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Synchronous positioning and mapping mainly realize the functions of self-positioning and environment map construction for
intelligent navigation technology. In order to solve the problems of low positioning accuracy and poor mapping effect of
existing SLAM (simultaneous localization and mapping) systems in indoor dynamic environments and to improve the
positioning accuracy, timeliness, and robustness of visual SLAM systems in dynamic environments, an improved visual SLAM
method is proposed. Aiming at the inconsistency between the direction of dynamic objects and static background optical flow,
this method adopts a high-real-time dynamic region mask detection algorithm to eliminate the feature points in the dynamic
region mask, remove the camera motion optical flow according to the original feature information, and then cluster the optical
flow amplitude of dynamic objects so as to realize the dynamic region mask detection and eliminate the dynamic signpost
points combined with the polar geometric constraints. In order to verify the effectiveness of the improved algorithm, the three
evaluation indexes of system accuracy, real-time performance, and the amount of drift are analyzed and verified, respectively,
on the TUM dataset. The results show that the proposed algorithm not only has good real-time performance but also improves
the accuracy of the system and reduces the amount of drift.

1. Introduction

Synchronous positioning and map construction are the basis
of autonomous navigation and environment intelligent per-
ception. RGB-D camera can directly collect images at a low
cost, so the SLAM system based on this camera is widely
used in the field of intelligent navigation. Intelligent naviga-
tion scenes often contain a variety of moving objects, which
will cause interference to the SLAM system in both pose esti-
mation and map construction [1].

Visual SLAM systems for the most part assume a static
scene and simplify pose estimation based on that, but there
are always dynamic objects such as walking people and mov-
ing cars in the actual scene. If such objects occupy a large
proportion of the field of view, the positioning accuracy
and robustness of the system will be seriously affected. These
SLAM algorithms add dynamic feature points to pose calcu-
lations and generate corresponding error map points in

sparse point cloud maps. Therefore, an effective method is
needed to distinguish dynamic features or regions. Moving
objects will also affect the dense map construction of the
SLAM system, and the wrong pose estimation causes the
algorithm to wrongly overlay multiframe observation infor-
mation, resulting in map distortion [2].

The optical flow method is a common method to study
interframe motion changes. Literature [3] uses dense optical
flow and the CodeBook model to segment dynamic regions,
eliminate dynamic feature interference, and establish dense
point clouds. In literature [4], dense optical flow is calculated
for images, and dynamic region segmentation is obtained by
combining locus clustering of points. The scene flow method
introduces the idea of 2-dimensional optical flow into 3-
dimensional space and calculates the displacement in 3-
dimensional space. Literature [5] calculates scene flow,
establishes a rigid body motion model, and divides the mov-
ing rigid body region. Dense optical flow and scene flow are
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effective for dynamic region segmentation, but they will be
reduced when optical flow is calculated for a large number
of pixels.

Other methods also have a contradiction between operation
efficiency and dynamic segmentation and dense mapping. Ref-
erence [6] carries out background registration for adjacent
image frames, uses the interframe difference method to identify
motion, and uses the depth map to quantify and segment
dynamic regions without involving dense mapping. In literature
[7], the Gaussian model was used to model the background and
establish a dense map, but only the rectangular frame selection
of moving objects could be obtained. In literature [8], dynamic
feature points are screened according to the polar geometry
principle, and dynamic regions are marked with a super pixel
segmentation algorithm. However, the segmentation computa-
tion is large, which reduces real-time performance and does not
involve dense mapping. In literature [9], line features in the
environment are replaced by point features, and dynamic line
features are eliminated by the computational static weight
method, which has high computational efficiency but is not
applicable to dense mapping. Literature [10] proposes an algo-
rithm based on improved geometry and motion constraints,
which is also based on sparse features, so it is not capable of
motion region segmentation and online dense mapping.

