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The indoor object tracking by utilizing received signal strength indicator (RSSI) measurements with the help of wireless sensor
network (WSN) is an interesting and important topic in the domain of location-based applications. Without the knowledge of
location, the measurements obtained with WSN are of no use. The trilateration is a widely used technique to get location
updates of target based on RSSI measurements from WSN. However, it suffers with high location estimation errors arising due
to random variations in RSSI measurements. This paper presents a range-free radial basis function neural network (RBFN) and
Kalman filtering- (KF-) based algorithm named RBFN+KF. The performance of the RBFN+KF algorithm is evaluated using
simulated RSSIs and is compared against trilateration, multilayer perceptron (MLP), and RBFN-based estimations. The
simulation results reveal that the proposed RBFN+KF algorithm shows very low location estimation errors compared to the
rest of the three approaches. Additionally, it is also seen that RBFN-based approach is more energy efficient than trilateration
and MLP-based localization approaches.

1. Introduction

The wireless technologies such as WiFi, Bluetooth, infrared,
Zigbee, Bluetooth, Bluetooth Low-Energy (BLE) modules,
wireless sensor network (WSN), and GPRS are basic build-
ing blocks of Internet of Things (IoT) [1, 2]. The IoT tech-
nologies can be integrated with various combinations to
extract the location updates of various objects in the sur-
rounding environment. Location-based service (LBS) is a
dominant application of IoT, wherein attaining high local-
ization accuracy is a key aspect. Out of these IoT technolo-
gies, the WSN is most appealing technology of the 21st

century as it paved the way for many day to day applications
such as elderly monitoring, wildlife tracking, and environ-
mental monitoring [3]. The key strength with the use of

WSN technology is the high possibility of scalability of the
network through large number of tiny sensor nodes which
can configure themselves in ad hoc manner. These sensor
nodes have very good self-networking capability which can
lead to automatic coordination among them to solve the
given problem in hand. Out of all the applications, the local-
ization of objects using the WSN is widely researched topic
as the precise knowledge of node locations is key to success
to many LBS. The radiofrequency- (RF-) based target local-
ization is far superior to that obtained infrared (IR), acoustic,
and ultrawideband- (UWB-) based systems. The RF can eas-
ily penetrate walls, glass, or many other barriers during sig-
nal communication. The received signal strength (RSS) that
we discuss in this paper are a type of RF signal. The RSS is
also referred as RSSI. Generally, all the wireless transceivers
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have inbuilt RSS circuitry which can directly give us RSS
measurements. That is why the RSSI-based localization is
simple and inexpensive as well as has lower energy con-
sumption compared to other techniques [4, 5]. However,
due to issues of reflection, refraction, reflection, and atten-
uation, the RSSI-based localization methods suffers with
low localization accuracy. Therefore, a lot of research is
going on to address fluctuating nature of RSSI measure-
ments. Additionally, energy consumption is also very cru-
cial constraint in WSN-based applications and thus to use
the limited energy efficiently is the key design objectives in
WSN-based applications. In WSN, its transceiver, proces-
sor, and sensor components work in a cooperative fashion
to execute the given task, and this cooperation impact the
overall energy consumption in any WSN-based applica-
tion. This issue has been adopted in node energy model
which can compute sensor node energy consumption
accurately [6].

In the WSN area, the target moves and it generally
carries a receiver. The sensor nodes broadcast the RF signal
in the WSN which the target is supposed to receive. These
received values are nothing but RSSI measurements. The
role of object localization is to find out the unknown target
locations using these RSSI measurements during its motion.
Obviously, the localization system needs some advanced sig-
nal processing technique. The target localization solutions
can be classified into range-based techniques and range-
free techniques, each of with its pros and cons [7]. If the
localization technique involves range calculation, it is termed
as range-based technique, while the localization scheme that
does not involve range calculation is called as range-free
technique. The state estimation techniques such as Kalman
filter (KF) or particle filter (PF) are generally used in target
localization using WSN. However, the selection of KF or
PF for target localization relies on the dynamicity in the RSSI
measurements (i.e., nature and noise level) and application
demands [8, 9]. As compared to PF, the KF is simple to use
and computationally less expensive. Therefore, the application
of KF in target localization is generally employed in WSN.
Although the KF-based localization approach can offer high
localization performance than traditional trilateration tech-
nique, the KF system model used for locating the moving tar-
get cannot perfectly match with the actual scenario. That
means fine tuning KF parameters to match with the actual
environmental scenario is very tough. The KF alone cannot
guarantee low localization error alone due to high dynamicity
in the RSSI measurements. Hence, more advanced technique
need to be fused with KF-based localization.

