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Background. It remains unclear about the mechanisms of prostate cancer progressing to castration resistant prostate cancer
(CRPC) and the correlation with ferroptosis. Methods. We compared the gene profiles between localized prostate cancer and
metastatic CRPC using the GEO dataset and intersected with a cluster of known ferroptosis-related genes. We received
differentially expressed genes (DEGs) in CRPC related to ferroptosis and performed survival analysis to analyze the prognostic
values. Furthermore, we conducted single sample gene set enrichment analysis (ssGSEA) to analyze immune infiltration and
investigate microRNA crosstalk and methylation for prognostic genes using online databases. Results. We identified 84 DEGs
in CRPC related to ferroptosis and 19 hub genes densely connected into networks by enrichment analysis. We performed
survival analysis and Cox regression for these genes and identified LAMP2 with significantly prognostic values in overall
survival (OS) and disease-specific survival (DSS) of prostate cancer. Furthermore, we found immune infiltration of various
immune cells significantly correlated with LAMP2 expression in prostate cancer and identified multiple microRNAs associated
with LAMP2 expression in prostate cancer. In addition, we found that the methylation level of LAMP2 in prostate cancer was
significantly associated with cancer and identified 8 methylation sites for LAMP2. Conclusion. Ferroptosis-related gene LAMP2
is a potential biomarker with prognostic value for prostate cancer.

1. Introduction

Prostate cancer is the second most commonly diagnosed
malignancy in men worldwide, with an estimated incidence
of 1.4 million in 2020 [1]. Distribution of prostate cancer
incidence and lethality follows genetics, environments, life-
styles, and/or interactions between various factors. Prostate
cancer is a highly heterogeneous disease with significant
difference in prognosis between indolent and aggressive
phenotypes, and poor outcomes of aggressive prostate can-
cer continue to present a major challenge in prostate cancer
treatment. Given the critical role of androgens in the pro-
gression of prostate cancer, androgen deprivation therapy
(ADT) has served as one of the main treatments, while
castration resistant prostate cancer usually becomes the
ultimate regression of advanced and aggressive prostate

cancer with fast progression, multiple metastasis, and poor
outcomes [2].

Ferroptosis is an iron-dependent form of regulated cell
death driven by excessive lipid peroxidation and has been
implicated in the progression and therapeutic responses
of various cancerous diseases [3]. On the other hand,
ferroptosis-induced damage can trigger inflammation-
associated immunosuppression in the tumor microenviron-
ment, thus favoring tumor growth. Ferroptosis is modulated
by a series of proteins which served as drivers or suppressors,
while gene expression patterns could be altered during the
process of carcinogenesis and progression, especially in
advanced cancers [4]. Currently, the mechanism by which
ferroptosis promotes prostate cancer to acquire aggressive
phenotypes, and progress to metastasis or CRPC remains
unclear. Based on high-throughput sequencing, it is an
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effective method to explore crosstalk and mechanisms using
a gene expression profile estimated from whole-genome
microarray analysis. In our study, we explored differentially
expressed genes (DEGs) between localized prostate cancer
and CRPC using datasets from Gene Expression Omnibus
(GEO) and correlated DEGs with ferroptosis. We aimed to
identify potential ferroptosis-related genes in CRPC and
further analyzed gene expression associated with clinical
characteristics and prognosis to reveal the crosstalk of
ferroptosis and CRPC.

2. Materials and Methods

2.1. RNA Sequencing Data Preparation and Identification of
DEGs. We first downloaded RNA sequencing data of
localized prostate cancer and metastatic CRPC in the
microarray dataset GSE35988 from two platforms. One is
Agilent-012391 Whole Human Genome Oligo Microarray,
GPL6848, and the other is Agilent-014850 Whole Human
Genome Microarray, GPL6480. As results, 59 samples of

localized prostate cancer and 35 samples of CRPC were
merged for analysis of DEGs [5]. Besides, RNA sequencing
data of prostate cancer and paracancerous normal tissue
from the Illumina HiSeq RNA sequencing platform corre-
lated with the clinical information of The Cancer Genome
Atlas (TCGA) database was also downloaded for analysis.