In addition, more and more researchers apply deep
learning methods to SLAM algorithms in dynamic scenarios.
Literature [11] uses the Mask R-CNN network [12] to seg-
ment dynamic objects and fill in the missing background
in the current picture with the help of key frames from the
past for dense map construction. Literature [13] uses the
SegNet network [14] for image segmentation and dense
map construction. Some researchers choose to use an object
detection network to first determine the location of dynamic
objects and then use other methods to segment. Literature
[15] uses an object detection network and the Grab Cut
algorithm [16] to segment dynamic objects. In literature
[17], the YOLOV3 algorithm [18] was used to preliminarily
filter the dynamic region, and then the dynamic region was
segmsegmed and filtered more carefully through the consis-
tency evaluation of the distance transform error and photo-
metric error of the edge in the image. In literature [19],
YOLOV3 is combined with a polar-line constraint algorithm
based on the optical flow method to remove dynamic fea-
tures, which has high pose accuracy but does not involve
dynamic segmentation and dense mapping. The algorithm
of deep learning can accurately identify objects and usually
performs well. However, it cannot identify dynamic objects
outside the network prior range and relies on GPU hardware
with a large amount of computation, so it is difficult to apply
to mobile robots and other platforms. Aiming at the prob-
lems of location accuracy and real-time performance, an
improved visual SLAM method combining case segmenta-
tion and optical flow is proposed in this paper.

2. State of the Art

2.1. Visual SLAM. Visual SLAM mainly uses the position
and attitude of the camera between two frames of images
collected by the camera sensor to repeat the trajectory of
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the entire exploration path, while the pose optimization
methods of the camera are mainly divided into filter-based
and optimization-based on different implementation princi-
ples [20]. The filter-based camera pose optimization method
ignores the previous camera state information and optimizes
only the estimated camera pose obtained under the current
state. This method of processing only according to the cur-
rent state information will introduce cumulative errors into
the SLAM system to some extent, resulting in the system’s
estimation of the running track of the camera sensor. The syn-
chronous positioning and mapping system (ORB-SLAM) algo-
rithm was designed and implemented in literature [21] based
on directional FAST and rotating BRIEF and the improved
ORB-SLAM2 in literature [22] based on ORB-SLAM. This
method adds local BA optimization, which can improve the
impact of cumulative errors on the SLAM algorithm, make
the system tracking and mapping more stable during position-
ing and mapping, and meet the real-time requirements.

Since SLAM needs to use the depth information of the
image collected by the sensor when constructing its 3D
map of the surrounding environment, the RGB-D camera
can obtain the depth information in real time. Therefore,
the real-time performance of the RGB-D camera is better,
but its detection range is small, so it is often used in indoor
mobile robots. Meanwhile, the calculation of camera posi-
tion in SLAM can be divided into two schemes: the indirect
method and the direct method. The method of using gray
information from an image combined with photometric
error to estimate the pose of the camera sensor is called
the direct method. SLAM based on the direct method mainly
includes intensive tracking and mapping (DTAM) and
large-scale direct monocular SLAM (LSD-SLAM) [23]. For
the MonoSLAM method proposed in literature [24] for the
indirect SLAM system, the extended Kalman filter (EKF)
method is used in the back-end optimization scheme of the
algorithm. This method uses the method of minimizing
reprojection error to estimate. Although its mapping process
can achieve a real-time effect, the sparse space points make it
only capable of synchronous positioning and mapping on
small occasions. It is the first real-time monocular SLAM
system based on EKF. Literature [25] proposed PRAM, an
algorithm applicable to the parallel operation of two threads,
for positioning and mapping. In the pose optimization and
evaluation of the camera, the nonlinear optimization scheme
is utilized. At the same time, in order to save the time
required for optimization, PTAM adds the judgment of
key frames. However, tracking failure is easy to occur during
operation, and the effect is better in small scenes. Compared
with the direct method, the feature point method has advan-
tages such as more stable operation and better adaptability
to the environment, so it has become a research hotspot in
recent years [26].

2.2. Optical Flow Network. The optical flow prediction task is
to establish a flow field representing the corresponding rela-
tionship between each pixel of the original image and the
target image given an original image and a target image. Ide-
ally, the deformed image of the target image obtained by the
flow field deformation should be very similar to the original



International Journal of Distributed Sensor Networks

Deformable
convolution

F(XZ)J

Asymmetric occlusion-aware feature
matching module

I
I
I
I
I
I
I
I
I
I
I
Correction layer |—— !
I
I
I
I
I
I
I

»| Feature pyramidw
AsymOFMMs |——*

» Feature pyramid Jr

F1GURE 1: Structure of MaskFlownet-S network.

image. However, the occlusion region generated by the rela-
tive displacement between foreground and background
brings ambiguity and invalid information to the deforma-
tion image acquisition, which reduces the accuracy of optical
flow prediction results.

