVA) [25] is a nonparametric analysis method to evaluate

whether different metabolic pathways are enriched in different
samples by converting the gene expression matrix between
different samples into gene set expression matrix. The gene
sets (c2.cp.v2022.1.Hs.symbols) were obtained from the
MSigDB database. The 151 samples from the TCGA-AML
dataset were divided into high-expression group and low-
expression group according to the median expression level
of EPAS1. Enrichment scores were calculated for each gene
set to evaluate the potential biological function changes of
different samples using the GSVA algorithm. The criterion
of significant enrichment was adjusted P value < 0.05.

2.7. Immune Infiltration Analysis by ssGSEA. Using GSVA
package (http://www.bioconductor.org/packages/release/
bioc/html/GSVA.html) in R, the immune infiltration analy-
sis was performed by single-sample GSEA (ssGSEA). We
quantified the relative enrichment scores of 24 tumor-
infiltrating immunocytes in AML by comparing the pub-
lished signatures [26] with the gene expression profile data.
The correlation between EPAS1 expression and infiltration
levels of these immunocytes and the association of the high-
and low-EPAS1 expression groups with the infiltration of
immune cells were analyzed by Spearman correlation and
Wilcoxon rank sum test, respectively.

2.8. Statistical Analysis. All statistical analyses in our study
were conducted using R (v.3.6.3). We analyzed the different
expressions of EPAS1 in AML and healthy control groups
with the Wilcoxon rank sum test and assessed the discrimina-
tion ability of EPAS1 by receiver operating characteristic
(ROC) analysis using pROC package [27]. Wilcoxon rank
sum test and logistic regression were applied to analyze the
correlation between clinicopathologic features and EPAS1
expression. The survival analysis was conducted using Cox
regression analysis and the Kaplan-Meier method with 95%
confidence intervals (CI) [28]. The hazard ratios (HRs) of
overall survival (OS) in subgroups were summarized in forest
plot. All hypothetical tests were two-sided, and P values less
than 0.05 were considered to be statistically significant.

Table 1: Continued.

Characteristics Frequency (%)
EPAS1 expression

P
Low (n = 76) High (n = 75)

NPM1 mutation 0.001∗

Negative 117 (78.0) 50 (65.8) 67 (90.5)

Positive 33 (22.0) 26 (34.2) 7 (9.5)

DNMT3A mutation 0.463

Negative 92 (84.4) 50 (87.7) 42 (80.8)

Positive 17 (15.6) 7 (12.3) 10 (19.2)

RUNX1 mutation 0.545a

Negative 97 (89.0) 52 (91.2) 45 (86.5)

Positive 12 (11.0) 5 (8.8) 7 (13.5)

WBC count (×109/L) 31.00 [8.00,69.00] 11.50 [3.00,33.75] 0.001∗ ,b

BM blasts 49.00 [17.75,72.50] 17.00 [2.00,55.50] <0.001∗ ,b

PB blasts 75.00 [61.50,86.25] 61.00 [40.00,81.00] 0.001∗ ,b

BM: bone marrow; PB: peripheral blood. ∗statistically significant, P < 0:05. aFisher’s exact test. bWilcoxon rank sum test.
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2.9. Prognostic Model. We applied multivariate Cox regres-
sion analysis to screen out independent variables related to
survival. Furthermore, a nomogram and calibration plots

were constructed using rms package (version: 6.2-0,
https://cran.r-project.org/web/packages/rms/index.html) to
predict the prognosis of AML patients.
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Figure 2: Identification of differentially expressed genes between low- and high-EPAS1 expression groups in TCGA database. (a) EPAS1
expression in different types of cancer. (b) Heat map of differentially expressed genes between low- and high-EPAS1 expression groups.
(c) Volcano plot of differentially expressed genes. Red dots represent the upregulated genes, and blue dots represent the downregulated
genes. The gray area represents the genes whose expression levels are below the threshold (jlog2fold changej > 1:5, adjusted P value < 0.05).
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3. Results

3.1. Patient Characteristics. The characteristics of AML
patients with both gene expression and clinical data obtained
from TCGA database were shown in Table 1. Correlation

analysis showed that the expression level of EPAS1 was sig-
nificantly associated with cytogenetic risk (P = 0:001), FAB
classification (P = 0:048), cytogenetics (P = 0:002), FLT3
mutation (P = 0:026), NPM1 mutation (P = 0:001), WBC
count (P = 0:001), BM blasts (P < 0:001), and PB blasts
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Figure 3: GO and KEGG enrichment analyses for EPAS1 (Metascape). (a–c) Top 10 enrichment terms in cellular component (CC),
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adjusted P values.
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Figure 4: Continued.
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(P = 0:001). The distributions of other clinicopathologic fea-
tures were not different between low- and high-EPAS1
expression groups.

