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Timely and effective feature extraction is the key for fault diagnosis of rolling element bearing (REB). However, fault feature
extraction will become very difficult in the early weak fault stage of REB due to the interference of strong background noise.
To solve the above difficulty, a two-stage feature extraction method for early weak fault of REB is proposed, which mainly
combines feature mode decomposition (FMD) with a blind deconvolution (BD) method. Firstly, based on the impulsiveness
and cyclostationary characteristics of the vibration signal of faulty REB, FMD is used to decompose the complex original
vibration signal into several modes containing single component. Subsequently, the sparse index (SI) is calculated for each
mode, and the mode containing sensitive fault feature is selected for further analysis. Subsequently, apply the deconvolution
method on the selected mode for further enhancing the impulsive characteristic. At last, traditional envelope spectrum (ES)
analysis is applied on the filtered signal, and satisfactory fault features are extracted. Effectiveness and advantages of the
proposed method are verified through experimental and engineering signals of REBs.

1. Introduction

REBs are commonly utilized in various industrial applica-
tions, such as helicopters, high-speed trains, and wind
turbines [1]. As the most commonly used component in
rotating machinery, REB is also one of the most prone to
failure components. Research on prognosis of REBs has
becoming one hot area in recent decades. Effective fault fea-
ture extraction could provide powerful support for timely
and correct fault diagnosis of REB. Significant progress has
been made in the area of feature extraction based on vibra-
tion signal processing methods: from the initial FFT [2],
ES analysis [3], wavelet transform (WT) [4], empirical mode
decomposition (EMD) [5], variational mode decomposition
(VMD) [6], spectral kurtosis (SK) [7] and its improved
methods [8–11], minimum entropy deconvolution (MED)
[12] and its improved methods [13–16], cyclostationarity
theory with its related researches [17–19], to the later sparse

decomposition [20–24] and denoising method based on
deep learning [25–30]. However, the performance of some
of the above methods is more or less insufficient when the
characteristic signal of faulty REB is disturbed by strong
background noise, especially in the early weak fault stage
of REB, which will be verified in the comparison section.

It is well known that the vibration signal of faulty REB
often presents periodic shock characteristics. ES analysis is
a traditional and effective method for extracting the fault
features of REB. However, it often fails to achieve satisfac-
tory results by applying full-band ES on the original signal
of faulty REB directly, and it is an important research direc-
tion to study how to select a frequency band containing a
large number of shock components and then perform ES
analysis on the selected frequency band, that is, the resonance
demodulation technology (RDT). The above-mentioned SK
analysis method is the milestone representative of RDT.
Unfortunately, as proved by McDonald et al. [13], SK is
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sensitive to the instantaneous shock and could not reflect the
continuous periodic shock characteristics of the vibration
signal of faulty REB effectively, which often leads to misjudg-
ment. Although the improved methods of SK have solved
the above-mentioned shortcoming of SK to some extent, as
stated in reference [31], the selected frequency band in the
above improved methods of SK might not be the optimal fre-
quency band due to the influence of strong background noise
and the complexity of signal components. In addition, the
periodic shock characteristic components might be divided
into two adjacent frequency bands, resulting in the loss of
useful information. Furthermore, the noise and interference
components in the selected frequency band might also be
enhanced by RDT, which further hinders its wonderful perfor-
mance. BD is another effective method to enhance the impact
characteristic signal of REB and eliminate the effect of signal
acquisition path on signal attenuation, which filters the origi-
nal signal by finding an optimal inverse finite impulse
response (FIR) filter to eliminate noise and interference com-
ponents. Selection of the optimal filter parameters is achieved
by minimizing or maximizing a specific index of the filtered
signal. The classical BD method, also well known as MED,
maximizing the kurtosis of the filtered signal is used in fault
diagnosis of rotating machinery successfully [12]. Aiming at
the sensitivity of the kurtosis index to additional shock inter-
ference, the OMED [32] method is proposed, which solves
the above shortcomings of MED to a certain extent. The shock
index can describe the cyclic shock characteristics of the signal
of faulty REB effectively and is used in the BD method [33].
Besides, kinds of BD methods based on other indicators have
been proposed one after another and have been widely used
in the fault diagnosis of REB [34–37]. The above BD methods
do not consider the prior information of faulty REB into BD,
and some BD researches try to apply prior information to
BD, among which the fault characteristic frequency of faulty
REB is the most commonly used prior information. Based
on the prior fault characteristic frequency, a BDmethod based
on maximum correlation kurtosis, namely, MCKDmethod, is
proposed [13]. Subsequently, kinds of BD methods based on
the prior information such as defined target vector [38] and
cyclostationarity [39, 40] have been arising. Inspired by the
above BD researches’ idea based on prior information, the
fault characteristic period of faulty REB, this paper used a
BD method based on an index describing the noise intensity
of periodic cyclostationary signal. The used BD method not
only could demodulate one or more resonance frequency
bands excited by periodic shock components adaptively but
also can eliminate the fault-irrelevant frequency components
in the resonance frequency band effectively.