We first performed different expressed analysis using the
online tool GEO2R. We set the adjusted p value <0.05 and
2-fold change (jlog 2FCj ≥ 1) as thresholds for differential
expression. We downloaded gene clusters of both drivers
and suppressors for ferroptosis from FerrDb V2 and con-
structed a Venn diagram to extract DEGs correlated with
ferroptosis [6].

2.2. Enrichment Analysis and Protein-Protein Interaction
Networks. We submitted DEGs extracted from the Venn
diagram into the online database Metascape for enrichment
analysis of Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG), including biological process
(BP), cellular component (CC), molecular function (MF),

RNA data from GSE 35988 on GPL6480
49 localized prostate cancers

27 metastatic prostate cancers

RNA data from GSE 35988 on GPL6848
10 localized prostate cancers
8 metastatic prostate cancers
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Figure 1: A flow chart of current bioinformatics study.
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and pathways [7]. Accumulative hypergeometric p values
and enrichment factors were calculated and used for filter-
ing. The remaining significant terms were then hierar-
chically clustered into a tree based on Kappa-statistical
similarities among their gene memberships. Then, 0.3
kappa score was applied as the threshold to cast the
tree into term clusters. We selected a subset of repre-
sentative terms from the full cluster and converted
them into a network layout. All protein-protein interac-

tions among input genes were extracted from PPI data
sources and formed a PPI network. MCODE algorithm
was applied to this network to identify neighborhoods
where proteins are densely connected, and then we identified
genes densely connected into the networks as hub genes for
further analysis.

2.3. Correlations between Hub Genes and Clinical
Characteristics. We conducted survival analysis with
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Figure 2: Differential gene expression related to ferroptosis between localized prostate cancer and CRPC. (a) Heat map presenting gene
distribution of GSE35988 in GPL6848. (b) Heat map presenting gene distribution of GSE35988 in GPL6480. (c) Volcanic map
presenting gene distribution of GSE35988 in GPL6848. (d) Volcanic map presenting gene distribution of GSE35988 in GPL6480.
(e) Venn diagram extracting DEGs correlated with ferroptosis between localized prostate cancer and CRPC.
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univariate Cox proportional hazard regression by R software
for all hub genes associated with overall survival (OS) and
disease-specific survival (DSS) using TCGA data of prostate
cancer. We set 50% as the cut-off value dividing two groups

of low and high expression and merged significant genes in
multivariate regression when p value <0.1 to evaluate the
prognostic value. We generated forest plots to illustrate
hazard risk (HR) with 95% confidence interval (CI).

GO: 1901652: response to peptide
GO: 0050678: regulation of epithelial cell proliferation
GO: 0010942: positive regulation of cell death
GO: 0032787: monocarboxylic acid metabolic process
GO: 0010035: response to inorganic substance
hsa04140: Autophagy – animal
GO: 0008610: lipid biosynthetic process
GO: 0001666: response to hypoxia
GO: 0016491: oxidoreductase activity
GO: 0045859: regulation of protein kinase activity
GO: 0019216: regulation of lipid metabolic process
GO: 0031331: positive regulation of cellular catabolic process
GO: 0007519: skeletal muscle tissue development
GO: 0051348: negative regulation of transferase activity
GO: 0071363: cellular response to growth factor stimulus
hsa04216: Ferroptosis
hsa04146: Peroxisome
GO: 0120161; regulation of cold–induced thermogenesis
GO: 0043618: regulation of transcription from RNA polymerase II promoter in response to stress
GO: 0071214: cellular response to abiotic stimulus
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Figure 3: Enrichment analysis for DEGs. (a) Representative terms of enriched ontology clusters. (b) Representative terms in the whole
networks and each term represented by a circle node. (c) Nodes representing terms colored by p value.
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Figure 4: Protein-protein interaction. (a) Protein-protein interactions among DEGs extracted from PPI data source to form a PPI network.
(b) MCODE algorithm applied to identify neighborhoods where proteins are densely connected.
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Then, we retrieved prognostic genes in the Human
Protein Atlas (HPA) database for RNA expression in various
tissues and pan cancers, with immunohistochemical staining
to validate gene expression in prostate tissue. Different
expression, receiver operating characteristics (ROC), and
survival analysis for prognostic genes in different subgroups
of prostate cancer would be conducted.

