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Objective. Tumor microenvironment (TME) research can provide a crucial direction for the innovation and continuous improve-
ment of novel biologic therapies for cancer. This study examined the relationship between the TME, expression profiles of the
tumor-infiltrating immune cell, and prognostic gene expression in ovarian cancer (OC). Materials and Methods. Screening of
CD3E, CD3G, CD2, CD3D, CCL19, and IL2RG was performed using the bioinformatics methods. Results. All six genes were found
to participate in immune-related molecular mechanisms and could regulate the expression of tumor-infiltrating cells. A
Kaplan–Meier survival analysis results demonstrated a strong association between overall survival and all gene expressions in
patients with OC. CIBERSORT analysis results showed that the expression level of all genes was positively correlated with γδ T cell
proportions. Conclusion. Therefore, in the OCmicroenvironment, CD3E, CD3G, CD2, CD3D, CCL19, and IL2RG can be potential
immunotherapy targets and prognostic markers.

1. Introduction

Ovarian cancer (OC) is a malignant tumor of the female
reproductive system, and its incidence and mortality rank
top 10 in the global cancer statistics report [1]. OC is almost
asymptomatic in the early stage. Further, in most cases, treat-
ment, particularly surgery supplemented with chemical drug
therapy, radiotherapy, immunotherapy, and targeted ther-
apy, is provided at the late stage. Among the different types
of treatment options, chemical drug therapy has evident out-
comes. However, it is significantly associated with drug resis-
tance and side effects, and its curative effect on patients with
recurrent and advanced-stage OC is limited [2, 3]. Neverthe-
less, the surrounding microenvironment has an impact on
tumor progression. The tumor microenvironment (TME)
contains tumor cells and tumor-related matrices, such as
stromal cells, tumor-infiltrating immune cells (TICs), and

fibroblasts [4]. The studies by Stanton and Disis [5] and
Sadozai et al. [6] suggest that TICs may affect breast cancer,
melanoma, and other tumor patients’ clinical outcomes in
terms of patient prognosis. However, the state of TICs in the
OC microenvironment and their role in the prognosis of
patients with OC should be further explored.

The efficacy of immunotherapy, which is a novel treat-
ment, is limited. However, it is still one of the most promis-
ing therapies [7]. Adoptive cell therapy (ACT) and immune
checkpoint blockade (ICB) therapy are particularly effective
against malignant melanoma, gastric cancer, and non-small
cell lung cancer [8, 9]. Immunotherapy is still being studied
for its potential therapeutic benefits and uses in OC.

In a previous study, the ratio of stromal and immune
components in OC samples from The Cancer Genome Atlas
(TCGA), as well as the proportion of TICs, were calculated
using the Estimation of STromal and Immune cells in
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MAlignant Tumor tissues using Expression (ESTIMATE)
data [10] and CIBERSORT [11] algorithms. Prognostic bio-
markers that can predict immunotherapy outcomes and OC
prognosis were also identified.

2. Materials and Methods

2.1. Datasets Collected from TCGA. We downloaded tran-
scriptome RNA sequencing data from TCGA (https://porta
l.gdc.cancer.gov/) from 379 patients with OC tumor samples.
Next, clinical information, including overall survival time
and survival status was extracted.

2.2. Use of the ESTIMATE Algorithm and Detection of the
Immune and Stromal Groups. The ESTIMATE algorithm
identified stromal and immune microenvironment infiltration
using gene expression data. The analytic approach was
integrated into R 4.1.2’s estimate package, and the expression
profiles of two distinct sets of 141 genes showed the degree of
tumor immune and stromal infiltrations. Thus, stromal and
immune scores in TCGA-OV samples were calculated based
on expression matrices retrieved from the RNA sequencing
data. The ESTIMATE score, which is the sum of a patient’s
stromal and immune scores, represents tumor purity. The
tumor purity was lower when the ESTIMATE score was higher.