MaskFlownet is an asymmetric feature-matching mod-
ule that can learn occlusion mask [27]. This module can pre-
dict the invalid information caused by occlusion region and
filter feature deformation. The end-to-end unsupervised
occlusion mask learning significantly improves the perfor-
mance of the network.

MaskFlownet includes a lightweight optical flow pre-
diction network, MaskFlownet-S, which is faster but less
accurate than MaskFlownet. As shown in Figure 1, the
structure of MaskFlownet-S is a feature pyramid network
(FPN) structure combined with AsymOFMMs (asymmet-
ric feature matching module) that can learn occlusion
masks. In Figure 1, the asymmetric feature matching mod-
ule of the learnable occlusion mask introduces deforma-
tion convolution asymmetrical, that is, an additional
convolution is carried out while the target feature map is
deformed according to the current flow field, and then
the learnable occlusion mask is applied to the deformed
feature map in the form of multiplication to filter interfer-
ence information. Finally, the tradeoft u is added to make
up for the missing feature information after filtering the
occlusion area. In Figure 1, F(X1) and F(X2) are the fea-
ture graphs of input images X1 and X2 after feature pyra-
mid sampling.

2.3. Example Splitting the Network. This paper uses the
COCO dataset to train the YOLACT++ network. YOLACT
++ is an improvement on YOLACT, which uses ResNet101
as its backbone network [28]. As shown in Figure 2,
C1~C5 correspond to the convl~conv5 convolution mod-

ules of ResNet, respectively. In the figure, P3~P7 are FPN,
and feature maps of different scales are obtained through
upsampling and downsampling. This structure enables the
input features to have strong semantic information, higher
accuracy for shallow features, and better robustness for deep
features in the pyramid.

YOLACT realizes instance segmentation through two
parallel subnetworks, prediction head and protonet. The
prediction head branch generates the target anchor, the
location parameter of the anchor, the target object cate-
gory, its confidence, and the mask mask coefficient, and
then removes the redundant anchor by nonmaximum
suppression. The protonet branch generates a set of proto-
type masks, multiplicates the prototype mask and the
mask mask coefficient generated by the prediction head
branch, and then carries out clipping and threshold seg-
mentation to get the segmentation result of the target
object in the image.

YOLACT++ introduces deformable convolution in
YOLACT to make sampling points more consistent with
the shape and size of the object itself. The scale size and
aspect ratio of the anchor were changed to increase the
number of anchors. Add the mask rescoring branch, and
score each segmentation result by generating the product
between the IOU (intersection over union) of the mask
and the corresponding classification confidence, so as to
obtain better results.

3. Methodology

3.1. Visual SLAM System Framework. This paper uses an
RGB-D camera as the sensor. Figure 3 shows the complete
framework of the SLAM system, where the orange box
represents the threads of ORB-SLAM2, and the dotted
box represents the motion area detection thread added in
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FIGURE 3: System frame diagram.

this paper based on the original tracking, local mapping,
and loop closure detection threads. “sim3” in Figure 3
refers to randomly sampling three pairs of points in
ORB-SLAM2 and calculating the similarity transformation
matrix.

When the feature detection of new image frames enter-
ing the tracking thread is carried out, the domain detection
module, according to the optical flow field data and the
result of instance segmentation, passes the image into the
motion area detection thread for parallel forward reasoning
of the optical flow network and instance segmentation net-
work. Then, based on the detection of the dynamic region
in the direction of optical flow, a dynamic region mask based
on the direction of optical flow is generated for the initial
pose estimation and local map tracking module of the track-
ing thread, and the feature points in the dynamic region are
eliminated.

Since it takes a long time to repair the failure points of
the depth map, the dynamic region detection module based
on the amplitude of the optical flow field is adopted to
ensure real-time performance without detecting each frame
of the image. If the current frame is taken as the key frame
in the tracking thread stage, the dynamic region detection
module based on the optical flow field amplitude in
Figure 3 generates the corresponding mask according to
the depth information, optical flow field information, and
interframe pose provided by the local map tracking in the
tracking thread. The optical flow prediction result, camera
position transformation, and depth value were affected by
noise, which resulted in errors in the detected dynamic
region. Therefore, after generating the dynamic region mask,
epipolar constraints checked the feature points within the
mask and determined the feature points that did not con-
form to the polar geometric constraints within the mask as
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outer points. And does not generate the corresponding map
signpost points.