3.2. Identification of DEGs. Under the aforementioned
threshold (jlog2 fold changej > 1:5, adjusted P value < 0.05),
814 DEGs, including 732 upregulated DEGs and 82
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Figure 4: Enrichment plots from Gene Set Enrichment Analysis (GSEA). Ribosome, SRP-dependent cotranslational protein targeting to
membrane, AML with MLL fusions, AML with FLT3-ITD, tretinoin response and PML-RARA fusion, and HDACS deacetylate histones
are differentially enriched in low-EPAS1 expression phenotype. Regulation of actin dynamics for phagocytic cup formation, complement
cascade, signaling by the B cell receptor, stem cell up, cell surface interactions at the vascular wall, and immunoregulatory interactions
between a lymphoid and a nonlymphoid cell are differentially enriched in high-EPAS1 expression phenotype. SRP: signal recognition
particle; ITD: internal tandem duplication; HDACS: histone deacetylase; NES: normalized enrichment score; FDR: false discovery rate.

9Disease Markers



downregulated DEGs, were identified between low- and
high-EPAS1 expression groups (Figure 2).

3.3. GO and KEGG Analyses of EPAS1 in AML. Enrichment
analyses were conducted within Metascape to obtain the
enrichment information of EPAS1-related DEGs in AML.
The top 10 GO terms enriched by DEGs are shown in
Figures 3(a)–3(c). The results of cellular components (CC)
suggested that EPAS1-related genes were mainly located in
extracellular matrix. The molecular functions (MF) of these
genes included extracellular matrix structural composition,
molecular binding, and protein kinase activation. Moreover,
we found that these genes were involved in several biological
processes (BP), including extracellular structure organiza-
tion, extracellular matrix organization, system morphogene-
sis, and tissue or organ development. The KEGG pathways
for EPAS1 and its correlated genes are shown in Figure 3(d).

3.4. EPAS1-Related Signaling Pathways Based on GSEA. To
identify the key signaling pathways stimulated differentially
in AML, we performed GSEA between low- and high-
EPAS1 expression data sets. Significant differences (adjusted
P value < 0.05, FDR q value < 0.25) in the enrichment of
MSigDB collection (C2.all.v7.0.symbols.gmt) were revealed.
Based on their NES, we selected biological processes and
pathways that were significantly enriched in the low-
EPAS1 expression phenotype, including ribosome, SRP-
dependent cotranslational protein targeting to membrane,
AML with MLL fusions, AML with FLT3-ITD, tretinoin
response and PML-RARA fusion, and HDACS deacetylate
histones. The details are shown in Figures 4(a)–4(f) and
Table 2. We also selected biological processes and pathways

that were significantly enriched in the high-EPAS1 expres-
sion phenotype, including regulation of actin dynamics for
phagocytic cup formation, complement cascade, signaling
by the B cell receptor, stem cell up, cell surface interactions
at the vascular wall, and immunoregulatory interactions
between a lymphoid and a nonlymphoid cell. The details
are shown in Figures 4(g)–4(l) and Table 3.

3.5. GSVA Analysis of EPAS1 in AML. In order to explore
the differences of curated gene sets between high- and low-
EPAS1 expression groups in TCGA-AML dataset, the anal-
yses were performed by ssGSEA using GSVA package.
According to the enrichment scores, the differences in extra-
cellular matrix-related pathways between these two groups
were shown by the boxplot in Supplementary Figure 1. In
the high EPAS1 expression group, the enrichment scores
of extracellular matrix-related pathways, including
degradation of the extracellular matrix, extracellular matrix
organization, cell extracellular matrix interactions,
extracellular vesicle-mediated signaling in recipient cells,
and extracellular vesicles in the crosstalk of cardiac cells,
were significantly higher than that in the low-EPAS1
expression group (P value < 0.05). We further showed the
top 25 genes significantly differentially expressed in high-
EPAS1 expression group, low-EPAS1 expression group,
and normal control group by heat map in Supplementary
Figure 2 (P value < 0.05). Heat map was generated using R
pheatmap package.

3.6. The Correlation between EPAS1 Expression and Immune
Infiltration. Spearman correlation test was applied to assess
the correlation between EPAS1 expression level (TPM) and

Table 2: Gene sets enriched in low-EPAS1 expression phenotype.

Gene set name NES ADJ P value FDR

KEGG_RIBOSOME -2.770 0.036 0.022

REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE -2.661 0.045 0.028

ROSS_AML_WITH_MLL_FUSIONS -2.564 0.034 0.021

VALK_AML_WITH_FLT3_ITD -2.180 0.023 0.015

PARK_TRETINOIN_RESPONSE_AND_PML_RARA_FUSION -2.113 0.021 0.013

REACTOME_HDACS_DEACETYLATE_HISTONES -1.958 0.028 0.017

NES: normalized enrichment score; ADJ: adjusted; FDR: false discovery rate.