The artificial neural network (ANN) can be adopted to
model any nonlinear system dynamics [10, 11]. Many
ANN architectures have been used for target localization in
the past. For instance, the generalized regression neural net-
work (GRNN) can be used for target localization [12, 13]. It
can get trained using the training dataset. The multilayer
perceptron (MLP) had also been proposed to solve target
localization problem. The GRNN and MLP are supervised
learning architectures and can be trained using dynamic
RSSI measurements obtained for a specific indoor environ-
ment. In [14], the problem of tracking of mobile sensors in

the uncertain, and the harsh indoor environment is pre-
sented in detail. This research work proposes two MLP-
assisted localization schemes with two hidden layers, and
these schemes are compared with trilateration-based
scheme. The simulation results show localization superiority
of the proposed MLP-based schemes with respect to that
with trilateration-based scheme. The research work in [15]
studied object localization using various neural networks
such as MLP, radial basis function network (RBFN), and
recurrent neural networks (RNN). In this work, the authors
collected the RSSI fingerprints are collected from known
locations to create an RF fingerprint map of the given indoor
setup. Then, the RBFN architecture is utilized to map any
random online RF fingerprint to object location coordinates.
A clustering scheme is developed to lower down the compu-
tational complexity of the proposed RBFN structure. The
results of localization experiment prove that the proposed
RBFN-based localization scheme offers sufficient object
localization accuracy to the scale of 5 meter.

Although some state estimation technique (such as KF)
or some other machine learning-based approach (such as
GRNN or MLP or RBFN) alone can achieve sufficient local-
ization accuracy around 5 meters, the localization accuracy
demand of some applications is around 1 meter. Thus, it is
quite interesting to fuse these two approaches together to
check whether such combination yield high localization
accuracy or not. The major research findings for this pro-
posed work are as follows:

(1) We proposed a robust localization scheme of fusion
of RBFN and KF to locate a moving target in indoor
using RSS measurements. We named the proposed
fusion scheme as RBFN+KF. This scheme yields
the localization accuracy around 1 meter

(2) The proposed RBFN+KF scheme is verified against
dynamicity in RSS measurements and abrupt target
motion using simulations. To realize RSSI measure-
ment dynamicity, the RSS measurement noise is set
to 3 dBm. The results obtained through simulations
prove that that the proposed RBFN+KF-based
scheme successfully solve target localization problem
with the fluctuating RSS field measurements as well
as abrupt target mobility as compared to trilatera-
tion, MLP, and RBFN so far as target localization
(or tracking) accuracy is concerned

(3) We also found that as against trilateration and MLP-
based localization frameworks, the RBFN-based
scheme has very less energy consumption during
tracking process of given mobile target

In this research paper, Section 2 enlists various existing
target localization solutions with their pros and cons. Section
3 focuses on fundamentals of RSSI-based localization along
with the implementation details of the proposed localization
system with underlying assumptions. The results obtained
through simulations of all the considered localization schemes
are illustrated and compared briefly in Section 4. The pro-
posed research work is concluded finally in Section 5.
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2. Related Work

