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Background. Systemic lupus erythematosus (SLE) is an autoimmune disease with strong heterogeneity, leading to variable clinical
symptoms, which makes diagnosis and activity evaluation difficult. Methods. The original dataset of GSE88884 was analyzed to
screen differentially expressed genes (DEGs) of SLE and the correlation between DEGs and clinical parameters (SLEDAI, anti-
dsDNA, C3, and C4). The result was validated by microarray GSE121239 and SLE patients with RT-qPCR. Next, receiver
operator characteristic (ROC) analysis, correlation analysis, and ordinal logistic regression were applied, respectively, to
evaluate the capability of diagnosis and prediction of the candidate biomarker. Subsequently, the biological functions of the
candidate biomarker were investigated through KEGG and GO enrichment, protein–protein interaction network, and the
correlation matrix. Results. A total of 283 DEGs were screened, and seven of them were overlapped with SLE-related genes.
DDX60 was identified as the candidate biomarker. Analyses of GSE88884, GSE121239, and SLE patients with RT-qPCR
indicated that DDX60 expression level is significantly higher in patients with high disease activity. ROC analysis and the area
under the ROC curve (AUC = 0:8818) suggested that DDX60 has good diagnostic performance. DDX60 expression level was
positively correlated with SLEDAI scores (r = 0:24). For every 1-unit increase in DDX60 expression value, the odds of a higher
stage of activity of SLE disease are multiplied by 1.47. The function of DDX60 mainly focuses on IFN-I-induced antiviral
activities, RIG-I signaling, and innate immune. Moreover, DDX60 plays a synergistic role with DDX58, IFIH1, OASL, IFIT1,
and other related genes in the SLE pathogenesis. Conclusions. DDX60 is differently expressed in SLE, and it is significantly
related to both serological indicators and the disease activity of SLE. We suggested that DDX60 might be a potential biomarker
for SLE diagnosis and management.

1. Introduction

Systemic lupus erythematosus (SLE) is a chronic inflamma-
tory autoimmune disease with variable clinical manifesta-
tions. It is characterized by repeated flares that seriously
affect the quality of life. The heterogeneity of SLE brings a
challenge for its diagnosis and management [1]. However,
accurate monitoring of disease activity is critical for the
management of SLE.

Serologic indicators, including anti-double-stranded
DNA (anti-dsDNA), complement component C3 (C3), and
complement component C4 (C4), are essential in diagnosing
and assessment of disease activity. However, a large single-
center cohort study revealed that fluctuations in anti-
dsDNA or complement levels are not sensitive in predicting
flares [2]. It is also widely believed that serological parame-
ters are not positively related with clinical symptoms such
as joint pain. Therefore, a composite biomarker is needed
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that can help diagnose SLE and monitor the state of the
disease.

Type I interferons (IFNs) have been reported to be a
major pathogenic factor in SLE [3]. Type I IFNs induce
DExD/H-Box helicase 60 (DDX60) as demonstrated by viral

infection-induced gene microarray analysis in human den-
dritic cells [4]; DDX60 is an uncharacterized DEXD/H-box
RNA helicase, similar to S. cerevisiae Ski2, a protein complex
required for cytoplasmic RNA integrity. In innate immune
cells, DDX46 can demethylate m~6A-modified antiviral

GSE121239
(312 SLE patients)

(fig. 3f-g)

RT-qPCR of 29 blood samples
(18 SLE and 11 HCs)

(fig. 4)

GSE88884
(1760 SLE and 60 HC)

283 DEGs were identified
(fig. 2a, b)

1751 SLE with clinical data
(9 patients’ data were incomplete

and deleted)

439 CFRGs were identifiedTop 18 DEGs
(according to the adjusted P-value)

7 genes were overlapped
(fig. 2c)

DDX60 was selected
(the most differently expressed and has limited information in SLE)

Analysis of the relation between 
DDX60 and SLE clinical indicators

(fig. 3a-e)

Validation of the relation
between DDX60 and SLE

clinical indicators

ROC analysis of DDX60
(fig. 5)

