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This paper considers a multiple-input multiple-output (MIMO) multicasting system aided by the intelligent reflecting surface
(IRS). We aim to maximize the sum information rate via jointly designing the transmit precoding matrix and the reflecting
coefficient (RC) matrix, subject to the transmit power constrains of the Tx and IRS. To tackle the nonconvex problem, we
recast the original problem into an equivalent formulation by using some important facts about matrices and proposed a block
coordinate descent (BCD) method to optimize the variables. Finally, simulation results validate the effectiveness of active IRS
in enhancing the rate performance.

1. Introduction

Recently, intelligent reflecting surface (IRS) has been pro-
posed as an effective approach for wireless communication.
An IRS is a metasurface consisting of several programmable
elements that can be smartly controlled to manipulate wire-
less propagation environment [1]. Since passive IRS only
reflects incident signals, the power consumption is relatively
much smaller than that of traditional active transmitter [2].
For example, IRS-assisted scheme has been investigated in
the millimeter-wave (mmWave) networks [3], the antijam-
ming communication networks [4], the simultaneous wire-
less information and power transfer (SWIPT) networks [5],
the unmanned aerial vehicle (UAV) networks [6], the hybrid
satellite-terrestrial networks [7], etc. Besides, some novel IRS
structures have been proposed, such as the multilayer IRS
[8] and the simultaneous transmission and reflection intelli-
gent surface [9]. More and more research suggests the prom-
ising application prospect of IRS. However, to overcome the
severe double path loss in the reflecting channel, the litera-
ture recently introduced a novel active IRS architecture
[10], in which each element is integrated with an amplifier
[11]. By converting direct current bias power into radio fre-

quency power, the active element can directly amplify the
incident signal [12]. Recently, the energy efficiency of active
IRS has been studied [13], and the results suggested that
active IRS can obtain higher energy efficiency than passive
IRS. Then, the literature investigated the active IRS-assisted
secure transmission [14] and extends to the spectral and
energy efficiency tradeoff of active IRS-assisted network
[15]. While the literature indicates that active IRS can obtain
higher energy efficiency than passive IRS in multiuser
multiple-input single-output (MISO) network [16], recently,
the authors studied the beamformer design in active IRS-
assisted multiuser multiple-input multiple-output (MIMO)
radio networks [17], where a sum mean squared error
(MSE) objective was optimized. And the authors investi-
gated the secrecy beamformer in active IRS-assisted wiretap
channel with energy harvesting [18], where a max–min fair-
ness problem was addressed by the successive convex
approximation algorithm.

However, when considering other objective such as the
sum information rate, how to use active IRS in MIMO net-
work deserves more research. Motivated by the above obser-
vations, we investigate an active IRS-aided MIMO system,
where a multiple-antenna transmitter (Tx) transmits the
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signal to several multiple-antenna users. Different from the
commonly used passive IRS, active IRS is used to assist the sig-
nal transmission and to improve the system performance. The
main contribution of the work is summarized as follows:

(i) We consider a multiuser MIMO multicasting net-
work, where both the direct link and the cascaded
link are existing. Then, to overcome the main sys-
tem bottleneck in the passive IRS-aided network
incurred by the double fading effect, we propose to
use active IRS to amplify and alter the phase of the
incident signal, thus improving the spectral effi-
ciency of this network

(ii) Specifically, we aim to maximize the sum informa-
tion rate of these users, by jointly designing the pre-
coding matrix at the Tx and the reflecting coefficient
(RC) at the IRS. The formulated problem is noncon-
vex, mainly due to the coupled variables and the
complicated logarithmic determinant functions. To
handle this obstacle, we reformulate the sum rate
maximization problem as an equivalent problem
by using some important facts about matrices,
where the objective is linearized. Then, a block
coordinate descent (BCD) algorithm is developed
to handle the reformulated problem, where the sub-
problems are solved alternatingly until convergence.
In fact, several subproblems have closed-form solu-
tions, and the others can be solved by the quadrati-
cally constrained quadratic program (QCQP). Thus,
the proposed algorithm has polynomial time com-
putational complexity

(iii) Finally, simulation results verify the effectiveness of
the proposed algorithm as well as the superiority of
active IRS when compared with other benchmarks.