Table 3: Gene sets enriched in high-EPAS1 expression phenotype.

Gene set name NES
ADJ P
value

FDR

REACTOME_REGULATION_OF_ACTIN_DYNAMICS_FOR_PHAGOCYTIC_CUP_FORMATION 2.510 0.010 0.006

REACTOME_COMPLEMENT_CASCADE 2.427 0.010 0.006

REACTOME_SIGNALING_BY_THE_B_CELL_RECEPTOR_BCR 2.283 0.010 0.006

BOQUEST_STEM_CELL_UP 2.260 0.010 0.006

REACTOME_CELL_SURFACE_INTERACTIONS_AT_THE_VASCULAR_WALL 2.257 0.010 0.006

REACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_NON_
LYMPHOID_CELL

2.174 0.010 0.006

NES: normalized enrichment score; ADJ: adjusted; FDR: false discovery rate.
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immune cell infiltration levels which were quantified by com-
paring with immunocyte signatures using ssGSEA. The
EPAS1 expression was positively correlated with macrophages
and immature dendritic cells (iDCs) (Figure 5(a)). The corre-
lation between macrophages and EPAS1 expression was
strongest among the 24 tumor-infiltrating immunocytes
(Spearman r = 0:373, P value <0.001) (Figure 5(b)). Wilcoxon
rank sum test showed that the abundance of macrophages in
low-EPAS1 expression group was significantly lower than that
in high-EPAS1 expression group with P value <0.001
(Figure 5(c)).

3.7. Expression Patterns of EPAS1 in AML. Wilcoxon rank
sum test showed that there was a significant difference in
EPAS1 expression between AML patients and healthy person.
The expression level of EPAS1 was significantly lower in AML
group than that in control group (P < 0:001; Figures 6(a) and
6(b)). We then evaluated the discrimination ability of EPAS1
between two groups by receiver operating characteristic
(ROC) analysis. The AUC = 0:925 indicated that EPAS1 had
a high discrimination value for AML (Figure 6(c)).

Univariate logistic regression analysis revealed that
EPAS1 expression based on median value was associated
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Figure 5: EPAS1 expression level was associated with immune filtration in AML. (a) Correlations of EPAS1 expression with abundances of
24 immune cells. The dots are colored by P value, and their size represents the value of Spearman r. (b, c) Correlation between the expression
level of EPAS1 and the infiltration level of macrophages.
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with clinicopathologic variables. As shown in Figures 7(a)–
7(e) and Table 4, decreased expression of EPAS1 in AML
was significantly associated with WBC count (×109/L)
(OR = 0:42 for >20 vs. <=20, P = 0:009), PB blasts (%)
(OR = 0:46 for >70 vs. <=70, P = 0:019), BM blasts (%)
(OR = 0:31 for >20 vs. <=20, P < 0:001), FLT3 mutation
(OR = 0:41 for positive vs. negative, P = 0:017), and NPM1
mutation (OR = 0:20 for positive vs. negative, P < 0:001).

3.8. Role of EPAS1 in AML Patient Survival. Kaplan-Meier
survival analysis revealed that OS was significantly poorer

in patients with low-EPAS1 expression than those with
high-EPAS1 expression (P = 0:006) (Figure 8(a)). In OS sub-
group analysis, we found that low expression of EPAS1 was
associated with poor OS in the subgroup of intermediate
cytogenetic risk (P = 0:013) (Figures 8(b) and 8(c)). The uni-
variate Cox regression analysis showed that low-EPAS1
expression correlated significantly with a poor OS (HR:
0.542; 95% CI: 0.352-0.836; P = 0:006). Other clinicopatho-
logic features, including cytogenetic risk and age, were asso-
ciated with poor outcome as well. At multivariate analyses,
low-EPAS1 expression was still independently correlated
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Figure 6: Expression patterns of EPAS1 in AML. (a) Lower EPAS1 expression in AML group than that in control group (P < 0:001). (b) As
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with OS (HR: 0.577; 95% CI: 0.364-0.915; P = 0:019), along
with age (HR: 3.174; 95% CI: 2.023-4.980; P < 0:001)
(Table 5).

3.9. Development and Validation of Nomogram. Low-EPAS1
expression and age were determined to be independent

prognostic factors for AML by univariate and multivariate
Cox regression analyses. Then, we constructed a
nomogram-integrated EPAS1 and age. Higher total points
represented worse survival probability at 1, 3, and 5 years
(Figure 9(a)). The C-index for the nomogram was 0.714
(95% CI: 0.689-0.739). Lines in calibration plot were all close
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Figure 7: (a–e) Association of EPAS1 expression and clinicopathologic variables including (a) WBC count, (b) PB blasts, (c) BM blasts, (d)
FLT3 mutation, and (e) NPM1 mutation. PB: peripheral blood; BM: bone marrow.
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Table 4: EPAS1 expression associated with clinicopathologic characteristics (logistic regression).