The indoor target localization using RSSI measurements can
be broadly classified into ML-based methods and filter-based
methods. The ML-based methods are based on supervised
learning principles through RF fingerprinting. The popular
ML-based L&T solutions in the literature are radial basis
function (RBF), KNN (k-nearest neighbor), extreme learn-
ing machine (ELM), multilayer perceptron (MLP), recurrent
neural network (RNN), CNN (convolutional neural net-
work), and SVM. Once these models are trained offline with
dataset containing RSSI values and target locations, they are
tested with random RSSI measurements in the online loca-
tion estimation step. In [16], the authors propose kernel
online sequential ELM scheme for target localization in off-
line stage. In online location estimation stage, KNN is uti-
lized. For IoT-sensor system [17], CNN was fed with RSSI
measurements for target localization. Here, the authors are
successful to shift complexity in online estimation stage to
offline training stage. The proposed scheme yield 2 meter
localization accuracy. One more CNN-based target localiza-
tion scheme with RSSI measurements as inputs is proposed
in [18]. Here, thousands of RSSI fingerprints are taken for
a 12:5meter × 10meter area from deployed APs for half a
month. The average positioning errors obtained with the
proposed HW fingerprint-based approach are 4.1681 meter,
4.1145 meter, and 3.9118 meter using KNN, SVM, and
CNN, respectively. The major drawback with CNN-based
target L&T schemes is the requirement of fine tuning of
hyperparameters of CNN, namely, activation function,
threshold, and learning rate, and is very time-consuming
task. This makes CNN accurate for specific indoor condi-
tions, but less accurate for rest of the other indoor setups.
In [19], the authors propose kernel ELM- (K-ELM-) based
target L&T using 68,500 RSSI measurements obtained from
indoor area of 32meter × 16meter with eight sensor nodes.
The proposed K-ELM-based scheme is compared with
KNN, Bayesian, ELM, and online sequential ELM (OS-
ELM) schemes, and it is found that the proposed scheme
yield 8.125 meter accuracy which is quite high as against
remaining techniques for same indoor setup. The authors
also used BPNN for target L&T, but it involves the need of
large number of iteration for converging to the optimum
solution [20].

KF is an optimal state estimator for Gaussian process fil-
tering especially when the target model is prior known and
the target state parameters do not mutate (i.e., system is lin-
ear) [21, 22]. In [21], a novel distributed consensus-based
adaptive KF algorithm is proposed to track a mobile target.
The authors adopted two-stage fusion structure and policy
of dynamic cluster selection to achieve accurate location esti-
mates. The authors in [23] presented an algorithm to locate
target in indoor environments. The indoor environment is
divided the targeted area into several sectors, and then,
RSS measurements are used for target location estimation.
The authors in [24] combined the extended Kalman filter
(EKF) and PF together to alleviate the problem of particle
degradation. The probability density function (PDF) is
approximated using randomly selected particles from poste-

rior probability. A multimodel five-degree cube KF
(IMM5CKF) is proposed in [25]. The proposed algorithm
processes system models through Markov chains to improve
the target tracking error. The simulation experiments reveal
that the proposed IMM5CKF algorithm has stable and fast
switching performance while dealing with various maneuver
models.

In the filter-based target L&T, state estimation tech-
niques such as KF and particle filter (PF) are major schemes,
which involves two steps: prediction, and measurement. The
research works presented in [11, 26] demonstrate online
semisupervised SVR- (OSS-SVR-) based localization to
reduce the need of amount of the labeled data in training
set. Further, the proposed OSS-SVR results are fused with
KF. It is found that the proposed OSS-SVR scheme is robust
enough for variations in system noise and need very smaller
amount of labeled data during training. The SVR-based tar-
get localization model can also be fused with KF to
smoothen the target location estimates [27]. The proposed
SVR model utilizes linear, Sigmoid, RBF, and polynomial
kernel functions to estimate the moving target locations in
indoor. The proposed target localization model is also
energy efficient as compared to the traditional trilateration
model. In [12] also, trilateration-based estimates are applied
as input to KF for tracking of mobile target in WSN to pres-
ent two range-based algorithms: RSSI+KF and RSSI+UKF.
In this research work, the issues such as uncertainties in
RSSI noise, impact of variation in anchor density, and
abrupt variation in target velocity with the proposed tech-
nique. The simulation results confirm the efficacy of both
presented algorithms in spite of RF environmental dynami-
city. However, due to need of computing distances between
the transmitter and receivers frequently, although the pro-
posed algorithms show localization errors below 1 meter,
they have large computational complexity as compared to
other range-free localization solutions. Two range-free algo-
rithms GRNN+KF and GRNN+UKF are proposed in [12,
13]. In these research works, the GRNN architecture is
adopted to estimate the target location, which is then fed
to KF in order to deal with RSSI noise uncertainty. In this
work, the GRNN is trained with only four RSSI values and
corresponding target locations in the given indoor environ-
ment. The location estimations achieved with GRNN are
provided to KF and UKF in order to get more refined loca-
tion estimate. Most of the works discussed in this section
either concentrate on target localization (or tracking) accu-
racy or energy efficiency or robustness to environmental
dynamicity. As against these recent works, this research
work attempts to address all of these issues simultaneously
by providing fairly accurate, energy efficient, and robust
range-free localization solution using WSN.