Evaluating the disease activity predictive capability of DDX60
(table 2)

222 DEGs between high DDX60 expression groups and low
DDX60 expression groups were identified from GSE88884

(fig. 6a)

Go and KEGG pathway analysis
of the 222 DDX60 related DEGs

(fig. 6b-c)

PPI analysis of the 222 DDX60
related DEGs

(fig. 7a-b)

Correlation analysis of the 15 most up-regulated and 15
most down-regulated DEGs

(fig. 7d)

15 most up-regulated and 15 most down-regulated DEGs
were identified from the 222 DDX60 related DEGs

(fig. 7c)

Figure 1: The flow chart of the study. SLE: systemic lupus erythematosus; HCs: healthy controls; DEGs: differentially expressed genes;
CFRGs: clinical feature-related genes; DDX60: DExD/H-Box helicase 60; ROC: the receiver operator characteristic (ROC) curve; GO:
Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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gene mRNA through its helicase domain binding ALKBH5
and then retain it in the nucleus during viral infection, fur-
ther inhibit interferon production, and inhibit antiviral
innate immunity. Therefore, this theory may be involved
in the pathophysiology of SLE. Increased DDX60 expression
in CD14 monocytes has been reported in childhood-onset
SLE patients; this effect is thought to be characteristic of type
I IFN activation [5]. However, the role of DDX60 in SLE has
not been reported. In this study, DDX60 was identified as a
potential biomarker of SLE. We found that the expression
level of DDX60 was related to SLEDAI as well as the anti-
dsDNA, C3, and C4. ROC (receiver operator characteristic)
analysis and correlation analysis indicate that DDX60 has
good performance for SLE diagnosis and disease activity
prediction. Our findings suggest that DDX60 reflects both
the immune inflammation level and the overall clinical
activity of SLE and might be a potential biomarker for better
diagnosis and management of SLE.

The flow chart of the study is shown in Figure 1.

2. Materials and Methods

2.1. Identification of Differentially Expressed Genes. GSE88884
was obtained from the GEO database (https://www.ncbi.nlm
.nih.gov/gds/). It contains the baseline gene expression profil-
ing data as well as the clinical and laboratory characteristics
of 1760 SLE patients and 60 healthy controls (HCs) from
two phase III, 52 week, randomized, placebo-controlled, dou-
ble-blind, parallel studies (Table S1). Patients meet with 1997
ACR classification criteria were diagnosed as SLE [6]. Detailed
inclusion and exclusion criteria are shown in Information S1.
In order to get a list of the relationship between probes of the
chip corresponding to gene IDs, gene probes were transferred
to gene symbols according to the platform file—GPL17586.
The “limma” package is a tool for performing differential
analysis. The probe with the maximum expression was
selected if there were duplicate probe names. Then, the
differentially expressed genes (DEGs) between SLE patients
and HCs were screened by the “limma” package with the
criteria of a “ log fold change” > 0:5 and an adjusted P value
< 0.01. The heatmap and volcano map of the DEGs were
visualized by the R software.

2.2. Identification of Clinical Feature-Related DEGs. The
clinical data of 1751 SLE patients (9 were incomplete and
deleted, listed in Table S1) from GSE88884, including
SLEDAI scores, anti-dsDNA, C3 level, and C4 level, were
arranged. Patients were classified into different groups
according to clinical assessments, as shown in Table 1.

Genes differentially expressed in any two subgroups of
any of the four clinical evaluations were identified as SLE
clinical feature-related genes (CFRG) by R software. Inter-
group differences were evaluated by the Wilcox test and
the Kruskal-Wallis test with a P value < 0.01. The DEG
and CFRG overlap genes were operated by the FunRich soft-
ware (version 3.1.3).

2.3. Analysis of the Relation between the Candidate Gene and
Clinical Data. The candidate gene was classed into four sub-
groups according to the four clinical indicators SLEDAI
scores, anti-dsDNA, C3, and C4. The relationship of the
candidate gene and four clinical evaluations was analyzed
and visualized by the “ggpubr” software package. Intergroup
differences were evaluated by the Kruskal-Wallis test.