Therefore, the dynamic region detection module based
on the amplitude of the optical flow field is used to further
screen the path points during the creation of key frame way-
points in the local mapping thread, which can reduce the
influence of instance segmentation omission. On the pre-
mise of ensuring real-time performance and pursuing high
accuracy, YOLACT++ was selected as the instance segmen-
tation module, and MaskFlonet-S as the optical flow predic-
tion module.

3.2. Constraints on Polar Geometry. As shown in the epipo-
lar constraints module in Figure 3, after the generation of
the flow magnitude mask based on optical flow amplitude,
static feature points outside the mask region were further
confirmed using the optically geometric constraints. Its
principle is shown in Figure 4 (N12 is the pose transfor-
mation matrix from Ol to O2). Cameras located at two
different positions are used to observe point U. Assuming
that the corresponding coordinate vectors of point U on
the two frames of images are i;=[p, q 1" and i,=
[p, ¢, 1]7, then the direction I' vector of the polar line
on frame O2 is

II
=y | =Fi, (1)
K/

where F is the basic matrix between the two positions of

T . N
the camera. [I'J'K']" is the polar direction vector. So
the distance from the pole d is zero.

|i3 Fi, |
|II|2+’]I’2' (2)

Ideally, distance d =0. Due to noise and distortion in
the acquired image, the distance between the point and
pole line is not 0. Therefore, the threshold dh is set. If
the distance obtained is larger than this threshold dh, it
is considered that the point does not conform to the polar
constraint.

3.3. Dynamic Region Detection Based on Optical Flow Field
Vector Direction. An optical flow field is a vector field con-
taining the instantaneous motion information of all pixels
in the whole image, usually expressed in the form of two-
dimensional vectors; that is, the optical flow vector of each
pixel in the optical flow field can be decomposed into a
horizontal component and a vertical component.
According to the arctangent function, the included angle
between the optical flow vector of each pixel in the current
frame and the positive direction of the horizontal axis in
the pixel coordinate system is calculated (the included angle
range is 0~27), and the included angle is linearly mapped to
the gray range of 0~255. Since the direction angle of the

FIGURE 4: Constraints on polar geometry.

optical flow vector is 0 and 27, there will be a black-and-
white dividing line in the figure.

In order to avoid detection of this dividing line by subse-
quent edge detection, the included angle between the optical
flow vector of each pixel and the horizontal axis of the pixel
coordinate system is converted according to the following
formula:

0, 0<O<m,
fﬁ{ (3)

2r—0, m<O0<2m,

where 0 is the included angle between the optical flow vector
and the positive direction of the horizontal axis. The angle
between the optical flow vector after fa conversion and the
positive direction of the horizontal axis.

If the camera moves continuously, the scene changes in
the image frame taken by the camera. Assuming the camera
is at rest, the scene can be viewed as moving relative to the
camera. Since the camera imaging is on a two-dimensional
plane, the three-dimensional motion of the scene is corre-
spondingly projected onto the two-dimensional motion on
the camera imaging plane.

If the scene (image region) taken by the camera is
regarded as a homogeneous rigid body, then the two-
dimensional motion of the frame image on the camera imag-
ing plane can be decomposed into rotation around the cen-
ter of rotation (image geometric center, camera optical
center) and the translation of the center of rotation itself.
If the translational velocity is 0 and only the rotational veloc-
ity is available, then the velocity of the geometric center of
the image is 0, and the optical flow vector of the pixel of
the corresponding geometric center of the image is also 0.
Under the condition that the translational velocity is 0, the
optical flow vector at other pixel points in the image is only
caused by its own rotation motion (rotation angular velocity
is w), so the optical flow vector at other pixel points is per-
pendicular to the vector pointing to the pixel point at the
geometric center of the image o. Therefore, the angle includ-
ing the direction of the optical flow vector around the geo-
metric center of the image (the point where the
instantaneous velocity vector is 0, also known as the



instantaneous velocity center) will change sharply from 0 to
2m. If the translational velocity is not 0, the position of the
instantaneous center of velocity will be shifted, resulting in
the appearance of complex edges.