3. Localization of Mobile Target Using
Proposed RBFN+KF Architecture

The proposed localization scheme assumes eight static
anchor (sensor) nodes located at random locations in 1000
square meters area as illustrated in Figure 1. The target is
supposed to carry WSN node set in transmitting mode. This
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node broadcasts signal RF for each time step k. Thus, all
eight anchor nodes receives RSSI measurements according
to equation (1) at each time step k. Using these RSSI mea-
surements the trilateration, MLP, RBFN, and the proposed
RBFN+KF algorithms estimate target location for each
time step k. The target state vector at each time instance
will be xk = ðxk, yk, _xk, _ykÞ′, where xk and yk are the posi-
tions and _x and _y are target velocities in x and y direc-
tions, respectively [13]. The time duration in two time
events is set to dt = k − ðk − 1Þ:

zℓj,k = Pr d0ð Þ − 10n log dlj,k/d0
À Á

+ Xσ, ð1Þ

where ðzℓj,kÞ is the RSSI received at the node Nℓ with
coordinates ðxℓk, yℓkÞ at time k, η is the path loss exponent,
Prðd0Þ is the RSSI at receiver at distance d0, and Xσ is the
normal random variable representing noise in RSSI.

The four RSSI measurements ðz3, z2, z3, and z4Þ that
are required as an input to the MLP+KF system are given
using [13]:

z1 = Pr d0ð Þ − 10n1 log
d1
d0

� �
+ Xσ,

z2 = Pr d0ð Þ − 10n2 log
d2
d0

� �
+ Xσ,

z3 = Pr d0ð Þ − 10n3 log
d3
d0

� �
+ Xσ:

z4 = Pr d0ð Þ − 10n4 log
d4
d0

� �
+ Xσ:

ð2Þ

The average path loss exponent is then calculated as
shown below.

navg =
n1 + n2 + n3 + n4ð Þ

4 : ð3Þ

Using above value of ðnavgÞ, equation (1) can be recon-
figured using

zlj,k = Pr d0ð Þ − 10navg log
dlj,k
d0

� �
+ Xσ: ð4Þ

The RBFN is a type of ANN, which is widely used for
the problems of supervised learning such as classification
and regression [10, 12]. It is basically a universal approx-
imation tool. It may be utilized for approximation of any
continuous function. Its unique features are good approx-
imation ability, fast rate of convergence, and fast learning
speed. It is basically a feed-forward neural network as
depicted in Figure 2. The value transition from input layer
to hidden layer is found to be nonlinear using RBF func-
tion, whereas transition from hidden layer to output layer
is supposed to be linear. Figure 3 presents MATLAB view
of the RBFN neural network-based localization architec-
ture. In this, we can see that four RSSI field measurements
are fed to input layer terminal of the proposed model, and
we get coordinates of estimated target position at the out-
put layer terminal. In between these two terminals, two
hidden layers have been used.

The important building block of the proposed RBFN
+KF algorithm is the RBFN architecture designed specifi-
cally for localization using four RSSI field measurements.
The RBFN architecture is trained using set of 100 vectors
consisting of RSSI field measurements (input vector) and
corresponding real 2-D locations of target (output vector).

100

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50

X-Axis (meter)

Anchor location
Actual target location

Y-
A

xi
s (

m
et

er
)

60 70 80 90 100

Figure 1: Deployment of anchor nodes and actual target trajectory in considered indoor environment.
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The training set consisting of 100 input vectors and 100 cor-
responding output vectors is obtained through some trial of
target motion. After training the proposed RBFN architec-
ture, it can be utilized for any given input vector with RSSI’s
obtained during target motion for each time step k.

The proposed RBFN architecture has two operational
stages, namely, unsupervised learning phase and application
of concept of least squares. In the first stage, the width
parameters and the center vector in Gaussian function with
hidden node are computed with the help of the input sam-
ples. The radial basis function used in RBFN is generally
Gaussian function as defined below in [10, 12]

G X − cið Þ = exp −
1
2σ2i

X − cik k2
� �

, ð5Þ

where X = ½RSSI1, RSSI2, RSSI3, RSSI4�, kX − cik is the
Euclidean distance, and ci is the Gaussian function for the
central vector of the jth hidden node.

The estimated target location using RBFN can be given
as follows:

x̂, ŷð Þ = 〠
h

i=1
wh exp −

1
2σ2i

X − cik k2
� �

, ð6Þ

where wiði = 1, 2,⋯hÞ is the weight between the hidden
layer to the output layer and ðx̂k, ŷkÞ is the estimated target
location.