Characteristics Total (n) Odds ratio (OR) P value

WBC count (×10^9/L) (>20 vs. <=20) 150 0.42 (0.22-0.80) 0.009∗

PB blasts (%) (>70 vs. <=70) 151 0.46 (0.24-0.88) 0.019∗

BM blasts (%) (>20 vs. <=20) 151 0.31 (0.16-0.61) <0.001∗

Cytogenetic risk (poor vs. favorable & intermediate) 149 1.58 (0.75-3.43) 0.234

FLT3 mutation (positive vs. negative) 147 0.41 (0.19-0.84) 0.017∗

IDH1 R132 mutation (positive vs. negative) 149 0.42 (0.11-1.35) 0.164

IDH1 R140 mutation (positive vs. negative) 149 0.49 (0.13-1.64) 0.266

RAS mutation (positive vs. negative) 150 0.32 (0.05-1.46) 0.176

NPM1 mutation (positive vs. negative) 150 0.20 (0.08-0.48) <0.001∗

DNMT3A mutation (positive vs. negative) 109 1.70 (0.60-5.05) 0.321

RUNX1 mutation (positive vs. negative) 109 1.62 (0.48-5.80) 0.438

PB: peripheral blood; BM: bone marrow. ∗statistically significant, P < 0:05.
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to the ideal line, indicating that the predictions made by
nomogram conformed well to the observations in AML
patients (Figure 9(b)).

4. Discussion

Hypoxia-inducible factors (HIFs) mediate the responses to
oxygen (O2) concentrations in cells, which makes the regula-
tory role of HIFs in tumor development and progression
become an intensive area of research. EPAS1 (HIF-2), a het-
erodimeric member of the basic helix-loop-helix-PAS
domain polypeptide family, consists of α and β subunits
[29]. EPAS1 shares 48% identity with HIF-1α whose regula-
tory functions in glucose metabolism, cell proliferation,
angiogenesis, tumor invasion, and survival have been eluci-
dated over the past decades [30]. Although it is tempting
to speculate that EPAS1 is functionally similar to HIF-1α,
accumulating evidence shows that EPAS1 and HIF-1α could
lead to nonequivalent and even opposite effects on solid
tumor development, progression, and prognosis [31]. For
example, in von Hippel-Lindau-defective renal cell carci-
noma (RCC), HIF-1α inhibits cell proliferation in vivo or
in vitro, and the knockdown of HIF-1α promotes tumor
growth accordingly [32], while EPAS1 is shown to be essen-
tial for the growth of xenograft in RCC [11]. In hematolog-
ical malignancies, HIF-1α was required for the maintenance
of cancer stem cells in AML, and the downregulation of
HIF-1α could effectively eliminate the activity of AML

colony-forming unit [33]. However, few studies have
addressed the role of EPAS1 in AML.

The complex interplay of genetic events has long been
considered as the basis for disease classification, risk stratifi-
cation, and prognostic assessment in AML [34, 35]. This is
basically consistent with the results of our EPAS1-related
GSEA analysis, including biological processes such as
leukemia-associated genetic alterations, epigenetic regula-
tion, and immune microenvironment changes. Noteworthy,
both GSEA and logistic regression analysis showed that the
low-level EPAS1 expression was significantly correlated with
FMS-like tyrosine kinase-3 (FLT-3) mutation, which is con-
sidered to be one of the most important drivers in AML [36],
being associated with poor prognosis in AML [37]. In the
absence of ligands, FLT-3 mutations constitutively activate
of FLT-3 receptors, promoting cell proliferation, and sur-
vival through PI3K/AKT and other signaling pathways.
Interestingly, the results of GO and KEGG analyses pointed
in a similar direction. A number of studies have shown that
EPAS1 is closely related to the PI3K/AKT signaling pathway.
Researchers have elucidated the complex regulatory relation-
ship between EPAS1 and PI3K/AKT signaling pathway in
different cancers, in which factors such as PTEN, YY1,
SCD1, and CD44 also play important roles [38–40].
Although little is known about the regulatory mechanism
between EPAS1 and PI3K/AKT signaling pathway in hema-
tological malignancies, we can gain information and inspira-
tion from these similar studies in solid tumors. In addition,
the results of ROC curve analysis in our study also suggested

Table 5: Univariate and multivariate Cox regression analyses of prognostic covariates in AML patients.