2.3. Correlation between ICB Treatment Response and TME.
The tumor immune dysfunction and exclusion (TIDE) algo-
rithm uses gene expression patterns to predict tumor ICB
therapy response. Using gene expression markers, the TIDE
algorithm estimates two tumor immune evasion mechan-
isms: immunosuppressive factors mediated cytotoxic T lym-
phocyte (CTL) exclusion and the dysfunction of tumor
infiltration CTLs. Antitumor immune escape is more likely
in patients with higher TIDE scores. Hence, they respond less
to ICB therapy. The potential response of the OC samples to
the ICB therapy was assessed using the TIDE algorithm.
The unpaired t-test was utilized to compare TIDE scores,
especially stromal and immune scores, between high and
low subgroups to determine if TME and ICB treatment
were related. Median immune and stromal scores were cut-
offs for high- and low-score groups. TIDE and immune/
stromal scores were correlated using Spearman correlation
coefficients.

2.4. Differentially Expressed Genes Identification. Differen-
tially expressed genes (DEGs) were screened between high-
and low-score groups by means of the Wilcoxon rank-sum
test, and the limma R package was used to organize and
cluster the DEGs. As screening criteria, a |log2 (Fold
Change)| >1 and false discovery rate (FDR)< 0.05 were
used. The VennDiagram package was used to obtain the
intersected DEGs between the stromal and immune scores.

2.5. Functional Enrichment, Protein–Protein Interaction (PPI)
Network, and Pathway Analysis of DEGs. The clusterProfiler
[12] package was used to perform gene ontology (GO) enrich-
ment and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses (p<0:05). A statistically significant FDR was
<0.05. The PPI network was developed utilizing STRING

(https://cn.string-db.org/) data to better comprehend the
relationship among the screened genes. A minimum necessary
interaction score of high confidence (0.95) was selected.
Cytoscape (version 3.9.1) was then used to visualize the PPI
network. Subsequently, CytoNCA, a Cytoscape plugin for
analyzing the centrality of PPI networks, was used to identify
the network’s crucial genes. The crucial genes were chosen
based on their degree of centrality. Crucial genes were defined
as genes with centrality values greater than two times the median
centrality value in the PPI network.

2.6. Predictive Value of Crucial Genes in Survival Analysis.
Kaplan–Meier (K–M) and univariate Cox proportional hazards
regression analyses were carried out with the aid of the survival
package to examine the prognostic value of differentially
expressed TME-related genes in patients with OC. Only genes
that had a p-value< 0.05 were regarded as prognostic genes.
The intersected crucial prognostic genes were identified among
the crucial genes and prognostic genes based on the VennDia-
gram package. The median crucial prognostic gene expression
divided patients into distinct groups. Using R’s survival pack-
age, a K–M analysis compared overall survival between low-
and high-expression groups.

2.7. Gene Set Enrichment Analysis (GSEA). We divided the
TCGA-OV dataset samples into two groups based on median
crucial prognostic gene expression to better understand
the mechanisms. Next, GSEA (https://www.gsea-msigdb.
org/gsea/index.jsp) was conducted to examine if the two
groups’ genes were rich in relevant biological processes. The
annotated gene set c2.cp.kegg. v7.5.1. symbols. The reference
gene set Gmt was selected. The statistical significance criteria
were set as an FDR< 0.05 and p-value< 0.05.

2.8. Correlation between TICs and Crucial Prognostic Gene
Expression. The TCGA-OV dataset’s normalized gene expres-
sion data using the CIBERSORT algorithm (https://cibersort.sta
nford.edu/) estimated 22 TIC subtype proportions. Only
patients with CIBERSORT p-values< 0.05 were included in
the subsequent analyses. The estimated immune cell type
fractions for each sample were 1. Based on crucial prognostic
gene expression inOCpatients, theWilcoxon rank-sum test was
utilized to compare TIC proportions in low- and high-
expression groups. A p-value< 0.05 was significant. TIC
content and crucial prognostic gene expression were assessed
to be correlated using Pearson correlation coefficients.