As discussed in the Section 1, RBFN alone is not suffi-
cient to guarantee high localization accuracy due to dynami-
city in the indoor environment and high noise in RSSI
measurements. In other words, if the system dynamics is
highly nonlinear and uncertain, the RBFN location esti-
mated must be improved further with advanced state esti-
mation technique such as KF. Therefore, the RBFN
estimates are fed as an input to KF. The generalized frame-
work for the RSS measurement and target motion models
for the KF is given below in

xk = Axk−1 + Buk−1 +wk−1, ð7Þ

zk =H xkð Þ + vk, ð8Þ
where A, B, and H are the state transition matrix, control

input transitionmatrix, and RSSI input vector transitionmatrix,

respectively (see equation (9)). The values of A and B matrices
in equation (7) considered for this research work are given in

A =

1 0 dt 0
0 1 0 dt

0 0 1 0
0 0 0 1

2
666664

3
777775
, B =

1
2 dt

2 0

0 1
2 dt

2

dt 0
0 dt

2
66666664

3
77777775
,H = I4×4:

ð9Þ

The KF algorithm execute in two steps: predict step and
update step. The mathematics behind predict and update stage
is described below in

�xk = Ax̂k−1 + Buk−1 +wk−1,
P−
k = APk−1A

T
k +Qk,

Kk = P−
kH

T
k HkP

−
kH

T
k + Rk

À Á−,
x̂k = �xk + Kk zk −Hk�xkð Þ,
Pk = I − KkHkð ÞP−

k ,

ð10Þ

where K is called Kalman gain matrix and I is identity
matrix ðI4×4Þ:.

The R, P, andQ values in this research work are as
follows:

R =

1:2 0 0 0
0 0:2 0 0
0 0 0:6 0
0 0 0 0:5

2
666664

3
777775
, P =

0:15 0 0 0
0 0:3 0 0
0 0 0:2 0
0 0 0 0:1

2
666664

3
777775
,Q = I4×4:

ð11Þ

The loss function for our proposed RBFN-based target
localization scheme can be explained using performance
evaluation parameters. These parameters must assess how
far the estimated target locations from the real-time loca-
tions of the mobile target. The performance evaluation
parameters used in this research work are average localiza-
tion error and RMSE. For the successful localization perfor-
mance the metrics of these loss functions must be as low as
possible. These performance evaluation parameters can be
defined as

Average Localization Error = 1
T
〠
T

k=1

x̂k − xkð Þ + ŷk − ykð Þ
2 ,

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T
〠
T

k=1

x̂k − xkð Þ2 + ŷk − ykð Þ2
2

vuut ,

ð12Þ

where ðxk, ykÞ is the actual target track and ðx̂k, ŷkÞ is the
estimated target track.
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Figure 2: Proposed RBFN structure for target localization.

5International Journal of Distributed Sensor Networks



In this paper, we have adopted the node energy model
proposed by Garcia et al. [6]. According to this model, the
sensing module is assumed to be operating in periodic mode
and it is matching with our system setting. This model also
assumes the sensing module alternately goes in “on” and
“off” state. Considering energy consumptions during “on”
and “off” states are constant, the energy consumption of
wireless sensor (Esensor) can be computed by

Esensor = Eon‐off + Eoff‐on + Esensor‐run
=N eon‐off + eoff‐on +VsIsTsð Þ, ð13Þ

where eon‐off is the one-time energy consumed to switch
sensor from “on” to “off” state, eoff‐on is the one-time energy
consumed to switch sensor from “off” to “on” state,
Esensor‐run is the energy consumed during sensing wireless
signal, Vs is the working voltage of sensor, Is is the working
voltage of sensor, Ts is the time period required for sensing
operation, and N is the total number of “on” to “off” and
“off” to “on” operations.