Characteristics HR 95% CI P value

Univariate analysis

WBC count (×10^9/L) (>20 vs. <=20) 1.161 0.760-1.772 0.49

PB blasts (%) (>70 vs. <=70) 1.230 0.806-1.878 0.338

BM blasts (%) (>20 vs. <=20) 1.165 0.758-1.790 0.486

Cytogenetic risk (favorable vs. poor & intermediate) 0.312 0.160-0.606 <0.001
Gender (male vs. female) 1.030 0.674-1.572 0.892

Age (>60 vs. <=60) 3.333 2.164-5.134 <0.001
Race (White vs. Asian & Black or African American) 1.200 0.485-2.966 0.693

FLT3 mutation (positive vs. negative) 0.787 0.496-1.248 0.309

IDH1 R132 mutation (positive vs. negative) 1.702 0.689-4.205 0.249

IDH1 R140 mutation (positive vs. negative) 0.884 0.442-1.769 0.727

IDH1 R172 mutation (positive vs. negative) 1.641 0.228-11.804 0.623

RAS mutation (positive vs. negative) 1.555 0.568-4.254 0.39

NPM1 mutation (positive vs. negative) 0.879 0.546-1.416 0.596

DNMT3A mutation (positive vs. negative) 1.404 0.731-2.696 0.308

RUNX1 mutation (positive vs. negative) 1.119 0.553-2.267 0.754

EPAS1 (high vs. low) 0.542 0.352-0.836 0.006

Multivariate analysis

Cytogenetic risk (favorable vs. poor & intermediate) 0.508 0.249-1.034 0.062

Age (>60 vs. <=60) 3.174 2.023-4.980 <0.001
EPAS1 (high vs. low) 0.577 0.364-0.915 0.019

HR: hazard ratio; CI: confidence intervals; PB: peripheral blood; BM: bone marrow.
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that EPAS1 had a good discriminative ability for AML.
Taken together, all the findings indicate that further studies
on EPAS1 may contribute to personalized treatment and
development of targeted drugs for patients with AML.

Age has been previously reported as an independent
prognostic factor for AML [41], which is consistent with
our results obtained by multivariate Cox regression analysis.
From the statistical data in recent years, it is not difficult to
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Figure 9: Construction and validation of the nomogram for AML patients. (a) Nomogram for predicting the probability of 1-, 3-, and 5-year
over survival (OS) for AML patients. (b) Calibration plot of the nomogram for predicting the probability at 1, 2, and 3 years.
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see that the majority of AML patients are elderly, whose out-
comes are particularly poor [42, 43]. In view of this, the
development of prognostic prediction methods is particu-
larly urgent and important. In our study, the findings from
different analytic approaches, including Kaplan-Meier sur-
vival analysis, model building, and model validation, corrob-
orated each other and highlighted the potential power for
our prognostic model to enhance patient outcome predic-
tions. This suggests that our model may help to determine
prognosis and develop treatment plans accordingly in clini-
cal practice and may aid in clinical risk stratification.

AML arises in an immunosuppressive bone marrowmicro-
environment characterized by promoting tumor growth and
immune escape [44]. Interest in the use of immunotherapy to
improve AML outcomes is growing due to significant advances
in immunotherapy in solid tumors. At present, several immuno-
therapies are under development and clinical testing [45]. In our
study, there is a positive relationship between EPAS1 expression
level and infiltration level of many immune cells, particularly
macrophages. It is well known that macrophages are derived
from monocytes under physiological conditions and regulate
the innate and adaptive immune system by secreting cytokines
and chemokines. In AML, a large number of immature myeloid
cells proliferate, resulting in catastrophic bone marrow failure,
which may explain why there was a decrease in macrophage
expression. We also observed that the abundance of active den-
dritic cells (aDCs) in low-EPAS1 expression group was signifi-
cantly higher than that in high-EPAS1 expression group,
although the correlation between aDCs and EPAS1 expression
wasweak.WhenDCsareactivated, theymigrate to lymphoid tis-
sues to interact with T to stimulate and control the appropriate
immune response. The increased level of aDCs in low-EPAS1
expression group (AML-patient group) appears to compensate
for the tumor immune dysfunction caused by macrophage
depletion to some extent. Our results suggest a possible regula-
torymechanism of the tumor immunemicroenvironment asso-
ciated with low-EPAS1 expression in AML, which may be
helpful to the development of immunotherapy forAMLpatients
in the future. However, more well-designed clinical trials are
needed to confirm whether and how the infiltration degree of
these immune cells changes throughout the course of AML.