3. Results

3.1. Correlation between TME and ICB Treatment Response.
ESTIMATE algorithm-generated stromal, ESTIMATE, and
immune scores were strongly positively linked to the TIDE
score (p<0:01). According to the TIDE score, patients with a
low-stromal cell infiltration and a high-tumor purity may be
more sensitive to ICB therapy (Figure 1).

3.2. DEGs between Stromal and Immune Scores. Heatmaps
revealed distinct gene expression profiles between groups with
high and low stromal and immune scores. Based on immune
scores, we identified 1,124 DEGs, including 736 upregulated
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and 388 downregulated genes. Similarly, based on the
immune scores, 1,179 DEGs were identified, including 631
upregulated and 548 downregulated genes. In both the stro-
mal and immune score groups, effective DEGs overlapped
genes, and 703 common DEGs were discovered, including
422 upregulated and 281 downregulated genes (Figure 2).

3.3. DEG Enrichment Analysis of GO Function and KEGG
Pathways. Additionally, 703 DEGs were enriched in three GO
categories. Activating T cells, plasma membrane outside, and
immune receptor activity were the most critical factors in
biological process (BP), cell component (CC), and molecular
function (MF) categories, respectively. Cytokine–cytokine
receptor interaction, viral protein–cytokine interaction, and
chemokine signaling pathway were the top three KEGG terms
in 703 DEGs as per enrichment analysis results. KEGG and
GO enrichment analyses predicted DEGs’ involvement with
immune-related activities (Figure 3).

3.4. The PPI Network and Cox Proportional Hazards Regression
Analysis Identified Six Crucial Prognostic Genes in OCA.Cytos-
capewas used to develop a STRINGdatabase-based PPI network
to evaluate if the 703 DEGs have protein interactions. A PPI
network with a 0.95 minimum interaction score was developed
using the 148 genes. According to the degree centrality values in

the bar plot, the top 30 crucial genes were screened. The forest
map depicted the 34 prognostic TME-related genes identified
through K–M (p<0:05) and univariate Cox proportional
hazards regression (p<0:05) analyses of 703 DEGs.
Meanwhile, the top 34 genes in the univariate Cox
proportional hazards regression analysis and the top 30 crucial
genes for the degree centrality values in the PPI network
intersected the CD3E, CD2, CD3D, CD3G, IL2RG, and
CCL19, respectively (Figure 4).

3.5. Correlation between Survival and Six Crucial Prognostic
Genes Expression. To investigate the correlation between
gene expression and survival, all OC samples were divided
into high- and low-expression groups as per the six crucial
prognostic genes’ median expression levels. The findings
demonstrated a favorable correlation between highly crucial
prognostic gene expression and survival (Figure 5).

3.6. GSEA. GSEA identified differentially expressed signaling
pathways between high- and low-crucial prognostic gene
expression groups in OC. The MSigDB Collection (c2.cp.
kegg. v7.5.1. symbols) enrichment analysis results showed sig-
nificant variations (FDR< 0.05). The signaling pathways that
were most significantly enriched were chosen using a normal-
ized enrichment score. Results showed that cell adhesion
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FIGURE 1: (a–c) Differences between the low- and high-score groups in terms of the ESTIMATE, immune, and stromal scores. (d–f )
Association between the TIDE and ESTIMATE scores, and the stromal and immune score based on the Spearman correlation analysis.
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FIGURE 2: (a and b) Each heatmap showed the top 50 upregulated and downregulated DEGs based on absolute values logFC. (c and d) Venn
plots illustrating the 422 upregulated and 281 downregulated DEGs most frequently associated with immune and stromal scores.
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FIGURE 3: (a–d) Top 30 terms in GO and KEGG based on gene enrichment score and q-value.
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FIGURE 5: (a) The link between survival rate and CD3E expression was examined using Kaplan–Meier (K–M) analysis. (b) The link between
survival rate and CD3G expression was examined using K–M analysis. (c) The link between survival rate and CD3D was examined using
K–M analysis. (d) The link between survival rate and CD2 was examined using K–M analysis. (e) The link between survival rate and CCL19
was examined using K–M analysis. (f ) The link between survival rate and IL2RG expression was examined using K–M analysis.
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FIGURE 6: Continued.
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molecules, natural killer (NK) cell-mediated cytotoxicity,
NOD-like receptor signaling pathway, hematopoietic cell line-
age, T cell receptor signaling pathway, cytokine–cytokine
receptor interaction, chemokine signaling pathway, Toll-like
receptor signaling pathway, and antigen processing and pre-
sentation were enriched in the crucial prognostic genes with a
high-expression phenotype (Figure 6).