2.4. Confirming the Results Using Another Microarray
GSE121239. To further verify the role of DDX60 in SLE,
GSE121239 microarray (312 samples) was downloaded from
the GEO database, which contains longitudinal disease activ-
ity and whole-genome gene expression data of 20 HCs and
65 SLE patients with more than three visits. SLE was defined
according to the 1997 ACR classification criteria or the Sys-
temic Lupus International Collaborating Clinics classification
criteria [6, 7]. The 92% of the patients were female with a
median age of 47 years (interquartile range 37–55). Patients
are consisted of 58% Caucasian American, 35% African
American, and 7% of other race/ethnic groups. The average
SELENA-SLEDAI at baseline was 2.4 (SD = 2:6), ranging
from 0 to 12. Of the 243 patients in the analysis, 62 had SLE-
DAI score of 0 for all follow-up visits. The microarray analy-
sis method of GSE121239 is mentioned above.

2.5. RT-qPCR Validation of the Relation between the
Candidate Gene Expression and Clinical Data. To validate
the expression of the candidate gene in patients with SLE
and HCs, whole blood transcriptional expression of the candi-
date gene was analyzed by RT-qPCR. Outpatients who met
with 1997 ACR classification criteria and has normal white
blood cell and lymphocyte count andHCs were recruited from
the Second Affiliated Hospital of Zhejiang Chinese Medical
University during October to November in 2020 [6]. The
detail information of the subjects was given in Table S3. The
study was reviewed and approved by the Institutional
Review Board of the Zhejiang Chinese Medical University.
All participants signed the informed consent.

A total of 1mL of fresh whole blood samples were col-
lected from each participant, and total RNA was extracted
using TRIzol reagent (Takara, Kusatsu, Shiga, Japan). Total

Table 1: Classification of SLE patients according to four clinical assessments.

Clinical assessments Classification

SLEDAI 0-4, inactive; 5-9, mild activity; 10-14, moderate activity; ≥15, severe activity
Anti-dsDNA <30 IU was defined as the “negative” group and ≥30 IU as the “positive” group

C3 <0.9 g/L was defined as the “low” group and ≥0.9 g/L as the “normal or high” group

C4 <0.1 g/L was defined as the “low” group and ≥0.1 g/L as the “normal or high” group

SLEDAI: systemic lupus erythematosus disease activity index; anti-dsDNA: anti-double-stranded DNA; C3: complement component C3; C4: complement
component C4.
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Figure 2: Continued.
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RNA was reversed to cDNA using ReverTra Ace qPCR RT
Kit (Toyobo, Osaka, Japan) in a T100TM Thermal Cycler
(Bio-Rad, CA, USA). The cDNA was then subjected to RT-
qPCR using UltraSYBR Mixture (cwbiotech, Taizhou,
Jiangsu, China) in a Light Cycler 96 (Roche, Basel, Switzer-
land). The primer sequences were designed according to an
online website. The following qPCR primers were used:
DDX60, forward, 5′-CAGCTCCAATGAAATGGTGCC-3′,
and reverse, 5′-CTCAGGGGTTTATGAGAATGCC′;
GAPDH, forward, 5′-TCAAGGCTGAGAACGGGAAG-3′,
and reverse, 5′-GACTCCACGACGTACTCAGC′. RT-
qPCR data were presented as mean with 95% confidence
interval (CI). Outliers were identified using Grubb’s method.
The significance of the difference between groups was deter-
mined by unpaired t-test (Student’s t-test or Welch’s t-test)
after determining the variances using the F test. Differences
with P < 0:05 were considered statistically significant. All
statistics were analyzed and visualized with GraphPad Prism
9.1.1 (GraphPad Software, San Diego, USA).

