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This paper presents a method to identify the damages in frame structures with slender beams. This method adjusts the parameters
of the structure to match the analytical and the measured displacements. The effect of transverse shear deformation on the nodal
analytical displacement is analyzed, and the parameter identification of frame structures with slender beams is performed. The
results demonstrate that parameter-identification accuracy can be considerably improved by considering the transverse shear
deformation in the frame structure with slender beams. The proposed method can accurately identify the damages in frame
structures with slender beams using displacement measurements.

1. Introduction

Frame structures are widely used in civil engineering appli-
cations, such as constructions and industrial buildings.
However, they are susceptible to damage due to aging, load,
and environmental influences, such as corrosion [1–3]. One
or more components of the frame structure may be dam-
aged, resulting in changes in the physical properties of the
structure, mainly at the damaged location. The “as-is” condi-
tions of these structures are different from the original
design. To assess the “as-is” condition of the structure and
conduct the safety evaluation, it is necessary to identify
parameters of the structure model [4–6]. Although many
identification methods are effective in analog measurement,
some of them are prone to error, such as modeling error,
when used in real situations. Even the slightest error affects
the parameter identification of the structure model.

Parameter identification is achieved by adjusting the
parameters of the structure to match the analytical and the
measured data [7]. The methods of parameter identification
can be categorized as static and dynamic parameter-
identification methods [8–14]. Sanayei and Onipede [15]
proposed a method to identify the structural parameters of
the truss and frame structural elements using applied static

forces and measured displacements. Banan et al. [16] studied
the method of identifying the structural parameters using
static displacements. Ghrib et al. [17] presented a method
for damage identification of Euler–Bernoulli beams using
static-deflection measurements. Bonessio et al. [18] pre-
sented a multimode approach for multidirectional damage
identification in frame structures; the method reduces dam-
age identification errors by analyzing the multidirectional
effects of damages. Vaez and Fallah [19] identified the site
and extent of multiple damage cases of frame structure using
a two-stage damage-identification approach. Zhang and
Johnsonb [20] proposed a novel substructure-identification
method to identify the damage of multistory multibay plane
frame structures and revealed how structural responses
affect the identification accuracy using identification-error
analysis. In these studies, various aspects of parameter iden-
tification of frame structures, including the optimal place-
ment of sensors, improvements in measurement technique,
and error analysis, have been studied.

The classical Euler–Bernoulli beam theory is usually
used to analyze the behavior of structural elements because
it can properly simulate the behavior of slender beams
[21–24]. For slender beams, various studies have suggested
that using Timoshenko beam theory can improve the
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accuracy of structural analysis. Dixit [25] used the natural
frequency and mode shape generated by the analysis frame
to compare the effects of Euler–Bernoulli beam theory and
the beam theory considering shear deformation on struc-
tural parameters. Even though the Euler–Bernoulli beam
theory is basically accurate in estimating the frequency of
slender beam, the results obtained by Timoshenko beam
theory have almost no errors. Silva et al. [26] considered
the shear deformation and performed an inelastic second-
order analysis on steel Vogel portal frames with slender
beams. According to the results of this study, compared with
the analysis of the Euler–Bernoulli beam theory, the numerical
results of the frame considering the shear deformation have
larger displacements and provide better structural response.
Su and Ma [27] used ray and normal mode methods to study
the dynamic transient responses of a simply supported Timo-
shenko beam subjected to an impact force. Although the error
in the resonant frequency obtained by the Euler–Bernoulli
beam theory has been reduced, all the resonant frequencies
obtained from the Timoshenko beam theory are very consis-
tent with those of the ABAQUS 3-D model. The study sug-
gests that Timoshenko beam theory is suitable for evaluating
the resonant frequency of a slender simply supported beam.
Assuming that the measured data is accurate, the difference
between measured and analytical data can be used to effec-
tively identify the damage of the structure. Therefore, errors
in analytical model may affect the accuracy of damage identi-
fication [28, 29]. However, a limited number of studies discuss
the influence of transverse shear deformation on the parame-
ter identification of frame structures with slender beams.