2.4. Correlation with Immune Infiltration, MicroRNA
Crosstalk, and Methylation. We conducted a single sample
gene set enrichment analysis (ssGSEA) for genes with signif-
icant prognostic value to analyze correlations with 24 types
of immune cells to investigate the immune infiltrates using
the GSVA package of R software [8, 9]. The infiltration of
immunocytes correlated with gene expression was analyzed
by Spearman correlation.

We submitted prognostic genes into the TarBase v.8
database to search for microRNAs in potential regulation,
selected 10 top microRNAs ordered by prediction score,
and subsequently performed Spearman correlation for
microRNAs using TCGA data [10].

We evaluated the methylation levels of prognostic genes
in prostate cancer using the UALCAN database and Disease-
Meth database, while we evaluated methylation sites using
the MEXPRESS database [11–15].

2.5. Statistical Analysis. We performed statistics using
GraphPad Prism 8.0 and R software 3.6.3 and presented
results in the form of medians with 95% CIs. Two-side p
value <0.05 was considered as statistical difference if not spe-
cifically stated. We summarized the whole process of this
study as a flow chart (Figure 1).

3. Results

3.1. Identification of DEGs in CRPC Correlated with
Ferroptosis. We downloaded RNA sequencing data of
GSE35988 and performed differential expression analysis
between CRPC and localized prostate cancer. We generated
heat maps and volcanic maps presenting gene distribution
(Figures 2(a)–2(d)). Subsequently, we downloaded gene
clusters of both drivers and suppressors for ferroptosis and
constructed a Venn diagram extracting 84 DEGs correlated
with ferroptosis (Figure 2(e)).

3.2. Enrichment Analysis and Protein-Protein Interaction
Networks. We submitted ferroptosis related DEGs to the
Metascape database for enrichment analysis including BP,
CC, MF, and KEGG pathways. We obtained enriched
ontology clusters and presented representative terms
(Figure 3(a)). We selected a subset of representative terms
from the full cluster and converted them into a network lay-
out. More specifically, each term is represented by a circle
node, where its size is proportional to the number of input
genes which fall under that term, and its color represented
its cluster identity (Figure 3(b)), while the same enrichment
network displayed its nodes colored by p value (Figure 3(c)).
Terms with a similarity score > 0:3 are linked by an edge.
Furthermore, all protein-protein interactions among input
genes were extracted from PPI data sources and formed a
PPI network (Figure 4(a)). MCODE algorithm was then
applied to this network to identify neighborhoods where
proteins are densely connected (Figure 4(b)). As results, we
identified 19 genes densely connected into networks as hub
genes for further analysis (Table 1).

Table 1: Hub genes related to ferroptosis with differential expression in CRPC.

Gene symbol Ferroptosis factors Location Most expressed tissue

BECN1 Driver Chromosome17 Skeletal muscle

CDCA3 Driver Chromosome12 Retina

CDKN2A Driver Chromosome9 Pituitary gland

EGR1 Driver Chromosome5 Ovary

ELOVL5 Driver Chromosome6 Adipose tissue

GABARAPL1 Driver Chromosome12 Skeletal muscle

GABARAPL2 Driver Chromosome16 White matter

GJA1 Driver Chromosome6 Cerebral cortex

LIG3 Driver Chromosome17 Testis

MDM4 Driver Chromosome1 Bone marrow

MIB2 Driver Chromosome1 Skeletal muscle

PRKCA Driver Chromosome17 Hippocampal formation

SCP2 Driver Chromosome1 Liver

BRD2 Suppressor Chromosome6 Testis

CAV1 Suppressor Chromosome7 Adipose tissue

CREB1 Suppressor Chromosome2 Testis

EZH2 Suppressor Chromosome7 Bone marrow

LAMP2 Suppressor ChromosomeX White matter

TP63 Suppressor Chromosome3 Skin
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3.3. Correlation between Hub Genes and Clinical
Characteristics. We conducted survival analysis with univar-
iate Cox proportional hazard regression for all hub genes
associated with OS and DSS using TCGA data of prostate
cancer. We found that only MDM4 (HR = 6:424, p = 0:021)
and LAMP2 (HR = 0:119, p = 0:045) were significantly
associated with OS in prostate cancer, and no significant
association was found in the analysis of DSS. We conducted
Tables 2 and 3 to describe Cox results and a forest plot show-
ing HRs of each hub gene associated with OS (Figure 5). We
further found that LAMP2 was still significantly associated
with OS in multivariate Cox regression (HR = 0:095, p =
0:028), indicating its prognostic value in prostate cancer.