2.6. Receiver Operator Characteristic Analysis of the
Biomarker. We used simple logistic regression to fit a model
to predict the presence of SLE based on the expression value
of the candidate biomarker. The biomarker expression data
of SLE patients andHCs were collected fromGSE88884. Then,
the ROC analysis was performed to assess the diagnostic per-
formance of the biomarker, including the calculation of the
area under the ROC curve (AUC). An AUC > 0:8 indicates
that the predicted model has good efficacy. Wald’s test and
likelihood ratio test were used to test if the odds ratio (OR)
is 1.0. Outliers were identified using the ROUT method
(Q = 1%). All statistical analyses were performed with Graph-
Pad Prism 9.1.1 (GraphPad Software, San Diego, USA).

2.7. Evaluating the Predictive Capacity of Disease Activity of
the Biomarker. Correlation analysis and ordinal logistic
regression were conducted to evaluate the relation between
candidate biomarker expression and SLE disease activity
with GraphPad Prism 9.1.1. Correlation analysis was per-
formed using Spearman’s rank correlation test, and the
D’Agostino and Pearson omnibus normality test was used
to test for normal distribution. The candidate biomarker

expression data and SLEDAI scores were collected from
GSE88884. Then, the ordinal logistic regression was con-
ducted using SPSS 26.0.0 (IBM SPSS Statistics, IBM, USA).
The expression value of the candidate biomarker was used
as the independent variable, and SLE disease activity was
the dependent variable. As an ordinal variable, SLE disease
activity was classified into four stages according to SLEDAI
scores from low to high: 0-4, inactive; 5-9, mild active; 10-
14, moderate active; and ≥15, severe active. Test of parallel
lines was performed before the ordinal logistic regression.
A P value ≥ 0.05 indicates that the location parameters
(slope coefficients) are the same across response categories.

2.8. Identification of Candidate Biomarker-Related DEGs.
According to the median expression level of DDX60, 1820
samples were divided into “high expression group” and
“low expression group.” DEGs between the high expression
group and the low expression group were screened by the
package “limma” with a “ log fold change” > 0:5 and an
adjusted P value < 0.01. The volcano plot was performed
with the R software.

2.9. Gene Ontology and KEGG Pathway Analyses of
Candidate Biomarker-Related Genes. The “org.Hs.eg.db”
package mainly annotates human genes for transformation
between different database IDs. Gene symbols were con-
verted into gene ID using the “org.hs.eg/.db” package. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed by the “cluster-
Profiler” and “enrichplot” packages in the R program.

2.10. Protein–Protein Interaction Network Construction and
Correlation Analysis of Candidate Biomarker-Related DEGs.
The protein–protein interaction (PPI) network data of the
DEGs between the high DDX60 expression group and low
DDX60 expression group was derived from the Search Tool
for the Retrieval of Interacting Genes database (https://
string-db.org/). Cytoscape (version 3.5.0) was applied to
construct and visualize the PPI network (https://cytoscape
.org/). The Molecular Complex Detection (MCODE) plug-
in (version 2.0) of Cytoscape was employed to identify
highly connected subclusters with the degree cutoff = 2,
max. depth = 30, k‐core = 2, and node score cutoff = 0:1.

11
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Clinical features
related genes

7
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IFI44
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PLSCR1
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DDX60
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(c)

Figure 2: Differentially expressed gene (DEG) expression profile between healthy controls and SLE patients from GSE88884. (a) Heatmap
indicates the top 15 upregulated (red) and downregulated (green) DEGs. (b) Volcano plot showed 231 upregulated (red) and 52
downregulated (green) DEGs. (c) The Venn chart showed the seven overlapped genes of the 18 most differently expressed DEGs and 439
clinical feature-related genes from GSE88884.
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The heatmap of the 15 most significantly upregulated and 15
most downregulated DEGs was performed by R. The
correlation matrix was visualized by the “corrplot package”
in R.