Besides, some meaningful insights can be attained:
(1) active IRS can effectively alleviate the double
fading attenuation than passive IRS; (2) it is benefi-
cial to design the RC properly, since random RC
suffers from certain performance loss; (3) it is better
to deploy the active IRS close to the users than Tx to
improve the sum rate performance

1.1. Notations. The conjugate, transpose, conjugate trans-
pose, and trace of matrix A are denoted as A†, AT , AH ,
and TrðAÞ, respectively. a = vecðAÞ denotes to stack the col-
umns of matrix A into a vector a. A ≽ 0 indicates that A is a
positive semidefinite matrix. ⊙ and ⊗ denote the element-
wise product and the Kronecker product, respectively. Diag
ða1,⋯, aMÞ represents a diagonal matrix with a1,⋯, aM on
the main diagonal. Rf·g denotes the real part. CN ð0,AÞ
denotes a circularly symmetric complex Gaussian random
vector with mean 0 and covariance A.

2. System Model and Problem Formulation

2.1. System Model. As shown in Figure 1, the MIMO system
consists of one Tx, one IRS, and K users. It is assumed that
the Tx and the k-th user have Nt and Nk antennas, while the
IRS has M elements, respectively. We denote Gk ∈ℂNk×Nt ,
F∈ℂM×Nt , and Hk ∈ℂNk×M as the channel coefficient from
the Tx to the k-th user, the Tx to the IRS, and the IRS to
the k-th user, respectively.

Since active IRS only utilizes power amplifiers and
phase-shift circuits that control and reflect the signals, no
dedicated digital-to-analog converters (DACs), analog-to-
digital converters (ADCs), and mixers are required. In
contrast, relays are usually equipped with these mentioned
electronic components for transmission and low-noise
amplifiers for reception, which leads to higher hardware cost
and power consumption than active IRS [19].
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Figure 1: System model.
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In this paper, all CSI is assumed perfectly obtained at the
Tx, which is due to the fact that several channel estimation
techniques have been investigated for obtaining the CSI such
as the progressive refinement method [20] and the parallel
factor decomposition method [21], which makes the estima-
tion and acquirement of the CSI become practical. In addi-
tion, there exists an IRS controller which coordinates the
CSI exchange between the Tx and the IRS [22], thus achiev-
ing the joint design.

The intended signal sk ∈ℂd×1ðd ≤NtÞ for the k-th user is
precoded by the precoder Wk ∈ℂNt×d . Thus, the transmit
signal x ∈ℂd×1 can be expressed as

x = 〠
K

k=1
Wksk: ð1Þ

Without loss of generality (W.l.o.g), we assume that
E½sksHk � = I, ∀k and sk, si are independent for ∀i ≠ k.

Thus, the received signal at the k-th user is

yk =Gkx +HkΘFx +HkΘnr + nk, ð2Þ

where Θ = Diagðθ1,⋯, θMÞ ∈ℂM×M denotes the RC matrix
of the IRS, with θm = αme

jϕm being the RC of the m-th ele-
ment. Here, αm ∈ ½0, αm,max� and ϕm ∈ ½0, 2πÞ represent the
amplitude and the phase, respectively. For an active IRS,
αm,max is not necessary 1. Here, we assume that αm and ϕm
are independent for any m. In fact, αm and ϕm are coupled
with each other for practical IRS. Thus, the authors have
studied the function relationship between the αm and ϕm
for passive IRS [23–25]. However, the coupled relationship
between αm and ϕm for active IRS has not been studied yet.
We will try to improve this in our future work.

In addition, nr ~CN ð0, σ2r IÞ and nk ~CN ð0, σ2
kIÞ

denote the additive noise at the IRS and the k-th user,
respectively.

