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Cutaneous malignant melanoma is one of the most serious skin cancers and is highly invasive and markedly resistant to
conventional therapy. Melanomagenesis is initially triggered by environmental agents including ultraviolet (UV), which induces
genetic/epigenetic alterations in the chromosomes of melanocytes. In human melanomas, the RAS/RAF/MEK/ERK (MAPK) and
the PI3K/PTEN/AKT (AKT) signaling pathways are two major signaling pathways and are constitutively activated through genetic
alterations. Mutations of RAF, RAS, and PTEN contribute to antiapoptosis, abnormal proliferation, angiogenesis, and invasion
for melanoma development and progression. To find better approaches to therapies for patients, understanding these MAPK and
AKT signaling mechanisms of melanoma development and progression is important. Here, we review MAPK and AKT signaling
networks associated with melanoma development and progression.

Cell signaling pathways are important for understanding not
only cancer progression but also all life phenomena, in-
cluding regulation of cell growth and death, migration, and
angiogenesis [1–4]. Moreover, the events are accurately con-
trolled by various intracellular signal transduction molecules
[2, 5–7]. In cancer progression, the signaling is hyperacti-
vated and/or silenced irreversibly. These irreversible losses
of control in signal transduction allow cancers to acquire
cancer-progression-specific phenotypes, such as antiapop-
tosis, abnormal proliferation, angiogenesis, and invasion.
Previous studies revealed that collapse of signaling control
was induced by both genetic and environmental factors [8–
12].

Melanin-producing cells, acquired in several species from
fungi to primates in the long evolutionary process, have
many advantageous functions for survival strategy [13–19].
Melanocytes, melanin-producing cells that are the origin
of melanoma, are developed from neural crest cells with
several types of cell signaling pathways and gene expression

[15, 20–22]. Human melanomas are categorized as nevus-
associated melanomas and de novo melanomas based on
their developmental process. Nevus-associated melanomas
are transformants of preexisting benign lesions, and their
malignant conversion progresses in a multistep manner
[23–26]. De novo melanomas develop without pre-existing
benign lesions [6, 27–29]. In humans, most melanomas are
thought to have developed de novo. RFP-RET transgenic
mice of line 304/B6 (RET mice) are powerful tools for
analyses of melanoma with pre-existing benign lesions [6,
30, 31]. The entire process of melanoma development via
tumor-free, benign, premalignant, and malignant stages in
RET mice corresponds to the multistep melanomagenesis in
humans [32]. Recently, we identified ZFP 28, CD109, and
c-RET as melanoma-related molecules through analysis of
tumors in RET mice [4, 33, 34].

Melanoma progression is closely associated with onco-
genic change: (1) genetic alteration (heritable changes in the
DNA sequence such as gene mutations, deletions, ampli-
fications, or translocations) and (2) epigenetic alteration
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Figure 1: Signal transduction in melanoma development and progression. Extracellular signaling (ligand) triggers intracellular signaling
through receptors such as tyrosine kinases (RTK). Triggered signals are transduced via verious factors, including tyrosine kinases, phos-
phatases, inhibitors, cofactors, and transcription factors and affect melanoma development and progression. Abbreviations: AKT thymoma
viral proto-oncogene; MDM2 transformed mouse 3T3 cell double minute 2; mTOR mechanistic target of rapamycin; PI3K Phosphoinositide
3-kinase, PIP3, Phosphatidylinositol (3, 4, 5)-trisphosphate; PTEN phosphatase and tensin homolog.

(modulated transcriptional activities by DNA methylations
and/or by chromatin alterations). Much information asso-
ciated with melanoma development such as information on
gene mutations, alterations of gene expression patterns, and
protein activities has been reported.