In this study, steel-frame structures with slender beams
were identified based on the static parameter-identification
method, and to include the shear effect, Timoshenko beam
theory is considered and compared with the Euler–Bernoulli
beam theory. The effect of shear deformation on the nodal
analytical displacement of wide flange cross-section and
rectangular cross-section frames is analyzed. Damage con-
sidered in the present study is mainly due to corrosion and
would result in reduced cross-sectional areas. The damage
identification is performed by minimizing the measured
and analytical displacements, and the optimization method
used is the interior-point method. Furthermore, the influ-
ence of transverse shear deformation on the parameter-
identification accuracy of the frames with different cross-
sectional slender beams is discussed.

2. Formulation for Parameter Identification

In this parameter-identification method, the objective func-
tion is defined in terms of the difference between the analytical
and measured displacements. The analytical displacements
can be obtained using the stiffness method [30, 31]. The dam-
age conditions of the members of the structure can be deter-
mined on the basis of the applied static forces and the
measurements of the nodal displacements of the structure.

The stiffness method is based on the force–displacement
relationship of the structure, as expressed in equation (1).

Q =KD, ð1Þ

where Q represents the global forces, D represents the global
displacements, and K is the entire-structure stiffness matrix
that can be obtained by assembling the member global stiff-
ness matrices k.

k = TTk′T, ð2Þ

where k′ is the member stiffness matrix of the structure and
T is referred to as the displacement transformation matrix.
Equation (1) can be separated according to known and
unknown displacements.
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where Qk represents the known external loads, Dk is the
known displacements, Qa represents the analytical loads,
and Da represents the analytical displacements. By solving
equation (3), we obtain

Da =K−1
11 Qk −K12Dkð Þ: ð4Þ

The sum of the squares of the differences between the
analytical displacement Da

i and the measured displacement
Dm

i at the ith measurement point is defined as the objective
function, f , and is given as

f = 〠
n

i=1
Dm

i −Da
iÀ Á2, ð5Þ

where n is the total number of measured displacements. In
this study, finite element models were built to simulate the
measured displacements, Dm

i based on the “as-is” condition.
For a damaged structure, a certain parameter p is different
from that in “as-built” condition. This unknown parameter
p can be set as a variable and can be obtained by minimizing
the objective function f , assuming that the optimal value of
p is p∗, which can be calculated by equation (6).

p∗ = arg min
p

fð Þ: ð6Þ

3. Member Stiffness Matrix of Frame Structure

For the member stiffness matrix k′ in equation (2), it is neces-
sary to consider if shear deformation is included. The trans-
verse shear deformation of the frame structure affects its
nodal displacements [32]. Both the Euler–Bernoulli and
Timoshenko beam theories are methods of structural analysis;
however, they differ in their assumptions [33]. The Euler–Ber-
noulli theory assumes that the cross-section is perpendicular
to the bending line. The Timoshenko beam theory allows rota-
tion between the cross-section and the bending line. This rota-
tion is caused by a transverse shear deformation, which is not
considered in the Bernoulli beam theory. The plane frame’s
member stiffness with the consideration of the transverse
shear deformation [33] is shown in equation (7).
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where E is the modulus of elasticity and L is the length of the
member. The cross-sectional area A and its moment of inertia
I can be determined on the basis of the geometric shape. The
parameters mx are defined, using the nondimensional shear
correction term α, as follows:

m1 = 4 + α,m2 = 2 − α,
m3 = 1 + α:

ð8Þ

The nondimensional shear correction term [33] α that can
be defined using the shear correction factor of the cross-
sectional shapes is shown in equation (9).

α = 12EI
AsGL

2 , ð9Þ

where G is shear modulus. The shear area As is defined using
Specification for Structural Steel Buildings [33, 34]. On setting
α equal to zero in equation (9), equation (7) becomes the
member stiffness matrix based on the Euler–Bernoulli beam
theory.