When the image is not rotated, the instantaneous cen-
ter of velocity is located at infinity. When the rotation
velocity of the image is much less than the translational
velocity, the instantaneous center of velocity is located
outside the image, and no fold edge will appear 8. When
the instantaneous center of velocity is within the image,
the fold edge will appear. Therefore, the appearance of
the fold edge depends on whether the center of velocity
is located in the image. The optical flow vector of each
pixel on the image is perpendicular to the vector that
the instantaneous center of velocity points to the pixel,
so the included angle between the optical flow vector
and the positive direction of the horizontal axis is 71/2.
Therefore, the difference between the optical flow vector
at the four corner points of the image and the angle
included in the positive direction of the horizontal axis is
equal to the difference between the vector pointing to
the pixel point at the instantaneous center of the velocity
and the angle included in the positive direction of the hor-
izontal axis. Therefore, Osum of the four included angles
can be calculated using the angle obtained in Equation
(3). Because there are errors in the prediction results of
the optical flow network, the threshold Oth is selected.
When Osum > 6th, the instantaneous center of velocity is
located in the image.

If the velocity instantaneous center is located in the
image, in order to avoid the interference of the folded
edge around the velocity instantaneous center on the
dynamic target edge and facilitate the subsequent edge
detection, this paper moves it out of the visible area of
the image. The optical flow vector of pixel points can be
decomposed into a rotation component and a translational
component. The translational component of all pixel
points is the same. The rotation component of a pair of
pixels symmetric about the camera’s optical center is the
same size and opposite direction. According to Equation
(4), the average value of all optical flow vectors in the
image can be obtained to obtain the approximate value
of the translation component. There are dynamic regions
in the image, the geometric center does not coincide with
the optical center of the camera, and the optical flow pre-
diction results have errors.
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where p is the mean value of the optical flow field in the
horizontal axis direction. g is the mean value of the optical
flow field along the vertical axis. W is the width of the
image. T is the height of the image.
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Then, calculate the optical flow field after removing the
velocity instantaneous center according to the following
equation:

7
prm(x’y) =p(x,y) + 1—)2+q2p’

Z (5)
G (% ¥) = q(x, y) + mq’

X = 1)2""’ W’y: 1’2:"': T’

where P, is the value after removing the velocity center of
the transverse component of the optical flow field. Q,,, is
the value after removing the instantaneous center of the
velocity of the longitudinal component of the optical flow
field. z is a constant. The instantaneous center of velocity
is moved out of the image area according to the original off-
set direction, and then the edge detection is carried out to
extract the edge of the dynamic object. The flow chart of
the dynamic region detection algorithm based on optical
flow field direction is shown in Figure 5.

3.4. Dynamic Region Detection Based on Optical Flow Field
Vector Amplitude. It is assumed that the optical flow field
f, of the current frame X, consists of two parts, one is the

optical flow f ff) of the static scene caused by the movement

of the camera itself, the other is the optical flow f 51'") of the
dynamic object in the scene caused by the movement of

the camera itself, and then the static scene optical flow fff)
caused by the movement of the camera itself is

O =2zN A9z, —u, xeX,, (6)

n—n+l

where Z is the internal parameter matrix of the camera.
N,—n+1 is the camera pose transformation matrix
from the current frame to the next frame. U, is the pixel

coordinates in the current frame. dff) is the depth value
corresponding to the pixel point. In this paper, the RGB-
D camera is used to obtain the depth value of the pixel,
and the dynamic region detection results based on the
amplitude of the optical flow field vector are applied to
the local mapping thread. N, — n+1 in Equation (6)
adopts the pose estimated in the tracking thread.

As shown in Figure 6, the white background is the
known area of the image, Q is the area to be repaired in
the image, 6Q is the boundary of the area to be repaired,
and u is any point on the boundary. In the known region
of the image around point u, a neighborhood B(¢) with the
scale of ¢ is selected, then the pixel value of point u can be
approximated by the pixel value in the neighborhood B(e).
Given the pixel value X(v) at fixed point v and its gradient
VX(v), the first-order estimate of point u is

X, (u) =X(v)+VX(v)(u—-v). (7)
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Then, the pixel value of point u can be expressed as

Loeru) @ (V) X(V)+VX(v) (u - v)]

X(u) B ZveH(u) w(”’ V)

. (8)

where w(u,v) is the weight distribution function, whose
value is determined by the direction and distance between
u and v and the distance between u and the initial boundary.
After processing all pixel points on the boundary, iterate
Equation (8) continuously and gradually shrink the bound-
ary of the area to be repaired until the whole area is repaired.