There were some limitations in our study. First, all the data
were extracted from the public database. The small and unbal-
anced sample sizes were used in the analyses, so further mul-
ticenter and large sample size studies are needed. Second, the
current study was performed based on RNA-sequencing data
from public database; therefore, we cannot gain deeper
insights of the gene function at other omics levels. Finally, it
would be better to further collect clinical data on the basis of
retrospective analysis for validation. We are collecting bone
marrow samples from clinical AML patients for subsequent
immunohistochemistry and single-cell sequencing analyses,
which will serve as a supplement to our research results and
enhance the persuasiveness of our article.

5. Conclusions

In conclusion, our study revealed that decreased EPAS1
expression could be a potential diagnostic indicator and a

prognostic marker of poor survival in AML. Further experi-
ments are needed to validate our findings and identify the
underlying molecular mechanism of AML.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by the National Key Research
and Development Program of China (grant no.
2019YFF0216502) and the Scientific Research Project Fund
of Tianjin Blood Transfusion Association (grant no.
2021KY02).

Supplementary Materials

Supplementary 1. Supplementary Figure 1: differences in the
enrichment scores of extracellular matrix-related pathways
between high- and low-EPAS1 expression groups.

Supplementary 2. Supplementary Figure 2: top 25 genes dif-
ferentially expressed in high- and low-EPAS1 expression
groups and control group.

Supplementary 3. R codes used in our study.

References

[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,
2020,” CA: a Cancer Journal for Clinicians, vol. 70, no. 1,
pp. 7–30, 2020.

[2] N. Howlader, “SEER Cancer Statistics Review, 1975-2017,”
National Cancer Institute Bethesda, MD, 2020, https://seer
.cancer.gov/csr/1975_2017/.

[3] A. Burnett, M. Wetzler, and B. Lowenberg, “Therapeutic
advances in acute myeloid leukemia,” Journal of Clinical
Oncology, vol. 29, no. 5, pp. 487–494, 2011.

[4] K. D. Miller, L. Nogueira, A. B. Mariotto et al., “Cancer treat-
ment and survivorship statistics, 2019,” CA: a Cancer Journal
for Clinicians, vol. 69, no. 5, pp. 363–385, 2019.

[5] R. M. Shallis, R. Wang, A. Davidoff, X. Ma, and A. M. Zeidan,
“Epidemiology of acute myeloid leukemia: recent progress and
enduring challenges,” Blood Reviews, vol. 36, pp. 70–87, 2019.

[6] X. Yi, Y. Liang, E. Huerta-Sanchez et al., “Sequencing of 50
human exomes reveals adaptation to high altitude,” Science,
vol. 329, no. 5987, pp. 75–78, 2010.

[7] Z. Zhuang, C. Yang, F. Lorenzo et al., “Somatic HIF2A gain-of-
function mutations in paraganglioma with polycythemia,” The
New England Journal of Medicine, vol. 367, no. 10, pp. 922–
930, 2012.

[8] I. Comino-Méndez, A. A. de Cubas, C. Bernal et al., “Tumoral
EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma
and paraganglioma in the absence of erythrocytosis,” Human
Molecular Genetics, vol. 22, no. 11, pp. 2169–2176, 2013.

17Disease Markers

https://downloads.hindawi.com/journals/dm/2023/6072782.f1.pdf
https://downloads.hindawi.com/journals/dm/2023/6072782.f2.pdf
https://downloads.hindawi.com/journals/dm/2023/6072782.f3.zip
https://seer.cancer.gov/csr/1975_2017/
https://seer.cancer.gov/csr/1975_2017/


[9] J. Welander, A. Andreasson, M. Brauckhoff et al., “Frequent
EPAS1/HIF2α exons 9 and 12 mutations in non-familial pheo-
chromocytoma,” Endocrine-Related Cancer, vol. 21, no. 3,
pp. 495–504, 2014.

[10] K. Kondo, J. Klco, E. Nakamura, M. Lechpammer, and W. G.
Kaelin Jr., “Inhibition of HIF is necessary for tumor suppres-
sion by the von Hippel-Lindau protein,” Cancer Cell, vol. 1,
no. 3, pp. 237–246, 2002.

[11] K. Kondo, W. Y. Kim, M. Lechpammer, and W. G. Kaelin,
“Inhibition of HIF2α is sufficient to suppress pVHL-defective
tumor growth,” PLoS Biology, vol. 1, no. 3, p. E83, 2003.

[12] M. Zimmer, D. Doucette, N. Siddiqui, and O. Iliopoulos,
“Inhibition of hypoxia-inducible factor is sufficient for growth
suppression of VHL-/- tumors,” Molecular Cancer Research,
vol. 2, no. 2, pp. 89–95, 2004.

[13] H. Cho, X. du, J. P. Rizzi et al., “On-target efficacy of a HIF-2α
antagonist in preclinical kidney cancer models,” Nature,
vol. 539, no. 7627, pp. 107–111, 2016.