Changes in the atmospheric environment lead to struc-
tural corrosion, causing a reduction in the thickness of com-
ponents [35]. The subject of this study is the wide flange
cross-section and rectangular cross-section. In this study,
the frame structure’s “as-is” condition is different from its
“as-built” condition owing to the corrosion. Assuming that
the depth of corrosion is d, which is unknown and needs
to be determined, it represents parameter p in equation (6).

The cross-sectional size of the wide flange is defined by
the upper and lower flange width b, the height of section h,
upper and lower flange thickness t1, and web thickness t2.
Therefore, for the “as-is” condition, the shear area is
expressed as follows:

AS = h − 2dð Þ t2 − 2dð Þ: ð10Þ

The rectangular cross-section size is defined by the
height of section h and width of section b; the shear area is
expressed as follows:

AS =
5
6 h − 2dð Þ b − 2dð Þ: ð11Þ

4. Effect of Shear Deformation on
Nodal Displacement

Considering the shear deformation can improve the accu-
racy of the analytical displacement Da of equation (4). A
large error in the analytical displacement causes the objec-
tive function of equation (5) to fail to converge during the
optimization. To study the effect of shear deformation on
the nodal displacements of steel-frame structures, frame
structures with different cross-sectional dimensions were
studied by considering shear deformation. The results were
compared with the nodal displacements of the structure
neglecting the shear deformation.

A one-story, one-bay steel-frame structure (Figure 1)
with slender beams (depth-to-span ratio < 1/15) was ana-
lyzed. The frame members are wide flange cross-sections,
and all members have the same cross-section. Three differ-
ent dimensions are studied, and the dimensions are pre-
sented in Table 1. The modulus of elasticity is 206GPa,
and the shear modulus of the material is 79.23077GPa.
Forces of 10 kN and -10 kN were applied along degrees
of freedom 4 and 5, respectively, to excite the frame struc-
ture, and displacements were determined along degrees of
freedom 1–9.

Therefore, the sensitivity of the wide flange cross-
section to the shear deformation can be analyzed by com-
paring the nodal displacement errors caused by shear
deformation.

First, nodal displacements based on the Euler–Bernoulli
beam theory were obtained. The member stiffness matrixk′
based on the Euler–Bernoulli beam theory was obtained
from equation (7) on settingαin equation (9) as 0. The nodal
displacement can also be obtained by equation (4). Subse-
quently, nodal displacements were recalculated based on
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Figure 1: Three-member frame sample.

Table 1: The wide flange cross-sectional dimensions.

Shape h (mm) b (mm) t1 (mm) t2 (mm)

A 150 100 5 4

B 200 100 5 4

C 250 100 5 4
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the Timoshenko beam theory. The member stiffness matrix
k′ of the frame member is obtained from equation (7); the
nodal displacement can also be obtained by equation (4).
Finally, nodal displacements were obtained from the finite ele-
ment model. The absolute value of the relative error in the
nodal displacements can be calculated based on the nodal dis-
placements calculated using the Timoshenko beam theory, the
Euler–Bernoulli beam theory, and the finite element method.

Figure 2 shows the nodal displacement errors from the
Euler–Bernoulli beam theory and the Timoshenko beam
theory, the grey bar represents the absolute value of the rel-
ative error between the Euler–Bernoulli beam theory and
finite element model’s calculation, and the blue bar repre-
sents the error between the Timoshenko beam theory and
finite element model’s calculation. Figures 2(a)–2(c) corre-
spond to the errors for shapes A, B, and C, respectively.

In Figure 2, the horizontal axis represents the degree of
freedom, and the vertical axis represents the error. It can be
seen from Figure 2 that the error of the nodal displacement
for all the wide flange frames considering the shear deforma-
tion is less than 1%. The maximum errors between the nodal
displacements calculated using the Euler–Bernoulli beam the-
ory and finite element method are 2.23%, 3.62%, and 5.24%
for shapes A, B, and C, respectively. According to Figure 2,
the calculations of both the Euler–Bernoulli beam theory and
the Timoshenko beam theory are close to the finite element
model’s calculation. However, the results from the Timo-

shenko beam theory can providemore accurate results by con-
sidering the shear deformation.