Due to the complexity and diversity of the original signal
components of faulty REB, although the repetitive impacts
could be enhanced by the used BD method, the intrinsic
characteristic of the other components might also be
enhanced simultaneously. Adaptive nonstationary signal
processing methods such as WT, EMD, and VMD can
decompose nonstationary vibration signals into a series of
single-component signals and perform BD methods on the
decomposed single-component signal that could solve the
above problems to a certain extent. However, the selection

of the WT base function has great chance on the decompo-
sition result, and it is necessary to know the prior knowledge
of the signal to be analyzed in advance to establish the
optimal wavelet base in order to obtain satisfactory decom-
position effect. EMD has the problem of modal aliasing.
Although the subsequent improved methods of EMD
[41–43] can overcome the mode aliasing problem effectively,
they often have the disadvantage of large amount of calcula-
tion. VMD needs to determine the optimal mode decompo-
sition order in advance, which is difficult to be achieved in
most engineering applications. As a new no-stationary
time-frequency method, FMD [44] takes the impulsiveness
and periodicity of fault signal into consideration simulta-
neously and could remove the redundant and mixing modes
adaptively in the decomposition process. So FMD is used in
the paper as an alternative to the above traditional TF
analysis methods and is used as preprocessing method for
the used BD method.

Based on the above stated, a two-stage feature method
for early weak fault detection of REB is proposed in the
paper, and its main steps are as follows: firstly, the original
fault signal of REB containing complex and multicomponent
is decomposed by FMD, and a series of modal signals with a
single component is obtained. Subsequently, the sparse
index (SI) is used to measure the amount of repetitive
impacts being contained in each mode. Thirdly, a BD
method is applied on the selected mode with biggest value
of SI for further fault feature enhancement. At last, ES is
applied on the filtered signal of the used BD algorithm,
and satisfactory fault features are extracted. The main
contributions of this paper are as follows:

(1) SI is used to reflect the amount of repetitive impacts
buried in the vibration signal of faulty REB, which is
much more reliable than the other index such as
kurtosis and the other indexes

(2) The BD method not only could demodulate one or
more resonance frequency bands excited by periodic
shock components adaptively but also can eliminate
the fault-irrelevant frequency components in the
resonance frequency band effectively

(3) FMD is used as preprocessing method for the BD
method, and the combined method has advantages
over the other related methods

The remains of the paper are organized as follows:
Section 2 is dedicated to the BD method. Flow chart of the
proposed method and its details are given in Section 3. Section
4 and Section 5 are the experiment and engineering verifica-
tions, respectively. Comparison is carried out in Section 6,
and conclusions are obtained in Section 7 at last.