3. Results

3.1. Identification of the Candidate Biomarker. We identified
283 genes as DEGs (Figures 2(a) and 2(b)) in SLE patients as
compared with HCs, including 231 upregulated and 52
downregulated genes. A total of 439 genes were identified
as CFRGs. Seven DEGs, namely, DDX60, IFI44L, IFI6,
IFI44, RSAD2, PLSCR1, and HERC5, overlapped with 439
CFRGs (Figure 2(c)). Most of these seven genes have been
reported to be related to SLE (Table S4). However, the role
of DDX60 in SLE pathogenesis remains unclear.

3.2. Relative Expression Levels of DDX60 in Different Groups
of Clinical Evaluation Indicators. The relative expression
levels of DDX60 in 1751 SLE patients were analyzed. As
the number of positive indicators (SLEDAI ≥ mild active,
anti-dsDNA = “positive,” C3 = “low,” and C4 = “low”
according to the classification in Table 1) in the four indicators
increased, the DDX60 expression level increased significantly
accordingly (Figure 3(a)). Furthermore, the expression levels
of DDX60 differed among the four SLEDAI groups, except
for the no-activity group from the mild-activity group, with
a positive relation trend between DDX60 expression levels
and SLEDAI scores (Figure 3(b)). As shown in Figure 3(c),

the DDX60 expression level in anti-dsDNA positive patients
was significantly higher than in anti-dsDNA negative patients
(P < 0:0001). Moreover, the expression levels of DDX60 were
significantly higher in patients with low C3 and C4 levels
than in patients with normal or high levels (P < 0:0001)
(Figures 3(d) and 3(e)).

3.3. Validation of the Relation between DDX60 and Clinical
Features of SLE. The DDX60 expression level of SLE patients
is significantly higher than that of HCs (P < 0:0001) in micro-
array GSE121239 (Figure 3(f)). As shown in Figure 3(g),
DDX60 expression levels of mild and moderate active patients
are significantly higher than inactive patients (P < 0:05).

Then, we performed RT-qPCR on clinical samples to
validate the speculation of the relation between DDX60
expression level and SLE clinical evaluations. A total of 29
peripheral blood samples and related clinical information
were obtained from 18 female SLE patients and 11 female
HCs. The DDX60 expression value of one HC (3.832) was
identified as an outlier and excluded. Patients’ specific infor-
mation was listed in Table S4. As shown in Figure 4(a), the
DDX60 expression level of SLE patients was significantly
higher than that of healthy controls (HCs) (P < 0:0001).
Furthermore, the level of DDX60 expression of patients with
positive anti-dsDNA antibody was higher than that of
patients with negative dsDNA antibody (Figure 4(b)).
However, no significant difference (P > 0:05) in DDX60
expression level was observed between patients with SLEDAI
≥ 5 and patients with SLEDAI from 0 to 4 (Figure 4(c)).
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Figure 3: DDX60 expression levels of different subgroups according to SLE Disease Activity Index (SLEDAI), anti-dsDNA, complement
component C3 (C3) level, and complement component C4 (C4) level in GSE88884 and GSE121239. (a) DDX60 expression levels of the
four subgroups that were distinguished according to the number of positive indicators (SLEDAI ≥ mild active, anti-dsDNA = “positive,”
C3 = “low,” and C4 = “low”). ∗∗∗∗P < 0:0001; ∗∗∗P < 0:001; ∗∗P < 0:01; ∗P < 0:05; error bars show the standard deviation of the mean.
(b) DDX60 levels in patients with inactive SLE (0~ 4), mild active (5~ 9), moderate active (10~ 14), and severe active SLE (≥15) of
GSE88884. (c) DDX60 levels in the negative or positive anti-dsDNA subgroups of GSE88884. (d, e) DDX60 levels in patients with low
C3/C4 level and normal or high level from GSE88884. (f) DDX60 expression level in systemic lupus erythematosus (SLE) patients is
significantly higher than in healthy controls (HC) from GSE121239 (P < 0:0001). (g) The expression levels of DDX60 of patients with the
SLEDAI scores 10-14 and 5-9 are significantly higher than those of score 0-4 (P < 0:05) from GSE121239. Box-whisker plots show
median, interquartile range, nonoutlier range, and outliers.
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3.4. Receiver Operator Characteristic Analysis of DDX60. The
result of simple logistic regression was shown in Table S5,
indicating that DDX60 expression has a significant effect
on the diagnosis of SLE (OR 4.608 (95% CI 3.328 to
6.706), P < 0:0001). The ROC curve is presented in
Figure 5, with an AUC of 0.8818 (95% CI 0.8614 to 0.9021,
P < 0:0001), suggesting that DDX60 has a good diagnostic
performance. One DDX60 expression value (8.304) from
HCs was identified as an outlier and excluded.