5. Parameter Identification by considering
Shear Deformation

To demonstrate the effect of the transverse shear deforma-
tion on the parameter-identification method of the frame
using static displacements, the one-story frame structure
with wide flange cross-section described in Figure 1 is ana-
lyzed. For the “as-built” condition, the cross-sections of all
the members are assumed to be shape C (Table 1). Assuming
that corrosions exist in members 1–3, the depths of corro-
sion for members 1–3 are 0.25, 0.5, and 0.75mm, respec-
tively. The “as-is” depths of corrosion of the members 1–3
need to be determined. To excite the structure, forces of
10 kN and -10 kN were applied along the degrees of freedom
4 and 5, respectively. The measured displacements are along
the degrees of freedom 1, 4, 5, and 7.

First, the structural parameters were identified based on
the Euler–Bernoulli beam theory. On setting α in equation
(9) equal to 0, the member stiffness matrix k′ based on the
Euler–Bernoulli beam theory was obtained from equation
(7); equation (5) expresses the objective function to identify
the corrosion condition. In this analysis, the start point of
depth of corrosion d was equal to 1 at the midpoint of the
boundary condition. The constraints on d were set between
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Figure 2: Comparison of errors for frames with different cross-sectional shapes.
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0 and 2 according to the “as-built” condition. The interior-
point method [36] can converge quickly and solve complex
problems with several variables. The relative error for the
identified results can be calculated based on the difference
between the optimal values and “as-is” values for each dam-
aged member, and the mean relative error (MRE) can then
be calculated based on the relative error for all the damaged
members from the following equation:

MRE = 1
N
〠
N

i=1

di′− d∗i
�� ��

di′

 !
, ð12Þ

whereN is the number of damaged members, di′ is the “as-is” i
th depth of corrosion, and d∗i is the ith optimal value of the
depth of corrosion. Figure 3 depicts the results for parameter
identification based on the Euler–Bernoulli beam theory.

Figure 3(a) displays the changes in d1, d2, and d3 during
the optimization process. The dashed lines in the figure
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Figure 4: Results for parameter identification.

Figure 5: Two story, one-bay steel-frame structure.
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represent the “as-is” depth of correction of members 1, 2,
and 3. According to Figure 3(a), the final optimal values of
d1, d2, and d3 were identified, and the results were found
to be inconsistent with the “as-is” condition. The variation
of MRE during the optimization process is shown in
Figure 3(b). The error in the final optimal values based on
the Euler–Bernoulli beam theory is 18.36%.

Next, the structural parameters were identified based
on the Timoshenko beam theory. The member stiffness

matrix k′ of the frame member was obtained from equa-
tion (7); equation (5) expresses the objective function to
identify the corrosion condition. The start point of depth
of corrosion d was equal to 1. The constraints on d were
set between 0 and 2 according to the “as-built” condition.
The interior-point method was also used to solve the optimi-
zation problem. Figure 4(a) displays the changes in d1, d2,
and d3 during the optimization process. After 97 iterations,
the final optimal values of d1, d2, and d3 were identified, and
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the results were found to be consistent with the “as-is” condi-
tion. The variation of MRE during the optimization process is
shown in Figure 4(b), and the final MRE value is 1.67%.

Compared to the Euler–Bernoulli beam theory-based
method, the final optimal values determined by using the
Timoshenko beam theory-based parameter-identification
method can improve the accuracy of MRE by 16.69%.