[14] W. Chen, H. Hill, A. Christie et al., “Targeting renal cell carci-
noma with a HIF-2 antagonist,” Nature, vol. 539, no. 7627,
pp. 112–117, 2016.

[15] K. D. Courtney, J. R. Infante, E. T. Lam et al., “Phase I dose-
escalation trial of PT2385, a first-in-class hypoxia-inducible
factor-2α antagonist in patients with previously treated
advanced clear cell renal cell carcinoma,” Journal of Clinical
Oncology, vol. 36, no. 9, pp. 867–874, 2018.

[16] T. K. Choueiri, T. M. Bauer, K. P. Papadopoulos et al., “Inhibi-
tion of hypoxia-inducible factor-2α in renal cell carcinoma
with belzutifan: a phase 1 trial and biomarker analysis,”Nature
Medicine, vol. 27, no. 5, pp. 802–805, 2021.

[17] M. S. Nakazawa, T. S. K. Eisinger-Mathason, N. Sadri et al.,
“Epigenetic re-expression of HIF-2α suppresses soft tissue sar-
coma growth,” Nature Communications, vol. 7, no. 1, article
10539, 2016.

[18] H. X. Sun, Y. Xu, X. R. Yang et al., “Hypoxia inducible factor 2
alpha inhibits hepatocellular carcinoma growth through the
transcription factor dimerization partner 3/ E2F transcription
factor 1–dependent apoptotic pathway,” Hepatology, vol. 57,
no. 3, pp. 1088–1097, 2013.

[19] J. Vivian, A. A. Rao, F. A. Nothaft et al., “Toil enables repro-
ducible, open source, big biomedical data analyses,” Nature
Biotechnology, vol. 35, no. 4, pp. 314–316, 2017.

[20] M. I. Love, W. Huber, and S. Anders, “Moderated estimation
of fold change and dispersion for RNA-seq data with DESeq2,”
Genome Biology, vol. 15, no. 12, p. 550, 2014.

[21] Y. Zhou, B. Zhou, L. Pache et al., “Metascape provides a
biologist-oriented resource for the analysis of systems-level
datasets,” Nature Communications, vol. 10, no. 1, p. 1523,
2019.

[22] V. K. Mootha, C. M. Lindgren, K. F. Eriksson et al., “PGC-1α-
responsive genes involved in oxidative phosphorylation are
coordinately downregulated in human diabetes,” Nature
Genetics, vol. 34, no. 3, pp. 267–273, 2003.

[23] A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set
enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 102, no. 43, pp. 15545–15550, 2005.

[24] G. Yu, L. G. Wang, Y. Han, and Q. Y. He, “clusterProfiler: an R
package for comparing biological themes among gene clus-
ters,” OMICS, vol. 16, no. 5, pp. 284–287, 2012.

[25] S. Hanzelmann, R. Castelo, and J. Guinney, “GSVA: gene set
variation analysis for microarray and RNA-seq data,” BMC
Bioinformatics, vol. 14, no. 1, p. 7, 2013.

[26] G. Bindea, B. Mlecnik, M. Tosolini et al., “Spatiotemporal
dynamics of intratumoral immune cells reveal the immune
landscape in human cancer,” Immunity, vol. 39, no. 4,
pp. 782–795, 2013.

[27] X. Robin, N. Turck, A. Hainard et al., “pROC: an open-source
package for R and S+ to analyze and compare ROC curves,”
BMC Bioinformatics, vol. 12, no. 1, p. 77, 2011.

[28] J. Liu, T. Lichtenberg, K. A. Hoadley et al., “An integrated
TCGA pan-cancer clinical data resource to drive high-quality
survival outcome analytics,” Cell, vol. 173, no. 2, pp. 400–
416.e11, 2018.

[29] H. Tian, S. L. McKnight, and D. W. Russell, “Endothelial PAS
domain protein 1 (EPAS1), a transcription factor selectively
expressed in endothelial cells,” Genes & Development, vol. 11,
no. 1, pp. 72–82, 1997.

[30] J. A. Bertout, S. A. Patel, and M. C. Simon, “The impact of O2
availability on human cancer,” Nature Reviews. Cancer, vol. 8,
no. 12, pp. 967–975, 2008.

[31] B. Keith, R. S. Johnson, and M. C. Simon, “HIF1α and HIF2α:
sibling rivalry in hypoxic tumour growth and progression,”
Nature Reviews. Cancer, vol. 12, no. 1, pp. 9–22, 2011.

[32] C. Shen, R. Beroukhim, S. E. Schumacher et al., “Genetic and
functional studies implicate HIF1α as a 14q kidney cancer sup-
pressor gene,” Cancer Discovery, vol. 1, no. 3, pp. 222–235, 2011.