Moreover, we retrieved LAMP2 in the HPA database
for RNA expression in various tissues and pan cancers
(Figures 6(a) and 6(b)). Immunohistochemical staining
validated LAMP2 expression in prostate tissue (both normal
and cancerous tissues) with cytoplasmic or membranous
location (Figures 6(c)–6(e)). Then, we conducted survival
analysis for LAMP2 in different subgroups of prostate cancer
while no significant association was detected (Figure 6(f)).
Besides, we compared differential expression and ROC anal-
ysis for other hub genes (Figures S1 and S2).

3.4. LAMP2 Correlated with Immune Infiltration, MicroRNA
Crosstalk, and Methylation. We employed Spearman corre-
lation to investigate the correlation between LAMP2 expres-
sion and immune cell infiltration level using TCGA data
quantified as the ssGSEA score and revealed 15 types of
immune cells significantly correlated with LAMP2 expres-

Table 3: Cox regression for hub genes associated with disease
specific survival of TCGA data.

Gene symbol Case
Univariate analysis

HR (95% CI)∗ p value

MDM4 495 5.498 (0.611-49.447) 0.128

BRD2 495 4.902 (0.544-44.139) 0.156

CREB1 495 4.569 (0.505-41.305) 0.176

BECN1 495 3.906 (0.436-34.947) 0.223

PRKCA 495 0.262 (0.029-2.412) 0.237

LAMP2 495 0.264 (0.029-2.419) 0.239

GABARAPL1 495 0.285 (0.032-2.567) 0.263

CDCA3 495 3.496 (0.388-31.466) 0.264

GJA1 495 0.286 (0.031-2.627) 0.269

SCP2 495 3.437 (0.383-30.816) 0.27

CDKN2A 495 3.410 (0.373-31.174) 0.277

TP63 495 0.323 (0.035-2.961) 0.318

MIB2 495 3.050 (0.316-29.407) 0.335

CAV1 495 0.357 (0.037-3.442) 0.373

GABARAPL2 495 1.793 (0.298-10.805) 0.524

EGR1 495 0.580 (0.096-3.501) 0.553

ELOVL5 495 1.484 (0.248-8.882) 0.665

LIG3 495 1.437 (0.240-8.605) 0.691

EZH2 495 513316338.157 (0.000-Inf) 0.999
∗HR= hazard ratio; CI = confidence interval. ∗∗Multivariate regression was
refused since no significance was in univariate analysis.

Table 2: Cox regression for hub genes associated with overall survival of TCGA data.

Gene symbol Cases
Univariate analysis Multivariate analysis∗∗

HR (95% CI)∗ p value HR (95% CI) p value

MDM4 495 6.424 (1.318-31.316) 0.021 5.242 (0.780-35.217) 0.088

LAMP2 495 0.119 (0.015-0.952) 0.045 0.095 (0.012-0.771) 0.028

EZH2 495 7.315 (0.919-58.246) 0.06 4.929 (0.572-42.488) 0.147

PRKCA 495 0.275 (0.058-1.318) 0.106

CDKN2A 495 3.471 (0.729-16.530) 0.118

CDCA3 495 3.300 (0.696-15.636) 0.133

GABARAPL2 495 2.814 (0.721-10.977) 0.136

CREB1 495 2.729 (0.697-10.691) 0.15

MIB2 495 3.064 (0.616-15.233) 0.171

BRD2 495 1.994 (0.552-7.203) 0.292

GABARAPL1 495 0.526 (0.135-2.047) 0.354

GJA1 495 0.544 (0.136-2.173) 0.389

EGR1 495 0.578 (0.162-2.068) 0.4

BECN1 495 1.527 (0.429-5.430) 0.513

CAV1 495 0.694 (0.164-2.928) 0.619

SCP2 495 0.896 (0.259-3.105) 0.863

LIG3 495 1.057 (0.303-3.690) 0.931

TP63 495 0.949 (0.258-3.489) 0.937

ELOVL5 495 1.000 (0.289-3.459) 0.999
∗HR= hazard ratio; CI = confidence interval. ∗∗Multivariate regression was conducted when p value <0.1.
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sion (Figure 7(a)), indicating the vital role of LAMP2 in the
immune infiltration in prostate cancer.