2. The BD Method

The filtering process of BD could be represented by

x = s ∗ f , ð1Þ
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where s is the observed signal and its length is represented by
N , f represents an optimal FIR to be solved with size of L,
and ∗ is the convolution operation. x represents the filtered
signal. The matrix form of equation (1) could be written as

x = ST0 f , ð2Þ

in which

f =

f1

f2

⋮

f L−1

f L

2
66666666664

3
77777777775
,

S0 =

s1 s2 s3 ⋯ sN

0 s1 s2 ⋯ sN−1

0 0 s1 ⋯ sN−2

⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ ⋯ sN−L+1

2
66666666664

3
77777777775
:

ð3Þ

The solution of BD is to solve the gradient of the objec-
tive function J to filter f . Maximizing (minimizing) the
objective function J of the filtered signal x usually requires
solving the following equation:

∂J xð Þ
∂f

= ∂J s ∗ fð Þ
∂f

= 0: ð4Þ

The periodic noise amplitude ratio (PNAR) [45] is used
as the index measuring the level of noise contained in the
original vibration signal of faulty REB, whose definition is
as follows:

PNAR x, tnoiseð Þ =
ffiffiffiffi
N

p

M
tnoise ⋅ abs xð Þ

xk k2
, ð5Þ

where absðxÞ denotes the absolute value of filtered signal x,
the number of the defined noise points is represented by
M, and k·k2 is the Euclidean norm. tnoise is expressed as

tnoise = 0,⋯, 0, 1,⋯, 1, 0,⋯, 0, 1,⋯, 1, 0,⋯½ �, ð6Þ

where tnoise has the same length as x and it marks the posi-
tions of the defined noise points in the filtered signal: The
noise points are noted by 1, and the repetitive impact points
are noted by 0.

It could be observed based on equation (5) that PNAR is
the ratio of the average amplitude of marked noise points to
the RMS value of the filtered signal. If there exists noise in
the signal, the value of PNAR will increase to a certain
degree, which means that the smaller value of PNAR, the

better filtering effect of BD result. As for the noised repetitive
impulse characteristic components of faulty REB, though the
internal between adjacent impulse positions could not be
equal to the fault period T strictly, the impulsive compo-
nents with higher amplitudes are not marked by tnoise.
tnoise could be calculated by

ρ = N
T
, ð7Þ

where N is the continuous points in one fault period and T
is the fault period, which could be calculated by the prior
known information such as rotating speed and the parame-
ters of the diagnosed REB. The same as reference [45], the
value of ρ is set as 0.6.

The basic theory of the used BD is as follows:

min
f

PNAR x, tnoiseð Þ =min
f

ffiffiffiffi
N

p

M
tnoise ⋅ abs xð Þ

xk k2
: ð8Þ

The solution of gradient from PNAR to filter f is as follows:

g = ∂PNAR x, tnoiseð Þ
∂f

= ∂PNAR x, tnoiseð Þ
∂x

⋅
∂x
∂f

: ð9Þ

The following equation could be obtained based on equation
(2) and equation (9):

∂x
∂f

= ∂ s∗ fð Þ
∂f

= S0: ð10Þ

The solution of the PNAR’s gradient could use the back-
ward automatic differentiation algorithm [46].

The second step is to update filter f by using the Adam
algorithm, and the first-order estimation and second-order
momentum estimation of the gradient gt are calculated by
the Adam algorithm, in which gt represents the correspond-
ing value at the ith iteration.

mt = β1 ⋅mt−1 + 1 − β1ð Þ ⋅ gt ,
vt = β2 ⋅ vt−1 + 1 − β2ð Þ ⋅ gt ⊙ gt ,

m0 = 1,

v0 = 0,

ð11Þ

where ⊙ represents the Hadamard product operation, β1
and β2 represent the first- and second-order momentum
attenuation coefficients, respectively, and their values are
set as 0.9 and 0.99 the same as reference [45].

The following equations are used to calculate m̂t and v̂t :

m̂t =
mt

1 − βt
1
,

v̂t =
vt

1 − βt
2
,

ð12Þ
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Update filter f at the ith step using the following equation:

f t = f t−1 −
αffiffiffiffi
v̂t

p
+ ε

⋅ m̂t , ð13Þ

where ε is set as 10-8 the same as reference [45].
The detailed calculation processes of the BD method are

presented in Algorithm 1.