Accordingly, the information rate at the k-th user is [26]

Rk Wk,Θð Þ ≜ ln I + �HkWkWH
k
�HH
k Ω−1

k

��� ���, ð3Þ

where �Hk =Gk +HkΘF is the equivalent channel from the
Tx to the k-th user and Ωk = σ2

kI + σ2
rHkΘΘHHH

k +∑K
i=1,i≠k

�HkWiWH
i
�HH
k denotes the covariance matrix for the k-th

user.

2.2. Problem Statement. We aim to maximize the sum rate
among these users, via jointly designing the precoder and
the RC, subject to the transmit power constraints. The prob-
lem is given as follows:

max
Wk ,Θ

Rs ≜ 〠
K

k=1
Rk Wk,Θð Þ, ð4aÞ

s:t: Tr 〠
K

k=1
WkWH

k

 !
≤ Ps, ð4bÞ

Tr ΘF〠
K

k=1
WkWH

k F
HΘH + σ2rΘΘH

 !
≤ Pr , ð4cÞ

Θ½ �m
�� �� ≤ αm,max,∀m, ð4dÞ

where Ps and Pr are the maximum achievable power for the
Tx and IRS, respectively.

The main difficulties in solving ((4a)–(4d)) are twofold:
firstly, (4a) is nonconvex; secondly, the variables are highly
coupled.

3. The Joint Precoder and RC Design

To tackle the difficulty of (4a), we extend the key idea of the
popular weighted mean square error minimization
(WMMSE) algorithm [27], to reformulate ((4a)–(4d)), and
then use the BCD method [28]. We first introduce the fol-
lowing lemmas.

Lemma 1 (see [28]). Define matrix function

Σ A, Bð Þ ≜AHNB + I −AHCB
À Á

I −UHCV
À ÁH , ð5Þ

where D is any positive definite matrix. Then, we have the fol-
lowing equations:

Equation 1: for any positive definite matrix P ∈ℂm×m,

P−1 = arg max
Q≻0

ln Qj j − Tr PQð Þ,

−ln Pj j = arg max
Q≻0

ln Qj j − Tr PQð Þ +m:
ð6Þ

Equation 2: for any positive definite matrix Q, we have

~A ≜ arg min
A

Tr QΣ A, Bð Þð Þ = D + CBBHCHÀ Á−1CB,
Σ ~A, B
� �

= I − ~AHCB = I + BHCHD−1CB
À Á−1

:

ð7Þ

Equation 3: we have

ln I +CBBHCHD−1�� �� = arg max
Q≻0,B

ln Qj j − Tr QΣð Þ +m: ð8Þ

For more detailed derivation about these equations,
reader can refer to [29, 30].

3.1. Reformulation of the Objective (4a). By using the above
equations, we rewrite RkðWk,ΘÞ as

Rk Wk,Θð Þ = ln I + �HkWkWH
k
�HH
k Ω−1

k

��� ���|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f k

, ð9Þ

where

f k = max
Ψk≻0,Uk

ln Ψkj j − Tr ΨkΞk Uk,Wk,Θð Þð Þ +Nk: ð10Þ
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Furthermore, the matrix functions ΞkðUk,Wk,QÞ are
given as

Ξk Uk,Wk,Qð Þ ≜UH
k ΩkUk: ð11Þ

Combining these relationships, we obtain the following
problem:

max
Ψk ,Uk ,Wk

〠
K

k=1
ln Ψkj j − 〠

K

k=1
Tr ΨkUH

k ΩkUk

À Á

+ 〠
K

k=1
Tr Ψk I −UH

k
�HkWk

À Á
I −UH

k
�HkWk

À ÁH� �
,

ð12aÞ

s:t: Tr 〠
K

k=1
WkWH

k

 !
≤ Ps, ð12bÞ

Tr ΘF〠
K

k=1
WkWH

k F
HΘH + σ2

rΘΘH

 !
≤ Pr , ð12cÞ

Θ½ �m
�� �� ≤ αm,max,∀m: ð12dÞ

((12a)–(12d)) is still hard to solve due to the coupled
variables. However, when several variables are fixed,
((12a)–(12d)) can be turned into convex problem with
respect to (w.r.t) the other variables, thus motivating us to
propose the BCD algorithm.