3.5. The Predictive Capacity of Disease Activity of DDX60.
Spearman’s rank correlation test showed a positive correla-
tion (r = 0:24 (95% CI: 0.19 to 0.28), P < 0:0001) between
DDX60 expression and SLEDAI scores (Table S6).
Moreover, the results of ordinal logistic regression for
DDX60 expression and SLEDAI indicate that DDX60
expression has a definite effect on SLE disease activity

(Table 2). For every 1-unit increase in the expression value
of DDX60, the odds of a higher stage of SLE disease
activity are multiplied by 1.47 (95% CI (1.349-1.611), P <
0:0001).

3.6. KEGG and GO Pathway Analyses of DDX60-Related
Genes. A total of 222 DEGs (199 upregulated and 23 down-
regulated) were differentially expressed between the DDX60
high expression group and the low expression group
(Figure 6(a)). To further investigate the biological functions
of DDX60-related genes, the KEGG and GO analyses of 222
DEGs were performed. The KEGG pathway analysis dis-
played that the DEGs were mainly enriched in 6 pathways,
including NOD-like receptor signaling pathway, mineral
absorption, RIG-I-like receptor (RLR) signaling pathway,
necroptosis, viral protein interaction with cytokine and cyto-
kine receptor, and Toll-like receptor signaling pathway
(Figure 6(b)). Besides, GO enrichment analysis indicated
that DEGs were mainly enriched in 30 pathways, including
complement activation, humoral immune response medi-
ated by circulating immunoglobulin, protein activation cas-
cade, and immunoglobulin- (Ig-) mediated immune
response (Figure 6(c)).

3.7. PPI Network Construction and Correlation Analysis of
DDX60-Related Genes. To further explore the interaction
between DDX60 and its 222 related DEGs, a PPI network
consisting of 95 nodes and 956 edges was constructed
(Figure 7(a)). The most highly interconnected subcluster
was separated from the PPI network by the MCODE plug-
in according to the MCODE score (Figure 7(b)). All nodes
in this subcluster were connected to DDX60, indicating that
DDX60 was one of the hub genes of the subcluster.

Moreover, the 15 most upregulated and 15 most down-
regulated DEGs of the 222 DDX60-related DEGs are shown
in the heatmap (Figure 7(c)). Then, the correlation of these
30 DEGs was analyzed and visualized by the correlation
matrix (Figure 7(d)).
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4. Discussion

In this study, we applied bioinformatics to search for genes
that are both related to SLE clinical evaluation scales (SLE-
DAI) and serological indicators (anti-dsDNA, C3, and C4)
and discovered DDX60 as the candidate biomarker. We
found that DDX60 expression level is positively related with
disease activity and serological indicators’ level. Then, a sec-
ond microarray, GSE121239, and RT-qPCR performed on
peripheral blood samples of SLE patients, and HCs were
used to verify the findings. Furthermore, simple logistic
regression and ROC analysis indicated that DDX60 has a
significant effect on SLE diagnosis and might have good
diagnostic performance. Moreover, the results of ordinal
logistic regression for DDX60 expression and SLEDAI sug-
gested that DDX60 might have a good predictive capacity
of SLE disease activity.