4. Discussion on Results

The RBFN and the proposed RBFN+KF-based localization
architectures are trained using 100 sets of four RSS measure-
ments (input vectors) and 100 corresponding actual loca-
tions (output vector) each. As the proposed RBFN
architecture is trained, it is now ready for target localization
by using random set of four RSSI vectors obtained in real-
time motion of the target. Once the location estimates with
RBFN architecture are obtained, these are fed to the KF
framework to refine them further for each time step. The
training samples (RSSI measurement vector and corre-
sponding target locations) are presented to the proposed
RBFN architecture during training, based on which it gets
adjusted according to its error. The validation samples are
used to measure generalization ability of the proposed RBFN
and to stop training if generation stops further improvisa-
tion, whereas the testing samples (real-time RSSI measure-
ment vector) are provided to the RBFN to evaluate the
localization accuracy of the proposed RBFN during online
estimation. Figure 4 shows the results of validation perfor-
mance with the proposed RBFN+KF algorithm. The mean
squared error (MSE) represents the distance between the
model’s estimate for test values and the actual test value.

This plot is useful to give rough idea about how your model
behaves for training dataset, test dataset, and validation
dataset. The model validation is checked generally to know
about suitability of your model at guessing out-of-sample
values. From Figure 4, it is clear that MSE is very less,
moderate, and high for training dataset, test dataset, and val-
idation dataset, respectively. We get best validation perfor-
mance at epoch 12; thus, the proposed model takes less
epochs to get generalized.

Figure 5 shows the results of model training state using
parameters such as gradient, Mu, and validation checks with
the proposed RBFN+KF algorithm. The gradient error
between the estimated target location values and the actual
target location values is minimized using the back-
propagation algorithm and is achieved to be 1.6313 at epoch
18. The mu is the control parameter used to train the neural
network, whereas the validation check is a parameter to be
observed when you do not have huge amount of training
dataset. This is most beneficial when you do not have huge
amount of data. The values for mu and validation checks
at epoch 18 are 1e − 11, and 6, respectively. It simply means
the proposed model performs best at epoch 18.

We know that the regression R represents the correlation
between estimated output and desired target. It varies
between 0 (high correlation) and 1 (high correlation). From
Figure 6, it is evident that training of the proposed RBFN
architecture has R value of 0.99988, validation has R value
of 0.99452, test has R value of 0.86539, and all has R value
of 0.96279. It can be inferred that there is close relationship
between estimated results and desired results by adopting
the proposed RBFN+KF algorithm. In each simulation
experiment, the mobile target starts its motion from (10,
10) and stops at (85, 55). The RMSE and average localization
errors presented in Table 1 are obtained by averaging of 40
simulation trials. Figure 7 illustrates comparison of localiza-
tion accuracy with trilateration, RBFN, and RBFN+KF
schemes. From Figure 7, it is evident that the estimated tar-
get locations with the proposed RBFN+KF algorithm almost
coincide with the actual target track during its motion.

Figure 8 presents the comparison of variation of estima-
tion errors in localization in x location estimate with trila-
teration, MLP, RBFN, and RBFN+KF-based localization
schemes. As far as estimation of target x coordinate during
its motion is concerned, the x coordinate estimation error
is highest with the traditional trilateration-based localization
technique as compared to the rest. The x coordinate

Input

Hidden1

W

+ + +

b b b

W W

5 3 2

2

Hidden2 Output

Output

4

Figure 3: MATLAB view of RBFN neural network-based localization architecture.

6 International Journal of Distributed Sensor Networks



estimation errors are different for different target locations
during its motion. The same logic is applicable for y coordi-
nate estimation errors, and x-y coordinate estimation errors
illustrated in Figures 9 and 10, respectively. The highest
error with trilateration, MLP, RBFN, and RBFN+KF are
approximately 20 meters, 10 meters, 5.8 meters, and 1.7
meters, respectively. Thus, the proposed RBFN+KF model
target localization performance is very high for the given
indoor setup as compared to that with the rest of the other
techniques.

Figure 9 illustrates the comparison of variation of esti-
mation errors in localization in y location estimate with tri-
lateration, MLP, RBFN, and RBFN+KF-based localization
schemes. As far as estimation of target y coordinate during
its motion is concerned, the y coordinate estimation error
is highest with the traditional trilateration-based localization
technique as compared to the rest. The highest error with
trilateration, MLP, RBFN, and RBFN+KF are approximately
18 meters, 10 meters, 5 meters, and 2 meters, respectively.
Thus, the proposed RBFN+KF model target localization

100

0 2 4 6 8 10
18 Epochs

Train
Validation

Test
Best

Best validation performance is 4.6133 at epoch 12

M
ea

n 
sq

ua
re

d 
er

ro
r (

M
SE

)

12 14 16 18

Figure 4: Results of validation performance with the proposed RBFN+KF algorithm.
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Figure 5: Results of gradient, Mu, and validation checks with the proposed RBFN+KF algorithm.
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performance is best for target y coordinate estimation also as
compared to that with the rest of the other techniques.