We submitted LAMP2 into the TarBase v.8 database to
search for microRNAs in potential regulation and selected
10 top microRNAs ordered by the prediction score listed
in Table 4. We subsequently performed Spearman correla-
tion for microRNAs with LAMP2 and identified 6 micro-
RNAs with significant correlation (Figure 7(b)).

We evaluated the promoter methylation level of LAMP2
in prostate cancer using the UALCAN database and found
prostate cancer presenting a significantly decreased level
(Figure 7(c)). Similar results from the DiseaseMeth database
revealed a decreased level of methylation in prostate cancer
(Figure 7(d)). Additionally, using the MEXPRESS data-
base, we evaluated the methylation sites of DNA sequence
and found 8 methylation sites associated with LAMP2
(Figure 7(e)).

4. Discussion

Prostate cancer is a highly heterogeneous malignancy, and
metastatic CRPC is usually a destination of prostate cancer
progressing to terminal stages, accumulating various aggres-
sive cancerous phenotypes and lethal genetic alterations.
Ferroptosis is a novel form of programmed cell death, and
its regulatory role in tumor development is complex and
multifaceted, while there are few studies on ferroptosis in
prostate cancer, especially in aggressive cancer or CRPC.
Therefore, it is of great interest to investigate ferroptosis
associated with progression and prognosis in prostate
cancer. In our study, we first analyzed the differential expres-
sion of gene profiles between localized prostate cancer and
metastatic CRPC from the GEO dataset and obtained an
intersection with a cluster of known ferroptosis-related
genes, identifying 84 DEGs in CRPC related to ferroptosis.
We further identified 19 hub genes densely connected into
networks by enrichment analysis. Subsequently, we per-
formed survival analysis and Cox regression for these genes
and identified LAMP2 with significantly prognostic values in

OS and DSS of prostate cancer. On this basis, we found
immune infiltration of various immune cells significantly
correlated with LAMP2 expression in prostate cancer. Fur-
thermore, we analyzed and identified multiple microRNAs
associated with LAMP2 expression in prostate cancer. In
addition, we found that the methylation level of LAMP2 in
prostate cancer was significantly associated with cancer
and identified eight methylation sites for LAMP2. All of
these results suggested that the ferroptosis-related LAMP2
played an important role in progression and prognosis in
prostate cancer.

LAMP2, described as lysosomal associated membrane
protein 2, located in chromosome X, is one of the most
abundant transmembrane proteins of the lysosome, usually
highly glycosylated probably forming a continuous glyco-
protein layer at the luminal side of the lysosomal membrane,
maintain the lysosomal stability and involving in direct
transport events across the membrane [16–18]. Deficiency
of lysosomal membrane proteins has been shown to cause
clinical manifestations ranging from severe visceral symp-
toms to neurodegeneration, and a classic example associated
with null mutation of LAMP2 is Danon disease [19]. Beside,
emerging evidence has revealed that lysosomal membrane
proteins are inextricably linked to glucose and lipid metabo-
lism, including cholesterol metabolism, lipophagy, and
lipoprotein regulation, and this relationship represents a
mutual influence and regulation [20]. On the other hand,
abnormalities of lipid metabolism are also inextricably
linked to the carcinogenesis and progression of prostate can-
cer. Our previous meta-analysis has revealed the significant
association between statin use and biochemical recurrence
in prostate cancer patients receiving curative treatment
[21]. Taken together, LAMP2-associated abnormalities in
lipid metabolism and related signaling networks might play
important roles in mechanisms of prostate cancer invasion
and progression.

Ferroptosis is an iron-dependent form of programmed
cell death caused by unrestricted lipid peroxidation and sub-
sequent plasma membrane rupture [22]. Ferroptosis could