3.7. Correlation of TICs and Six Crucial Prognostic Genes
Expression. The CIBERSORT algorithm in R 4.1.2 and
limma assessed each OC sample’s TME immune cell ratios
to find the correlation between six crucial prognostic genes
expression and TICs. Results showed that immune cells
linked positively to activated memory CD4+ T cells and
CD8+ T cells (r= 0.35) and negatively with macrophage
M0 and monocytes (r= 0.43) (Figure 7).

Then, correlation and difference analyses showed that
CD3E expression was strongly correlated with 11 TIC types.
Results showed that resting hypertrophy cells, activated
memory CD4+ T cells, macrophage M1, regulatory T cells,
CD8+ T cells, resting dendritic cells, and γδ T cells were

positively linked to the CD3E expression. CD3E expression
was negatively linked to macrophages M0, eosinophils, and
activated mast and dendritic cells.

Correlation and difference analyses revealed that CD3D
expression was strongly associated with 10 TIC types. Results
showed that plasma cells, activated mast cells, regulatory T
cells, activated dendrites cells, resting dendritic cells, and γδ
T cells were positively associated with CD3D expression.
CD3D expression was negatively linked to activated memory
CD4+ T cells, macrophage M1, CD8+ T cells, and macro-
phage M0.

Correlation and difference analyses revealed that CD3G
expression was significantly correlated with 10 TIC types.
Results showed that CD3G expression was positively linked
to plasma cells, activated dendritic cells, resting mast cells, γδ
T cells, regulatory T cells, and macrophage M0. CD3G
expression was negatively linked to CD8+ T cells, macro-
phage M1, and activated memory CD4+ T cells.

Correlation and difference analyses revealed that CD2
expression was significantly correlated with 11 types of
TIC. Results showed that CD2 expression was positively
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FIGURE 6: (a) GSEA identified the top 10 immune pathway signatures remarkably enriched in CD3E and have a high-phenotypic expression.
(b) GSEA identified the top 10 immune pathway signatures remarkably enriched in CD3D and have a high-phenotypic expression. (c) GSEA
identified the top 10 immune pathway signatures remarkably enriched in CD3G and have a high phenotypic expression. (d) GSEA identified
the top 10 immune pathway signatures remarkably enriched in CD2 and have a high-phenotypic expression. (e) GSEA identified the top 10
immune pathway signatures remarkably enriched in CCL19 and have a high-phenotypic expression. (f ) GSEA identified the top 10 immune
pathway signatures remarkably enriched in IL2RG and have a high-phenotypic expression.
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linked to plasma cells, active dendritic cells, regulatory T
cells, resting dendrites, and T cells. CD2 expression was neg-
atively linked to macrophage M0, CD8+ T cells, macrophage
M1, and activated memory CD4+ T cells.

Correlation and difference analyses revealed that CCL19
expression was significantly correlated with 10 types of TIC.
Results showed that activated mast cells, activated dendritic
cells, naive B cells, γδ T cells, activated NK cells, and activated
memory CD4+ T cells were positively associated with
CCL19 expression. CD8+ T cells, macrophage M1, resting
dendritic cells, and plasma cells had negative correlations
with CCL19 expression.