DDX60 codes an antiviral protein, a novel DEAD-box
RNA helicase. However, the role of DDX60 in SLE has not
been reported. To investigate the biological function of
DDX60 in SLE, we first identified 222 DEGs that were differ-
entially expressed between the DDX60 high expression and
DDX60 low expression groups. Then, we performed KEGG
and GO pathway enrichment for these 222 DDX60-related
DEGs. KEGG analysis showed that DDX60-related DEGs
were enriched mainly in 6 pathways (Figure 6(b)), while GO
analysis showed that DEGs were enriched in 30 pathways
(Figure 6(c)). Most of these pathways were involved in antivi-
ral immune response, innate immune, type I IFN (interferon)
induction, RLR signaling, complement activation, and
immune regulation and were confirmed to have a vital role
in SLE. For example, virus infection is one of the environmen-
tal factors of SLE, and the antiviral immune response plays a
central role in the pathogenesis of SLE [8–10]. Viral RNA or
DNA stimulates the production of large amounts of autoanti-
bodies through molecular simulation mechanisms. These
autoantigens further expand epitopes and react with other
autoantigens, leading to activation of the immune system
and promoting the development of SLE [11, 12]. The nucleic
acid of the virus can be recognized by RLRs, which induces
the production of IFN and leads to the expression of hundreds
of interferon-stimulated genes (ISGs). ISGs mediate various
immune cell effects similar to antiviral immune responses.
The expression of ISGs was significantly higher in patients
with SLE than in HC [13–16]. The widespread activation of
ISGs and their regulation of the immune system have been
demonstrated to be central mechanisms in SLE pathogenesis
[17, 18]. Immune complex (IC) formed by autoantibodies in
SLE patients with IFN-I signature will further induce the pro-
duction of IFN-I [19]. The IFN-I system is continuously acti-
vated and drives autoimmune responses and chronic
inflammation leading to multiple tissue damage in SLE.

DDX60 played an important role in these biological
mechanisms. DDX60 is highly expressed in various viral
infections and autoimmune diseases [20–24]. DDX60 is
induced by virus RNA or IFN and functions as a sentinel
for the cytoplasmic antiviral innate immune response [24].
DDX60 localizes and binds viral RNA, activates RIG-I sig-
naling, and promotes RIG-I recognition and binding of viral
dsRNA [4, 24, 25]. DDX60 positively regulates RIG-I-
dependent IFN-I and ISG expression [4, 24, 26]. DDX60
knockout is described to weaken the RIG-I signal, reduce
the IFN level, and increase the titer of the virus [26].
DDX60 and RIG-I induce the production of IFN-I, and
IFN-I induces the expression of both DDX60 and DDX58,
forming a circulation that leads to the continuous activation
of the immune system and IFN system in SLE. SLE patients
with high IFN-α expression have higher anti-dsDNA, ESR
(erythrocyte sedimentation rate) levels, and lower comple-
ment levels [13], which may explain the relevance between
DDX60 expression level and SLE activity indicators like
C3, C4, anti-dsDNA, and SLEDAI.

Complement, one of the most commonly used clinical
indices of SLE, is also the primary humoral medium of the
innate immune response. As an adjuvant, complement plays
a vital role in scavenging the IC formed by Ig binding with
the antigen. Virus infection stimulates DDX60 expression
and promotes RLR-dependent innate immune responses,
accompanied by the production of large amounts of autoan-
tibodies, antigen-antibody reactions, and the generation of
ICs. Since the complement system plays a vital role in the
clearance of immune complexes and the innate immune
response, complement can be consumed in large amounts,
resulting in reduced complement levels in SLE.