Gene Symbol HR (95% CI) P value
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Figure 5: Forest plot presenting Cox regression of overall survival for each hub gene ordered by p value.
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Figure 6: Continued.
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be induced through extrinsic or intrinsic pathways, in which
iron accumulation and lipid peroxidation are two key signals
initiating membrane oxidative damage and ferroptosis [23].
In oncology, cancer cells, which are resistant to conventional
therapies or with high propensity of metastasis, might be
particularly susceptible to ferroptosis [24, 25]. As a ferropto-
sis suppressor, LAMP2 was reported with protection against
oxidative stress-induced ferroptosis. Inhibiting LAMP2
would decrease cytosolic cysteine concentration, leading to
reduced glutathione content, decreased antioxidant capacity,

and mitochondrial lipid peroxidation, which in turn trig-
gered oxidative stress-induced ferroptosis [26]. Undertaking
the previous context, lipid metabolism-related ferroptosis
involved pathways and networks might have important roles
in carcinogenesis and progression, which could help to
identify biomarkers to stratify malignancy appropriately in
clinical treatment and explain how therapies regulating
cholesterol metabolism could affect cancer prognosis.

Our current study focused on the difference of gene
expression profiles between localized prostate cancer and

(f)

Figure 6: Expression of LAMP2 with clinical information. (a) RNA expression of LAMP2 in normal tissues. (b) RNA expression of LAMP2
in pan cancers. (c) Immunohistochemical staining validated LAMP2 expression in normal prostate tissue. (d) Immunohistochemical
staining validated LAMP2 expression in low grade prostate cancer. (e) Immunohistochemical staining validated LAMP2 expression in
high grade prostate cancer. (f) Differential expression, ROC analysis, and survival analysis for LAMP2.
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CRPC and conducted a comprehensive bioinformatics study
to investigate the crosstalk and mechanism of progression
and metastasis related to ferroptosis in prostate cancer.
However, there were still some limitations needed to be
taken into consideration. Despite with significant prognostic
values in prostate cancer, however, no significant difference
of LAMP2 expression between cancerous and normal tissues
was detected, and no significant results were found in differ-
ential expression and survival analyses in subgroups. In
complex signaling networks of ferroptosis, the effect of
LAMP2 on prostate cancer could be subject to complex reg-
ulation, and these should be corroborated and validated by
further experiments. No significant difference was found in

the DSS analysis, and considering the extreme heterogeneity
of prostate cancer, especially CRPC, various confounding
factors might involve and influence the survival outcomes
of CRPC. In addition, noncoding RNAs and epigenetic
modifications seem to have effects on LAMP2 expression
and related ferroptosis signaling networks; however, lacking
experimental validation, we required further studies to
investigate the regulatory mechanisms.

In conclusion, we compared differentially expressed
genes between localized prostate cancer and metastatic
CRPC and identified ferroptosis related gene LAMP2 as a
potential biomarker with prognostic value for prostate
cancer.

(e)

Figure 7: LAMP2 correlated to immune infiltration, microRNA crosstalk, and methylation. (a) LAMP2 expression related to immune cell
infiltration. (b) 6 top-correlated microRNAs with LAMP2 expression. (c) Prostate cancer presenting significantly decreased level of LAMP2
in UALCAN database. (d) Prostate cancer presenting significantly decreased level of LAMP2 in DiseaseMeth database. (e) 8 methylation
sites associated with LAMP2, noted on the right side.

Table 4: 10 top microRNAs correlated to LAMP2 expression.

Symbol Validated tissue Validated cell line Predicted score

Hsa-miR-193b-3p Cervix HELA 0.897

Hsa-miR-193a-3p Cervix HELA 0.888

Hsa-miR-369-3p Pancreas and brain BETA 0.823

Hsa-miR-365a-3p Cervix HELA 0.812

Hsa-miR-1246 Pleura BC1 0.751

Hsa-miR-340-5P Kidney HEK293 0.65

Hsa-miR-634 Bone marrow HS5 0.644

Hsa-let-7d-5p Bone marrow and pancreas HMSC 0.639

Hsa-miR-660-5p Pleura BC1 0.624

Hsa-miR-27a-3p Umbilical vein HUVEC 0.615
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Data Availability

We downloaded RNA sequencing data of localized prostate
cancer and metastatic CRPC in the microarray dataset
GSE35988 from two platforms. One is Agilent-012391
Whole Human Genome Oligo Microarray, GPL6848, and
the other is Agilent-014850 Whole Human Genome Micro-
array, GPL6480. Besides, RNA sequencing data of prostate
cancer and paracancerous normal tissue from the Illumina
HiSeq RNA sequencing platform correlated with the clinical
information of The Cancer Genome Atlas (TCGA) database
was also downloaded for analysis.
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