Correlation and difference analyses showed that 10 TIC
types substantially correlated with IL2RG expression. Plasma
cells, γδ T cells, regulatory T cells, eosinophils, macrophage
M0, resting dendritic cells, and active dendritic cells were
found to be positively correlated with IL2RG expression.
Moreover, IL2RG expression was negatively correlated with
CD8+ T cells, macrophage M1, and activated memory CD4+
T cells.

The results indicated that the six crucial prognostic gene
expressions had a substantial effect on immune activity in
the TME (Figure 8).

4. Discussion

Using TCGA databases, we obtained data on RNA sequencing,
and the corresponding clinical outcomes of OC to evaluate the
TME profile and ICB therapy efficacy in patients with OC. The
TME’s immune and stromal cells can regulate tumor growth by
secreting signal molecules and extracellular matrix compo-
nents. Bone marrow mesenchymal vascular endothelial, and
fibroblast cells are examples of stromal cells. Moreover, these
stromal cells also produce many protumorigenic factors that
recruit more protumorigenic cells and tumors to the growing
microenvironment. This process can promote some mechan-
isms such as invasion, proliferation, metastasis, and tumor
angiogenesis [13]. ICB therapy is a monoclonal antibody-based
therapy that acts as a tumor suppressor via the mechanism of
modulating tumor cell–immune cell interactions and boosts
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FIGURE 7: (a) A heatmap depicting the relationship between 22 different types of TICs. Each tiny colored box’s shade represented the two cells’
correlation value. For significance testing, the Pearson coefficient was used. (b) Using the Wilcoxon rank-sum test, violin plots compare the
percentages of 22 distinct immune cell types expressing low (green) or high (red) levels of CD3E in tumor tissues. (c) Using the Wilcoxon
rank-sum test, violin plots compare the percentages of 22 distinct immune cell types expressing low (green) or high (red) levels of CD3G in
tumor tissues. (d) By means of the Wilcoxon rank-sum test, violin plots compare the percentages of 22 distinct immune cell types expressing
low (green) or high (red) levels of CD3D in tumor tissues. (e) By means of the Wilcoxon rank-sum test, violin plots compare the percentages
of 22 distinct immune cell types expressing low (green) or high (red) levels of CD2 in tumor tissues. (f ) By means of the Wilcoxon rank-sum
test, violin plots compare the percentages of 22 distinct immune cell types expressing low (green) or high (red) levels of CCL19 in tumor
tissues. (g) By means of the Wilcoxon rank-sum test, violin plots compare the percentages of 22 distinct immune cell types expressing low
(green) or high (red) levels of IL2RG in tumor tissues.
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FIGURE 8: (a) Scatter plots illustrating the correlation between CD3E expression and 11 TIC-type proportions (p<0:05). Each plot’s blue line
represents a fitted linear model that shows the immune cell’s proportional tropism and CD3E expression. For correlation testing, the Pearson
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T cell-mediated antitumor immunity [14]. Immune checkpoint
inhibitors (ICIs) are novel drugs based on immunotherapy.
Moreover, ICIs promote the body’s natural tumor-killing
response. Immune checkpoint inhibitors such as cytotoxic T
lymphocyte-associated molecule-4 monoclonal antibodies and
PD-1/PD-L1 inhibitors are currently approved for treating cer-
tain cancers. Patients with different types of malignant tumors
can benefit from immune checkpoint inhibitor treatment
[15–17]. One study showed that the therapeutic effect of ICIs
was correlated with the composition of the TME [18]. The
current study showed that if the stromal cell composition is
lower and the tumor purity is higher in the TME in patients
with OC, ICB treatments can have better therapeutic effects.
Therefore, investigating immune cell infiltration and gene
expression in the OC microenvironment can provide novel
ideas for identifying new targets for immunotherapy and for
enhancing the efficacy of immunotherapy.