The RAS/RAF/MEK/ERK pathway, one of the most
well-known pathways involved in melanoma progression, is
regulated by receptor tyrosine kinases, cytokines, and heter-
otrimeric G-protein-coupled receptors [35]. The small G
protein RAS (HRAS, KRAS, and NRAS in humans) is
localized to the plasma membrane and activates a down-
stream factor, RAF (ARAF, BRAF and CRAF in humans)
followed by sequential activation of MEK and ERK, and this
signal is finally transduced to regulation of transcription in
the nucleus (Figure 1) [36]. This pathway is constitutively
activated by growth factors such as stem cell factor (SCF),

fibroblast growth factor (FGF), hepatocyte growth factor
(HGF), and glial-cell-derived neurotrophic factor (GDNF)
[37, 38], though activation of this signal is weak in mel-
anocytes.

ERK is hyperactivated in 90% of human melanomas [39]
by growth factors [40] and by genetic alterations of upstream
factors, RAS, and RAF proteins [41]. In humans, NRAS
and BRAF genes are mutated in 15% to 30% and in
50% to 70% of human melanomas, respectively, leading
to their permanent activation [41] followed by promo-
tion of proliferation, survival, invasion, and angiogenesis
of melanoma [42, 43]. BRAF signaling is also associated
with NFκB promoter activity. Inhibition of BRAF signaling
decreased NFκB promoter activity associated with survival,
invasiveness and angiogenesis for melanoma formation [44,
45].
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PTEN, containing a phosphatase domain, is inactivated
in 12% of melanomas through mutation or methylation
[46]. A substrate of PTEN, phosphatidylinositol (3,4,5)-
trisphosphate (PIP3) and phosphorylates AKT [47], which
activates cell survival, proliferation, cancer promotion, and
antiapoptotic signaling through mTOR (mammalian target
of rapamycin) and NF-κB pathways in melanoma (Figure 1)
[48–51]. RAS can also bind and activate PI3K, resulting in
increased AKT activity [52]. MDM2 is a ubiquitin ligase
that targets p53 (an apoptosis-associated tumor-suppressor
protein) for degradation and is highly expressed in 6% of
dysplastic nevi, 27% of melanoma in situ, and 56% of inva-
sive primary and metastatic melanomas [53]. MDM2 is also
a substrate for AKT [54–56]. Taken these results indicate that
AKT/MDM2 pathway is involved in melanoma progression
(Figure 1).

Recently, many persistent studies developed therapeutics
and drugs for melanomas. Phase 2 study for melanoma pa-
tients was tested by using the combination of bevacizumab,
an inhibitor of angiogenesis, and everolimus, an inhibitor of
mTOR which is a downstream target of PI3K/PTEN/AKT
signaling. In this study, 12% of malignant melanoma patients
achieved major responses [57]. Plexxikon (PLX4032) is a
novel selective inhibitor for BRAFV600E, a major activated
mutation observed in 60% of human melanomas [41]. This
inhibitor is dramatically effective in 74–80% of patients with
BRAFV600E-positive melanomas [58–60]. However, tumors
grow and progress again in almost all patients from about
7 months after initial treatment of PLX4032 [58, 60]. Recent
studies have revealed that treatment with PLX4032 activates
a novel pathway leading to regrowth and reprogression
of tumors with bypass of BRAF signaling, resulting in
tumors acquiring resistance to the BRAF inhibitor [61–65].
Molecular-based targeted treatments are usually effective
only in a subset of patients, and predictive molecular tests
are required to identify tumors with an activated targeted
pathway and to select patients with a good chance of re-
sponse. On the other hand, treatment with bortezomib, a
NF-κB inhibitor, alone or combined with paclitaxel and
carboplatin showed no clinical effect on malignant mel-
anoma patients in phase 2 study even though NF-κB is a
downstream target of RAF and AKT [66, 67]. These lim-
ited effects indicate that signaling pathways in malignant
melanomas may compensate each other to make resistance
to molecular-targeted therapy. Thus, molecular mechanisms
of melanoma development and progression are complicated
and melanoma therapy is still incomplete. Further studies
and a better understanding of melanoma development and
progression are needed to establish effective therapeutics
with few harmful side effects.
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