6. Parameter Identification for Frame
Structures with Different Wide Flange Cross-
Section

The effect of shear deformation on the accuracy of parame-
ter identification has been presented in Section 5. A two-
story, one-bay steel-frame structure with slender beams is
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shown in Figure 5. This structure is used to demonstrate the
effect of the transverse shear deformation on the frame-
structure parameter identification with different wide flange
cross-sections. All the members have the same cross-section.
The frame “as-built” condition has three different cases. In
cases 1, 2, and 3, the cross-sections of the members are
shapes A, B, and C, respectively. The cross-sectional dimen-
sions of shapes A, B, and C are listed in Table 1. Assuming
that corrosions exist in members 1, 2, and 4, the depths of
corrosion for members 1, 2, and 4 are 0.7, 1, and 1.2mm,
respectively. The “as-is” depths of corrosion for members
1, 2, and 4 are unknown and need to be determined. In this
study, forces of 2 kN and -2 kN were applied along degrees of
freedom 4 and 11, respectively, to excite the structure.

Figure 6 shows the nodal displacement errors for case 1
from the Euler–Bernoulli beam theory and the Timoshenko
beam theory. Figure 6(a) shows the errors corresponding to
horizontal degrees of freedom 1, 4, 7, 10, 13, and 16.
Figure 6(b) shows the errors corresponding to vertical degrees
of freedom 2, 5, 8, 11, 14, and 17. The maximum error from
the Timoshenko beam theory is 0.77% and from the Euler–
Bernoulli beam theory is 2.41%. Figure 7 shows the errors
for case 2, and the maximum error from Timoshenko beam
theory is 0.43% and from the Euler–Bernoulli beam theory is
3.98%. Figure 8 shows the errors for case 3, and the maximum
errors from the Timoshenko beam theory and the Euler–Ber-
noulli beam theory are 0.36% and 5.80% for the horizontal and
vertical degree of freedom, respectively. According to
Figures 6–8, the nodal displacements calculated using the
Timoshenko beam theory are closer to the finite element
model’s calculation, and all the errors are less than 1%.

The measured displacements are along degrees of free-
dom 1, 4, 7, 10, 11, 13, and 16. Figure 9 shows the identifica-
tion results of case 1. Figures 9(a) and 9(b) show the
optimization results of the parameter identification for the
frame structure, based on the Euler–Bernoulli beam theory
and the Timoshenko beam theory, respectively. Figure 9(a)

reflects the variations of d1, d2, and d4 with the number of iter-
ations, based on the interior-point method, and the final opti-
mal value of d was found to be inconsistent with the “as-is”
values. Figure 9(b) shows that the final optimal value of d
was consistent with the “as-is” values. The variation of MRE
during the optimization process is shown in Figure 9(c) based
on the Euler–Bernoulli beam theory and the Timoshenko
beam theory. Figures 10 and 11 show the identification results
of case 2 and case 3, respectively. Based on Figures 9–11, the
final MRE values for shapes A, B, and C corresponding to dif-
ferent beam theories are listed in Table 2.

Figure 12 shows the accuracy improvement in the final
optimal values with different shapes; the vertical axis repre-
sents the improvement in MRE by using the Timoshenko
beam theory, and the horizontal axis represents the variation
in the height of section. Compared to the parameter-
identification method based on the Euler–Bernoulli beam
theory, the parameter-identification method using the
Timoshenko beam theory can improve the accuracy of
MRE by 3.33%, 5.73%, and 7.79% for cases 1, 2, and 3,
respectively. Thus, it can be observed from the identification
results that the parameter-identification method based on
Timoshenko beam theory can improve the identification
accuracy significantly.

Table 2: The final MRE values.

Method Shape A Shape B Shape C

Euler–Bernoulli 4.21% 6.54% 9.30%

Timoshenko 0.88% 0.81% 1.51%
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Figure 12: Accuracy improvement.
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Figure 13: Three-story, two bay steel-frame structure.

Table 3: The rectangular cross-sectional dimensions.