In the OC microenvironment, this study evaluated DEGs
in immune and stromal cell components. We performed GO
and KEGG enrichment analyses. The findings showed that
these DEGs were primarily enriched in immune activity-
related functions and pathways. Tumor cells can change the
TME by producing somemolecules that inhibit immune cells,
thereby leading to immune system tolerance to the develop-
ment of tumors and promoting tumor growth andmetastasis.
In this study, DEGs were linked to T-cell activation, lympho-
cyte and monocyte differentiation, and adhesion regulation
between cells. Therefore, these DEGs changed the TME by
affecting immune system activation and OC antitumor
immune response. This further confirms TME’s impact on
OC prognosis.

CD3E, CD3G, CD2, CD3D, CCL19, and IL2RG were
screened out from DEGs. Based on the survival analysis,
patients with OC who had higher levels of these six genes
had a better prognostic status. T cell receptor mediates
antigen-induced signaling with the help of CD3E, CD3D,
and CD3G, which participate in the conduction of antigen
presentation signal [19]. In the development and organiza-
tion of the immunological synapse, CD2 is crucial. CD2 also
activates memory T cells and regulates NK cell activation
[20]. CC chemokine ligand 19 (CCL19) is crucial in

regulating immune responses. The CCL19 gene encodes
the chemokine (C–C motif ) ligand 19. Moreover, CCR7
and its ligands CCL19 and CCL21 participate in the recircu-
lation of lymphocytes through secondary lymphoid organs
[21]. Chemokines have a chemotactic affinity for immune
cells and strong vascular inhibition and have attracted sig-
nificant attention in the tumor immunotherapy [22]. CCL19
can enhance tumor T cell and dendritic cell-infiltration levels
and PD-1/PD-L1 inhibitors’ therapeutic effects [23]. More-
over, if T cells are activated, CCL19 can help T cells and
dendritic cells home to lymphoid tissue’s T cell region. Pre-
vious studies have shown that CCL19 may be used as a
potential immune stimulant in immunotherapy for certain
cancer types, including breast and lung cancers [24, 25].
CCL19 can substantially inhibit ovarian tumor growth and
prolong survival after immunotherapy [26]. The Interleukin-
2 (IL-2) receptor γ chain (IL2RG) gene encodes a protein that
functions as a common receptor subunit for several impor-
tant immune factors. This glycoprotein is found on the sur-
face of most lymphocytes and aids the immune system. After
its deletion, numerous immune functions are impaired.
Importantly, the NK cell activity is completely lost [27, 28].
IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 comprise the cytokine
family, which is the third receptor component of the IL-2
receptor based on their common initially identified cytokine
receptor γ chain (γ C). They belong to the IL2RG family of
cytokines, which is widely used in immunotherapy [29, 30].
In conclusion, the proteins encoded by CD3E, CD3G, CD2,
CD3D, CCL19, and IL2RG are correlated with the immune
cells. This then reveals the internal mechanism of their anti-
tumor immune response, and their expression linked to
prognosis in patients with OC. Therefore, GSEA enrichment
analysis was conducted based on the expression of these six
genes. The findings revealed that the genes with a high expres-
sion were primarily enriched in immunoactivity-related path-
ways. Therefore, they could influence immune cell infiltration
in the TME, affecting the prognosis of patients with OC.

In OC, γδ T cell proportions correlated positively with
CD3E, CD3G, CD2, CD3D, CCL19, and IL2RG expression. γδ
T cells are T cells that have an innate immune function. They can
kill cancer cells and tumor stem cells and can recognize cancer