3.2. The BCD Algorithm. Specifically, we decouple
((12a)–(12d)) into three subproblems and obtain the solu-
tions alternatingly.

(A) Subproblem 1: optimizing fUk,Ψkg with given
fWk,Θg

By the above lemmas, we obtain the following optimal
fUk,Ψkg:

Uk = I + �HkWkWH
k
�HH
k +Ωk

� �−1
�HkWk, ð13aÞ

Ψk = Ξk Uk,Wk,Θð Þ−1 = I +WH
k
�HH
k Ω−1

k
�HkWk: ð13bÞ

(B) Subproblem 2: optimizingWk with given fΘ,Uk,Ψkg
Specifically, the subproblem is given as

min
Wk

〠
K

k=1
Tr ΨkUH

k
�Hk 〠

K

i=1,i≠k
WiWH

i −WkWH
k

 !
�HH
k Uk

 !

− 〠
K

k=1
Tr ΨkUH

k
�HkWk

À Á
− 〠

K

k=1
Tr ΨkWH

k
�HH
k Uk

� �
,

ð14aÞ

s:t: Tr 〠
K

k=1
WkWH

k

 !
≤ Ps, ð14bÞ

Tr ΘF〠
K

k=1
WkWH

k F
HΘH + σ2rΘΘH

 !
≤ Pr: ð14cÞ

Then, by utilizing the identity TrðPHRSTÞ = vecðPÞH
ðTT ⊗ RÞvecðSÞ and defining wk = vecðWkÞ, ((14a)–(14c))
can be further recast as

min
wk

〠
K

k=1
wH

k Ykwk − 2R wH
k yk

È ÉÈ É
, ð15aÞ

s:t: 〠
K

k=1
wH

k wk ≤ Ps, ð15bÞ

〠
K

k=1
wH

k I ⊗ FHΘHΘF
À ÁÀ Á

wk ≤ Pr − Tr σ2rΘΘHÀ Á
, ð15cÞ

where Yk = I ⊗ ð∑K
i=1,i≠k

�HH
i UiΨiUH

i
�Hi − �HH

k UkΨkUH
k
�HkÞ

and yk = vecðΨkUH
k
�HkÞ, respectively.

((15a)–(15c)) is a QCQP problem [31] and can be solved
by the toolbox CVX [32].

(C) Subproblem 3: optimizing Θ with given fWk,Uk,
Ψkg

Specifically, the subproblem is given as

min
Θ

− 〠
K

k=1
Tr σ2rΨkUH

k HkΘΘHHH
k Uk

À Á

+ 〠
K

k=1
Tr ΨkUH

k
�Hk 〠

K

i=1,i≠k
WiWH

i −WkWH
k

 !
�HH
k Uk

 !

+ 〠
K

k=1
Tr ΨkUH

k HkΘFWk

À Á
+ 〠

K

k=1
Tr ΨkWH

k F
HΘHHH

k Uk

À Á
,

ð16aÞ

s:t:Tr ΘF〠
K

k=1
WkWH

k F
HΘH + σ2rΘΘH

 !
≤ Pr , ð16bÞ

Θ½ �m
�� �� ≤ αm,max,∀m: ð16cÞ

By denoting Wk = Fð∑K
i=1,i≠kWiWH

i −WkWH
k ÞFH , we

have

Tr ΨkUH
k HkΘF 〠

K

i=1,i≠k
WiWH

i −WkWH
k

 !
FHΘHHH

k Uk

 !

= Tr ΨkUH
k HkΘFWkΘHHH

k Uk

À Á
:

ð17Þ
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Thus, ((16a)–(16c)) can be changed into

min
Θ

〠
K

k=1
Tr ΨkUH

k HkΘFWkFHΘHHH
k Uk

À Á

+ 〠
K

k=1
2R Tr ΨkUH

k HkΘFWkGH
k Uk

À ÁÈ É

− 〠
K

k=1
2R Tr ΨkUH

k HkΘFWk

À ÁÈ É

− 〠
K

k=1
Tr σ2rΨkUH

k HkΘΘHHH
k Uk

À Á
,

ð18aÞ

s:t:Tr ΘF〠
K

k=1
WkWH

k F
HΘH + σ2rΘΘH

 !
≤ Pr , ð18bÞ

Θ½ �m
�� �� ≤ αm,max,∀m: ð18cÞ

Then, we turn ((18a)–(18c)) into an equivalent problem
w.r.t θ = ½θ1,⋯, θM�T . Firstly, we introduce the following
lemma.