In the above process, the distance between the pixels on
the current boundary and those on the initial boundary
should be determined, and then gradually shrink to the inte-
rior of the area to be repaired according to the order of the
distance. For this purpose, the FMM clearly maintains a nar-
row channel so that the known and unknown areas are
clearly separated.

According to Equation (9), the optical flow f\™ caused
by the motion of the dynamic object can be expressed as

A =fa- 1 )

The K-means algorithm is adopted to divide all pixels in

the amplitude map of the optical flow fElm) caused by the
motion of dynamic objects into two categories: one is a static
region, and the other is a dynamic region. Then, according
to Formula (10), the dynamic region mask W, —n+1
based on the amplitude of the optical flow field is obtained.

0, u,€R,

Wn—>n+l(ux) = { (10)

1, u,€R,,

where R, is the static region. R,, is the dynamic region. The
flow chart of the dynamic region detection algorithm based
on optical flow field direction is shown in Figure 7.
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TaBLE 1: Experimental data sequence and main parameter settings.
Data sequence Dn/s Nr/m Qd/(ms-) Wa/()-s~) Frame count
frl/xyz 30.10 7.11 0.24 8.92 799
f1/rpy 27.68 1. 66 0.06 50.14 724
fr1/desk 2341 9.26 0.41 23.32 614
fr1/room 48.91 15. 98 0.33 13.42 1363
fr1/desk2 24.87 10.16 0.42 29.88 641
fr1/floor 49.88 12.56 0.25 15.07 1243

4. Result Analysis and Discussion

In order to verify the effectiveness of the proposed algo-
rithm, it is compared with the algorithm in literature [22]
on the TUM dataset and analyzed and verified from three
evaluation indexes of system accuracy, real-time perfor-
mance, and drift quantity, respectively. The TUM dataset
is a public dataset for computer vision and robotics, devel-
oped by the Technical University of Munich (TUM) in Ger-
many [29]. The dataset includes image sequences, IMU data,
camera calibration parameters, and other information col-
lected by various sensors in multiple scenes. It is suitable
for researchers and students with corresponding technical
backgrounds to conduct research in autonomous navigation,
3D reconstruction, SLAM (simultaneous localization and
mapping), and other areas.

The details of the experimental data series used and the
main parameter settings are shown in Table 1, where Dn,
Nr, Qd, and wa represent the duration, track length, dis-
placement velocity, and angular velocity of the data series,
respectively. The parameters listed in Table 1 can reflect
the performance and advancement of the algorithm to a cer-
tain extent, but they are not optimal parameters.

For avoiding the uncertainty of results, experiments were
carried out on the Intel Core i7-8300H@2.30 GHz computer
with 32 GB memory. Each data sequence was run 60 times,
and the results were compared and analyzed with those that
appeared most frequently.

4.1. Analysis of Algorithm Accuracy and Drift Quantity. The
absolute trajectory error is used to evaluate the consistency
of the trajectory, and the absolute distance difference
between the estimated trajectory and the real trajectory is
compared. The relative pose error is used to evaluate the
amount of drift of the system, that is, to compare the differ-
ence of the pose transform over a period of time.

In Tables 2 and 3, ATEl and ATE2 are the ATE
obtained by the algorithm in literature [22] and the pro-
posed, respectively. RPE1 and RPE2 are the Rpes obtained
by the algorithm in literature [22] and the proposed,
respectively. # is the lifting rate. The root mean square
error (RMSE) is the root mean square error. The mean
is the mean of errors. The median is the median error.
Std (standard deviation) is the standard deviation. Com-
bined with the data in Tables 2 and 3, it can be seen that
the more intense the camera movement, the more obvious
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TaBLE 2: Comparison results of absolute trajectory errors.

Data sequence ATE1l/m . ATE2/m ‘ n/% .

RMSE Mean  Median Std RMSE Mean Median Std RMSE Mean Median Std
frl/xyz 0.01034 0.0858  0.00718 0.00577 0.00900 0.00753  0.00663  0.00491 13.1 12.1 7.6 14.8
fr1/desk 0.02053 0.01428 0.01035 0.01475 0.01430 0.01175 0.00970 0.00815 30.3 17.7 6.3 44.7
fr1/floor 0.01924 0.01425 0.01147 0.01293 0.01221 0.01079 0.01075 0.00572 36.5 24.2 6.3 55.7
fr1/desk2 0.03050 0.02394 0.01838 0.01889 0.02112 0.01810 0.01683 0.01088 30.7 24.3 8.4 424
frl/rpy 0.02905 0.02158 0.01634 0.01944 0.01926 0.01573 0.01250 0.01111 33.6 27.1 13.5 42.8
frl/room 0.08145 0.07614 0.07422 0.02892 0.03698 0.03180 0.02867 0.01887 54.6 58.2 60.3 34.7

TaBLE 3: Comparative results of relative position and pose errors.