coefficient was used. Using difference and correlation analyses on violin and scatter plots, 11 TIC types are shown to be correlated with CD3E
expression. (b) Scatter plots illustrating the correlation between CD3G expression and 12 TIC-type proportions (p<0:05). Each plot’s blue
line represents a fitted linear model that shows the immune cell’s proportional tropism and CD3G expression. For correlation testing, the
Pearson coefficient was used. Using difference and correlation analyses on violin and scatter plots, 10 TIC types are shown to be correlated
with CD3G expression. (c) Scatter plots illustrating the correlation between CD3D expression and 11 TIC-type proportions (p<0:05). Each
plot’s blue line represents a fitted linear model that shows the immune cell’s proportional tropism and CD3D expression. For correlation
testing, the Pearson coefficient was used. By means of difference and correlation analyses on violin and scatter plots, 10 TIC types are shown
to be correlated with CD3D expression. (d) Scatter plots illustrating the correlation between CD2 expression and 12 TIC-type proportions
(p<0:05). Each plot’s blue line represents a fitted linear model that shows the immune cell’s proportional tropism and CD2 expression. For
correlation testing, the Pearson coefficient was used. Using difference and correlation analyses on violin and scatter plots, 11 TIC types are
shown to be correlated with CD2 expression. (e) Scatter plots illustrating the correlation between CCL19 expression and 11-TIC type
proportions (p<0:05). Each plot’s blue line represents a fitted linear model that shows the immune cell’s proportional tropism and CCL19
expression. For correlation testing, the Pearson coefficient was used. Using difference and correlation analyses on violin and scatter plots, 10
TIC types are shown to be correlated with CCL19 expression. (f ) Scatter plots illustrating the correlation between IL2RG expression and the
proportion of 12 TIC types (p<0:05). Each plot’s blue line represents a fitted linear model that shows the immune cell’s proportional tropism
and IL2RG expression. For correlation testing, the Pearson coefficient was used. By means of difference and correlation analyses on violin and
scatter plots, 10 TIC types are shown to be correlated with IL2RG expression.
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antigens. γδ T cells interact with the different immune cells,
engage in antitumor immune responses, and are crucial in pre-
venting tumor progression and inducing tumor cell apoptosis
[31]. Previous research has illustrated that activating and
improving γδ T cells cytotoxicity can improve the antitumor
effects and the efficacy of tumor immunotherapy [32]. More-
over, γδ T cells can recognize isoprene pyrophosphate, which
specifically identifies and attacks cancer cells [33]. γδ T cell
immunotherapy, a novel tumor immunotherapy, has good clin-
ical effects against different types of tumors, particularly malig-
nant ones [34, 35]. Some studies have shown that the zoledronic
acid-amplified γδ T cell transfer therapy is a safe and effective
cure for patients with non-small cell lung cancer [36]. Its mech-
anism may be correlated with changes in the TME, which can
attenuate γδT cell response via different methods. Tumor-infil-
trating γδ T cells in high-grade gliomas have a high-apoptosis
rate, and the number of γδ T cells decreases significantly at the
end stage of the disease [37, 38]. However, the TME’s primary
cytotoxic γδ T cell promoters, IL-2 and IL-15, are crucial for
regulating cytotoxic γδ T cells in cancer immunotherapy [39].
Previous research has demonstrated that γδ T cells in OC have
impaired antitumor cytotoxicity and enhanced immunosup-
pressive function, which can limit antitumor immunity, prevent
immune surveillance, and promote OC progression [40].
Enhancing γδ T cell antitumor cytotoxicity within the TME
and strengthening the antitumor immune response can inhibit
OC progression and improve prognosis in patients with OC.
Immunotherapy based on γδ T cells has several advantages.
However, there is no current in-depth research about the clinical
application of such treatment. γδT cell reduction in the TME can
be a prognostic predictor in patients with OC. Moreover, opti-
mizing γδ T cell immunotherapy and improving its clinical effi-
cacy can help in enhancing patient prognosis.

In conclusion, CD3E, CD3G, CD2, CD3D, CCL19, and
IL2RG were screened using bioinformatics methods. These
genes were involved in the immune-relatedmolecular mechan-
isms and could regulate TICs. Their expression was positively
correlated with γδ T cells. Therefore, they can be potential
prognostic markers and immunotherapy targets in the OC
microenvironment. This study can provide novel ideas regard-
ing the application of OC immunotherapy. However, the
results are only based on bioinformatics analysis. Nevertheless,
the role of the abovementioned genes should be validated via
cell and animal experiments, and the specific molecular mech-
anism must be further explored.
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