Lemma 2 (see [33]). Let C1 ∈ℂm×m and C2 ∈ℂm×m be matri-
ces, and 1 = ½1,⋯, 1�T is a m × 1 vector. Assuming that E ∈
ℂm×m is a diagonal matrix E = diag ðe1,⋯, e2Þ and e = E1,
then we have

Tr EHC1EC2

À Á
= eH C1 ⊙CT

2

À Á
e,

Tr EC2ð Þ = 1T E ⊙CT
2

À Á
1 = eTc2,

Tr EHCH
2

À Á
= cH2 e

†,

ð19Þ

where c2 = ½ðC2Þð1,1Þ,⋯, ðC2Þðm,mÞ�T .

Via Lemma 2, we have the following relationship:

〠
K

k=1
Tr ΨkUH

k HkΘFWkFHΘHHH
k Uk

À Á

− 〠
K

k=1
Tr σ2rΨkUH

k HkΘΘHHH
k Uk

À Á
= θHXθ,

ð20Þ

where X =∑K
k=1ðHH

k UkΨkUH
k HkÞ ⊙ ðFWkFH − σ2r IÞT .

Similarly, we have

〠
K

k=1
2R Tr ΨkUH

k HkΘFWkGH
k Uk

À ÁÈ É

− 〠
K

k=1
2R Tr ΨkUH

k HkΘFWk

À ÁÈ É
= θTz,

ð21Þ

where z = ½Zð1,1Þ,⋯, Zðm,mÞ�T and Z = F∑K
k=1ðWH

k GH
k Uk −

WkÞΨkUH
k Hk, respectively.

Furthermore, the power constraint (4c) can be recast as

Tr Θ F〠
K

k=1
WkWH

k F
H + σ2

r I
 !

ΘH

 !
≤ Pr ⇒ θH I ⊙WTÀ Á

θ ≤ Pr ,

ð22Þ

where W = F∑K
k=1WkWH

k FH + σ2r I.
By combining these above steps, ((18a)–(18c)) can be

turned into

min
θ

 f θð Þ = θHXθ + 2R θTz
n o

, ð23aÞ

s:t:θH I ⊙WTÀ Á
θ ≤ Pr , ð23bÞ

θmj j ≤ αm,max,∀m: ð23cÞ
((23a)–(23c)) is also a QCQP problem, which can be

solved by CVX.

3.3. Summarization and Discussion. The whole BCD algo-
rithm is summarized in Algorithm 1.

Here, we analyze the computational complexity of Algo-
rithm 1. In fact, the main complexities of Algorithm 1 lie in
the subproblems ((15a)–(15c)) and ((23b)–(23c)). Besides,
the complexity for solving a QCQP problem is given by
Oð ffiffiffiffi

m
p ðmn2 + n3Þ ln ð2m/ϵÞÞ, where m denotes the number

of variables, n denoted the number of constraints, and ϵ is
the solution accuracy [34]. Thus, the complexities of
((15a)–(15c)) and ((23b)–(23c)) are given by Oð ffiffiffiffiffiffi

Nt
p ð5Nt

+ 8Þ ln ð2Nt/ϵÞÞ and Oð ffiffiffiffiffi
M

p ð2M + 2ÞðM + 2Þ2 ln ð2M/ϵÞÞ,
respectively.

1:Initialization: Set a feasible point fWk,Θg and i = 0.
2:repeat:

a) Obtain fUk,Ψkg by using equation ((13a) and (13b)).
b) Obtain Wk by solving problem ((15a)–(15c)).
c) Obtain Θ by solving problem ((23a)–(23c)).
d) Update fUk,Ψk,Wk,Θg.
e) i⟵ i + 1.