Figure 10 demonstrates the comparison of variation of
estimation errors in localization in x-y location estimate with
trilateration, MLP, RBFN, and RBFN+KF-based localization
schemes. This graph of target x-y location estimate is obtained
by taking average of x location estimate and y location esti-
mate. Here, also, the x-y coordinate estimation error is highest
with the traditional trilateration-based localization technique
as compared to rest of the others. The highest error with trila-
teration, MLP, RBFN, and RBFN+KF are approximately 14

meters, 8 meters, 7.7 meters, and 1.8 meters, respectively.
Thus, the proposed RBFN+KF model target localization per-
formance is the best for target x-y coordinate estimation also
as compared to that with the rest of the other techniques.

It is also observed that RMSE for the proposed RBFN
+KF is lowered down by around 88%, 79%, and 75% as com-
pared with that of trilateration, MLP, and RBFN, respec-
tively (see Table 1). Additionally, the average localization
error for the proposed RBFN+KF is lowered down by
approximately 86%, 71%, and 63% as compared with that
of trilateration, MLP, and RBFN, respectively. The largest
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Figure 6: Results of regression during training, validation, and testing with the proposed RBFN+KF algorithm.

Table 1: Average localization error, RMSE, largest and smallest localization errors with trilateration, RBFN, and RBFN+KF schemes in
meters.

Algorithm RMSE (meter) Average localization error
Smallest localization

error in x-y estimation
Largest localization

error in x-y estimation

Trilateration 12.4312 6.7076 0.5487 19.7849

MLP 7.0431 3.1076 0.4723 11.6523

RBFN 6.1756 2.4682 0.7450 8.2512

RBFN+KF 1.4874 0.8991 0.2130 1.9732
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possible localization error in the x-y location estimation with
the RBFN+KF scheme is 1.9732, and it is very much less
than that with the RBFN and trilateration-based localization
schemes. Thus, from all these results discussed so far, it can
be easily concluded that target localization accuracy is low-

est, moderate, and highest with trilateration, MLP, RBFN,
and the proposed RBFN+KF schemes, respectively.

From Figure 11, it is clear that the energy consump-
tion (in Joules) during target tracking is lowest with the
proposed RBFN-based framework, moderate with MLP-
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Figure 7: Comparison of trilateration, MLP, RBFN, and proposed RBFN+KF-based localization estimation.
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based framework, and highest with trilateration-based
scheme. Looking at Figure 11, it is also clear that the proposed
RBFN+KF scheme also comparatively consume much less

energy than that with the classical trilateration-based
scheme for our given indoor setup. We also believe that
this energy consumption will vary from indoor setup to
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setup. Thus, the proposed RBFN+KF scheme is found to be
superior than remaining other localization schemes. It is
quite clear that the target tracking accuracy will vary for
different target trajectories as well as for different WSN
areas say 1000m × 1000m. For such different operating
environments, one needs to use more customized training
dataset of RSSI measurements. We believe that if a custom
training dataset is generated using simulations, the pro-
posed RBFN-based target tracking scheme may yield good
target tracking performance.

5. Conclusion

This work proposes novel RSS measurements based target
L&T algorithm, namely, RBFN+KF. It is basically a fusion
of RBFN and KF techniques. The results obtained through
simulations prove that our proposed RBFN+KF target
localization scheme provides improved target location esti-
mates as against trilateration, MLP, and RBFN-based solu-
tions. The RBFN+KF scheme successfully deals with the
dynamicity in the given RF channel for indoor target
L&T. To realize RSSI measurement dynamicity, the RSS
measurement noise is set to 3 dBm. It is also revealed that
the proposed RBFN+KF scheme successfully address the
problem of fluctuations in RSS field measurements as well
as abrupt motion of mobile target against trilateration and
RBFN in the context of tracking accuracy. In the future,
we intend to apply proposed fusion-based RBFN+KF
localization scheme to solve multitarget tracking (MTT)
problem. We also believe that the variation in the total
number of anchor nodes or in the number of input RSSI
measurements to the proposed RBFN model may yield
variation in target localization accuracy as well as total
energy consumption.
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