To further explore the role of DDX60 and its related genes
in SLE, we firstly performed the PPI network analysis. Genes in
the most highly interconnected subcluster (Figure 7(b)) were
mostly ISGs and were all connected with DDX60 in the PPI
network which suggests that these genes have a strong synergis-
tic effect with DDX60 and together play a role in the IFN-
related pathogenesis of SLE. For example, DDX58 encodes
RIG-I, and IFIH1 encodes MDA5. RIG-I and MDA5 were
two main RLRs, which were essential in the innate immune
response to recognize viral RNA and induce IFN-I and play a
central role in the pathogenesis of SLE [27]. Studies have
reported the high expression level of RIG-I mRNA in urine
sediment from patients with LN [28]. Upregulation of the
expressions of RLR-related ISGs such as DDX58 and IFIH1
was found in childhood-onset SLE patients [5]. IFIH1 has been
reported to be associated with SLE phenotype, anti-dsDNA,
and susceptibility [29–31]. These RLRs are both ISGs and,
therefore, are rapidly activated by IFN stimulation. RIG-I-
and MDA5-dependent IFN-I expression and ISG expression
were positively regulated by DDX60, as mentioned above.

Table 2: Ordinal logistic regression for DDX60 and SLEDAI.

Test of parallel lines Model fitting Ordinal logistic regression
Chi-square Sig. Chi-square Sig. B (95% Wald’s CI) Wald’s chi-square Sig. OR (95% Wald’s CI)

2.361 0.307 76.649 <0.0001 0.388 (0.299 to 0.477) 73.336 <0.0001 1.474 (1.349 to 1.611)

CI: confidence interval; OR: odds ratio.
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Then, the correlation analysis of DDX60 and the 15 most
upregulated DEGs along with the 15 most downregulated
DEGs were analyzed (Figures 7(c) and 7(d)). The result
shows that DDX60 and the 15 most upregulated DEGs were
strongly correlated with each other, suggesting that DDX60
may have a strong synergistic effect with these genes. In
addition, these 15 genes are consistent with those in the sub-
cluster of the PPI network (Figure 7(b)). Most of these genes
are IFN-I inducible and have been reported closely related to
the disease activity, pathogenesis, and IFN signature expres-
sion of SLE [19, 32–36]. For example, upregulated genes

OASL, OAS1, OAS2, and OAS3 belong to the OAS family,
a group of antiviral enzymes induced by type I IFNs, which
can locate and bind viral dsRNA after viral infection. In par-
ticular, OASL binds to RIG-I and activates and enhances
RIG-I signaling; OAS1 binds to viral dsRNA and, together
with DDX60, helps RIG-I recognize viral RNA and amplify
viral-induced RIG-I-mediated type I IFN expression after
viral infection [37–39]. Moreover, OAS1, OAS2, and OAS3
were closely related to lupus nephritis (LN) progression
[36]. IFIT1, also induced by IFN stimulation and viral infec-
tion, plays an essential role in SLE immune disorders and
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Figure 7: PPI network, heatmap, and correlation matrix of DDX60-related DEGs. (a) PPI network constructed with the DDX60-related
DEGs. The green nodes represent upregulated genes, the pink nodes stand for downregulated genes, and the blue node is DDX60. The
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tissue damage [14]. Knockdown of DDX60 was found to
decrease IFIT1 expression [24]. In summary, the function
of DDX60 and related genes mainly focused on antiviral
immune responses, RIG-I signaling pathway, and type I
IFN-mediated innate immune responses. These mechanisms
also play a vital role in SLE and lead to its hyperimmune,
autoimmunity, and chronic inflammation.

There are some limitations in this study. On the one hand,
since there is no gold diagnostic standard for SLE, we were
unable to verify its diagnostic ability with relevant data further.
On the other hand, more studies are still needed on the predic-
tive capacity of disease activity in the time dimension.

5. Conclusions

In this study, we identified that DDX60 was differently
expressed in SLE patients. It was significantly related to both
serological indicators and the overall clinical activity of SLE.
We provided that high levels of DDX60 predicted high disease
activity in SLE. Integrated bioinformatics analysis indicates
that DDX60 may play a synergistic effect with its related genes
in the signaling pathways of antiviral activity, RIG-I signaling
pathway, and IFN-I-induced immune responses in SLE. The
close association of DDX60 with immune inflammation and
tissue damage in SLE may explain its association with both
serological indicators and clinical scores of SLE. Collectively,
our findings implied the potential clinical value of DDX60 in
the diagnosis and management of SLE.
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