3:until Converge
4: Output fU⋆

k ,Ψ⋆
k ,W⋆

k ,Θ⋆g.

Algorithm 1: The BCD algorithm.
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Therefore, the total computational complexity of Algo-
rithm 1 is given by

C = O max ln
2Nt

ϵ

� � ffiffiffiffiffiffi
Nt

p
5Nt + 8ð Þ,

��
ln

2M
ϵ

� � ffiffiffiffiffi
M

p
2M + 2ð Þ M + 2ð Þ2

��
:

ð24Þ

In addition, the convergence of Algorithm 1 has been
analyzed [29]; thus, we omit the details for brevity.

4. Simulation Results

The deployment is given in Figure 2, where there exists one
Tx, one IRS, and 3 users. The coordinates of Tx and IRS are
ð0m, 0m, 10mÞ and ð10m, 50m, 10mÞ, while the users are
randomly located in a circle with radius 5m and centered
at ð0m, 60m, 1:5mÞ, respectively [5].

Unless specified, we set Ps = 30 dBm, Pr = 30 dBm, Nt = 8,
M = 40 [15], Nk = 2, and σ2

r = σ2k = −80 dBm, ∀k [17]. The

large-scale path is denoted as L = L0ðd/d0Þ−β, with L0 denoting
the channel gain at d0 = 1, and β is the path loss exponents. In
addition, we assume that the Tx-user link follows the Rician
fading with Rician factor 5 with β = −4, the Tx-IRS link fol-
lows the Rician fading with Rician factor 3 with β = −2:8
[16], and the IRS-user link follows the Rayleigh fading with
β = −2:2 [16, 17]. In addition, all the results are obtained by
200 numbers of channel realizations.

We compare the design with the following methods: (1)
the passive IRS scheme 32, (2) the no IRS scheme, and (3)
the random IRS scheme, e.g., choosing Θ randomly. These
methods are labeled as “proposed design,” “passive IRS,”
“no IRS,” and “random IRS,” respectively.

Firstly, we studied the convergence of the BCD
method. Figure 3 shows Rs versus the number of itera-
tions with different Nt and M. From this figure, we can
see that for different Nt and M, Rs always increase with
the iteration numbers and gradually converge within 20
iteration, which confirms the convergence of the BCD
method.
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Figure 2: Simulation scenario.
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Then, we show the sum rate versus Ps. From Figure 4, we
can see that for all these schemes, Rs increase with Ps, and all
IRS-aided schemes obtain better performance than the no
IRS-aided designs. Besides, the active IRS scheme signifi-
cantly outperforms the passive IRS design, mainly owing to
the power amplification effect which alleviates the impact
of double fading attenuation. Thus, the received signal
power at the users is enhanced and Rs is improved.

Next, in Figure 5, we show Rs versusM. From this figure,
we can see that for all these IRS-aided methods, Rs tends to
increase with the increase of M, since more signal can inci-
dent the IRS with larger M. In addition, the reflected signal

at the IRS will increase with M when the RC is properly
designed. However, when using random IRS, only array gain
can be obtained, thus suffering from certain performance
loss. This result further verifies that more Rs improvement
can be achieved by using a larger IRS and optimizing the
RC properly.

Last, Figure 6 plots Rs versus the Tx-IRS distances, where
we assume that the IRS moves along the y-axis from the Tx
to the user’s area. From this figure, we can see that the active
IRS scheme always outperforms the passive IRS scheme in
the considered region. Moreover, for active IRS, the Rs
increases when IRS moves from the Tx to the user’s area,
while for passive IRS, the Rs first decreases to a low point
and then increases. Thus, deploying the active IRS near the
users is beneficial to improve the Rs.

5. Conclusion

This work studied the active IRS-aided MIMO multicasting
network, where the sum rate was maximized by jointly opti-
mizing the precoder and RC, subject to the transmit power
constraint at the Tx and IRS. We decouple the original prob-
lem into several subproblems and then proposed a BCD algo-
rithm to optimize the variables. Simulation result verified the
performance of the proposed design as well as the superiority
of active IRS when compared with other benchmarks.
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