Shape h (mm) b (mm)

D 30 15

E 35 15

F 40 15
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7. Parameter Identification for Frame
Structures with Different Rectangular Cross-
Section

Figure 13 shows a three-story, two-bay frame structure with
slender beams. This structure was used to analyze the effect
of transverse shear deformation on the frame-structure
parameter identification with different rectangular cross-
section. Table 3 shows the rectangular cross-sectional
dimensions. There are three different cases corresponding to

the frame “as-built” condition. In cases 4, 5, and 6, all the
members’ cross-sections are shapes D, E, and F, respectively.
Assuming the corrosion exists in members 1 and 9 of the
frame. The depths of corrosion for members 1 and 9 are 0.8
and 1.5mm, respectively. The “as-is” depths of corrosion for
members 1 and 9 are unknown and need to be identified. In
this analysis, force of 2.5 kN is applied along degrees of free-
dom 1, 4, and 7, respectively, to excite the structure.

Figure 14 displays the nodal displacement errors for case
4. Figure 14(a) shows the errors corresponding to horizontal
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Figure 14: Comparison of errors for frame with shape D.
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Figure 15: Comparison of errors for frame with shape E.
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degrees of freedom 1, 4, 7, 10, 13, 16, 19, 22, and 25.
Figure 14(b) shows the errors corresponding to vertical
degree of freedom 2, 5, 8, 11, 14, 17, 20, 23, and 26. Although
the calculations of the Euler–Bernoulli beam and Timo-
shenko beam theory are close to those of the finite element
model, the nodal displacement of the frame considered shear
deformation is less error. Figures 15 and 16 show the errors
for case 5 and case 6, respectively.

The measured displacements are along degrees of free-
dom 1, 4, 7, 10, 13, 16, 19, 22, and 25. Figure 17 displays
the results of the identification for case 4. Figures 17(a)
and 17(b) show the optimization results of the parameter
identification for the frame structure, based on the Euler–
Bernoulli beam theory and the Timoshenko beam theory,
respectively. Figure 17(a) reflects the variations of d1 and
d9 with the number of iterations, based on the interior-
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Figure 17: Identification results for frame with shape D.
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Figure 18: Identification results for frame with shape E.
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Figure 19: Identification results for frame with shape F.
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point method. The final optimal value of d was identified
and was inconsistent with the “as-is” values. Figure 17(b)
demonstrates that the final optimal value of d was identified,
which was consistent with the “as-is” values. The variation of
MRE during the optimization process is shown in
Figure 17(c), based on the Euler–Bernoulli beam theory
and the Timoshenko beam theory. Figures 18 and 19 show
the identification results for case 5 and case 6, respectively.
Table 4 shows the final MRE values for shapes D, E, and F
using different beam theories.

Figure 20 displays the accuracy improvement in the final
optimal values for different rectangular cross-sections. Com-
pared to the parameter-identification method based on the
Euler–Bernoulli beam theory, the parameter-identification
method using the Timoshenko beam theory can improve
the accuracy of MRE by 4.16%, 6.46%, and 9.24% for cases
4, 5, and 6, respectively. It can be inferred from the results
that using the Timoshenko beam theory to identify damage
can substantially enhance the performance of damage iden-
tification methods for frames with rectangular cross-section.

8. Conclusions

In this study, the effect of shear deformation on the nodal
displacement and parameter identification of steel-frame
structures with slender beams was analyzed. This study pre-
sents a novel method to identify damaged frames with slen-
der beams by considering shear deformation. To reduce the
frame-structure analytical errors in the optimization pro-
cesses, the parameter-identification method was modified
to include the transverse shear deformation. It was shown
that for different cross-sectional steel frames with slender
beams, the errors of the nodal displacements obtained by
the two beam theories and finite element method are rela-
tively small. In this case, the theories are generally accepted
as equivalent. However, this paper demonstrated that

although errors from these theories are not obvious when
calculating nodal displacements, the errors in parameter
identification are very significant. Considering the transverse
shear deformation can effectively improve the accuracy of
parameter identification, and the results are consistent with
the structure “as-is” condition.
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