[33] Y. Wang, Y. Liu, S. N. Malek, P. Zheng, and Y. Liu, “Targeting
HIF1α eliminates cancer stem cells in hematological malig-
nancies,” Cell Stem Cell, vol. 8, no. 4, pp. 399–411, 2011.

[34] Cancer Genome Atlas Research Network, “Genomic and epi-
genomic landscapes of adult de novo acute myeloid leukemia,”
The New England Journal of Medicine, vol. 368, no. 22,
pp. 2059–2074, 2013.

[35] E. Papaemmanuil, M. Gerstung, L. Bullinger et al., “Genomic
classification and prognosis in acute myeloid leukemia,” The
New England Journal of Medicine, vol. 374, no. 23, pp. 2209–
2221, 2016.

[36] K. H. Metzeler, T. Herold, M. Rothenberg-Thurley et al.,
“Spectrum and prognostic relevance of driver gene mutations
in acute myeloid leukemia,” Blood, vol. 128, no. 5, pp. 686–
698, 2016.

[37] L. Zhou, Y. Zhang, S. Chen et al., “A regimen combining the
Wee1 inhibitor AZD1775 with HDAC inhibitors targets
human acute myeloid leukemia cells harboring various genetic
mutations,” Leukemia, vol. 29, no. 4, pp. 807–818, 2015.

[38] B. L. Petrella and C. E. Brinckerhoff, “PTEN suppression of
YY1 induces HIF-2 activity in von-Hippel-Lindau-null renal-
cell carcinoma,” Cancer Biology & Therapy, vol. 8, no. 14,
pp. 1389–1401, 2009.

[39] Y. Zhang, H. Wang, J. Zhang, J. Lv, and Y. Huang, “Positive
feedback loop and synergistic effects between hypoxia-
inducible factor-2α and stearoyl–CoA desaturase-1 promote
tumorigenesis in clear cell renal cell carcinoma,” Cancer Sci-
ence, vol. 104, no. 4, pp. 416–422, 2013.

[40] J. Bai, W. B. Chen, X. Y. Zhang et al., “HIF-2α regulates CD44
to promote cancer stem cell activation in triple-negative breast
cancer via PI3K/AKT/mTOR signaling,” World Journal of
Stem Cells, vol. 12, no. 1, pp. 87–99, 2020.

[41] C. Röllig, C. Thiede, M. Gramatzki et al., “A novel prognostic
model in elderly patients with acute myeloid leukemia: results

18 Disease Markers



of 909 patients entered into the prospective AML96 trial,”
Blood, The Journal of the American Society of Hematology,
vol. 116, no. 6, pp. 971–978, 2010.

[42] A. Khwaja, M. Bjorkholm, R. E. Gale et al., “Acute myeloid leu-
kaemia,” Nature Reviews. Disease Primers, vol. 2, no. 1,
p. 16010, 2016.

[43] C. D. DiNardo and A. E. Perl, “Advances in patient care
through increasingly individualized therapy,” Nature Reviews.
Clinical Oncology, vol. 16, no. 2, pp. 73-74, 2019.

[44] F. Klemm and J. A. Joyce, “Microenvironmental regulation of
therapeutic response in cancer,” Trends in Cell Biology,
vol. 25, no. 4, pp. 198–213, 2015.

[45] Y. Liu, J. P. Bewersdorf, M. Stahl, and A. M. Zeidan, “Immuno-
therapy in acute myeloid leukemia and myelodysplastic syn-
dromes: the dawn of a new era?,” Blood Reviews, vol. 34,
pp. 67–83, 2019.

19Disease Markers


	Bioinformatics Analysis Identifies EPAS1 as a Novel Prognostic Marker Correlated with Immune Infiltration in Acute Myeloid Leukemia
	1. Introduction
	2. Materials and Methods
	2.1. Study Design
	2.2. Preprocessing for RNA-Sequencing Data
	2.3. Differentially Expressed Gene (DEG) Analysis
	2.4. Functional Enrichment Analysis
	2.5. Gene Set Enrichment Analysis
	2.6. Gene Set Variation Analysis
	2.7. Immune Infiltration Analysis by ssGSEA
	2.8. Statistical Analysis
	2.9. Prognostic Model

	3. Results
	3.1. Patient Characteristics
	3.2. Identification of DEGs
	3.3. GO and KEGG Analyses of EPAS1 in AML
	3.4. EPAS1-Related Signaling Pathways Based on GSEA
	3.5. GSVA Analysis of EPAS1 in AML
	3.6. The Correlation between EPAS1 Expression and Immune Infiltration
	3.7. Expression Patterns of EPAS1 in AML
	3.8. Role of EPAS1 in AML Patient Survival
	3.9. Development and Validation of Nomogram

	4. Discussion
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments
	Supplementary Materials