Data sequence RPE1/m . RPE2/m ‘ 1/% .

RMSE Mean  Median Std RMSE Mean  Median Std RMSE Mean Median Std
fri/xyz 0.00592 0.00497 0.00416 0.00321 0.00576 0.00479 0.00405 0.00319 2.7 35 2.5 0.7
fr1/desk 0.01188 0.00802 0.00557 000876 0.00896 0.00715 0.00574 0.00539 24.5 10.8 -3 38.4
fr1/floor 0.00403 0.00321 0.00274 0.00244 0.00384 0.00313 0.00269 0.00223 4.6 2.5 2 8.5
fr1/desk2 0.01066 0.00862 0.00737 0.00627 0.01049 0.00851 0.00699 0.00614 1.5 1.2 5.2 2.1
frl/rpy 0.01081 0.00752  0.0055 0.00776  0.00919 0.00717 0.00564 0.00575 14.9 4.6 -2.4 25.9
fr1/room 0.01418 0.00861 0.00621 0.01126 0.01152 0.00807 0.00589 0.00822 18.7 6.2 5.2 26.9

TaBLE 4: Comparison of processing time of each frame.

rithm in this paper is faster in phase processing time, and
the average processing time of each frame is about 25ms,

Data sequence tl/ms ©2/ms which has better real-time performance and can be better
Mean Median Mean Median applied in real scenes.
frl/xyz 26.367 26.473 25.206 25.433
fr1/desk 24.773 25.475 27.891 26.852
fr1/floor 21.264 20.975 20.478 19.591 5. Conclusion
fr1/desk2 31.146 30.562 29.417 28.621 I d J h f fd b h
n order to reduce the influence of dynamic objects on the
f1/r 26.824 26.678 24.075 24.239 .
by accuracy of the SLAM system, a more robust visual SLAM
frl/room 25.463 22.555 24.243 21.606

the improvement effect of the proposed algorithm on the
system accuracy.

By comparing the absolute trajectory error RMSE of the
two algorithms, it can be seen that the RMSE of the pro-
posed algorithm is far lower than the original algorithm.
The average RMSE of the proposed algorithm is about
0.0188m, and that of the algorithm in the literature [22] is
about 0.0318 m, indicating that the estimated trajectory of
the proposed algorithm is more accurate. Combined with
Table 3, the algorithm in this paper improves the accuracy
and the drift quantity.

4.2. Real-Time Analysis of Algorithm. The real-time perfor-
mance of the system is the key to evaluating the SLAM sys-
tem. In order to achieve real-time performance of the SLAM
system, high-performance CPU (Intel Core i7-11800H) and
GPU (NVIDIA GeForce RTX 3090), as well as low-latency
input devices (Logitech C922 Pro Stream camera) were used
in this experiment. Table 4 shows the comparison of the
processing time of each frame between the algorithm in this
paper and the algorithm in literature [22]. In the table, t1
and t2 are, respectively, the processing time of the algorithm
in literature [22] and the algorithm in this paper. The algo-

algorithm for dynamic environments is proposed. Based on
ORB-SLAM2, the system filters feature points on dynamic
objects using optical flow and instance segmentation. The
reasoning of the segmentation network and optical flow net-
work is carried out for each frame image simultaneously,
and then the dynamic region mask is detected according to
the direction information of the optical flow field vector.
The feature points in the dynamic region mask are filtered,
and then the new map points in the local map-building
thread are screened according to the dynamic region mask
detected by the optical flow field amplitude information
and the polar geometric constraints. The proposed algo-
rithm is compared with the standard ORB-SLAM?2 algo-
rithm on the TUM dataset. Experimental results show that
the proposed algorithm not only has good real-time perfor-
mance but also improves the accuracy of the system. This
algorithm can be applied to other visual SLAM systems
and provides a new idea for the improvement of visual
SLAM.

Data Availability

The labeled dataset used to support the findings of this study
is available from the corresponding author upon request.
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