3. Flow Chart of the Proposed Method

Flow chart of the proposed method is given in Figure 1, and
the details of each step are as follows.

Step 1. Collect the vibration signal of faulty REB and input it
into the calculation model of FMD (details of FMD could be
referred to reference ([34]).

Step 2. The SIs of each mode obtained by FMD in Step 1 are
calculated.

Step 3. The mode obtained in Step 1 with the biggest value of
SI is selected for further analysis due to reason that it
contains the maximum amount of repetitive impact charac-
teristic components.

Step 4. Calculate the fault period of the diagnosed faulty
type, and input it with the selected mode into the BD calcu-
lation model simultaneously.

Step 5. Apply ES analysis on the output signal obtained in
Step 4, and the satisfactory fault features are extracted.

It should be noted that among the series of modes
obtained in the first step, the mode containing the largest
amount of repetitive impact components is often selected
according to a certain index for further analysis. Among
them, the kurtosis index is a commonly used classical index,
but it has the disadvantage of being sensitive to additional
shock components. The other subsequent index such as neg-
ative entropy [34] has the defect being sensitive to random
white noise. To solve the above stated problem, the SI is used
for sensitive mode selection in Step 2. The SI index has
stronger noise robustness than other impact component
metrics. The calculation expression of SI is shown in
equation (14), in which k⋅k1 represents the l1 norm, the
squared envelope analysis result of the analyzed signal is
represented by SE, SEr represents sorting SE in ascending
order, i.e., SEr½1� ≤ SEr½2� ≤⋯SEr½N�, and N is the number
of decomposition modes. The calculation formula of SE is
shown in equation (15), in which �s is the analytical signal
of s, Hð⋅Þ represents the Hilbert transform, and j2 = −1.

GI = 1‐2〠
N

p=1

SEr p½ �
SEk k1

N − p + 0:5
N

� �
, ð14Þ

SE = �sj j2 = s + j ×H sð Þj j2: ð15Þ

To verify the robustness of SI to transient shock and its
reliability in measuring the periodic shock of faulty REB’s
vibration signal, five kinds of signals shown in equation
(16) are used: Sig1 is the time-domain addition of the sinu-
soidal signals, Sig2 is the random noise, Sig3 is the random
noise with one single shock, Sig4 is the random noise with
three shocks, and Sig5 is the random noise with continuous
shocks, and their corresponding time-domain waveforms
are given in Figure 2(a). The four kinds of indexes (SI, Hoyer
measure [47], L2/L1 [9] norm, and kurtosis) measuring the
impact characteristics of the five kinds of signals are calcu-
lated, respectively, and their normalized values are shown
in Figure 2(b): It could be seen that SI increases with a
gradual increasing trend with the increase of impulse com-
ponents through comparison. However, the other three
indicators do not have the characteristic the same as GI.

Sig1 = sin 2π
100

∗
t

� �
+ 3 sin 2π

10
∗
t

� �
, t = 1 : 1000,

Sig2 = 0:25randn Sig1ð Þ,
Sig3 = Sig2 ; Sig 700ð Þ = 8,
Sig4 = Sig2 ; Sig 340 : 233 : endð Þ = 8,
Sig5 = Sig2 ; Sig 28 : 100 : endð Þ = 10:

8>>>>>>>>>><
>>>>>>>>>>:

ð16Þ

4. Experiment Verification

The conventional failure experiments of REB are often sim-
ulated by processing faults on the components (inner race,
outer race, rolling element, or cage) of REB using EDM tech-
nology, and the fault features are often obvious, which could
be extracted effectively by applying ES analysis on the origi-
nal faulty signal directly, so the early weak fault of REB could
not be simulated by conventional failure experiments. This
experiment is more convincing to verify the effectiveness of
the proposed method by using the data collected from the
early failure stage of the REB accelerated fatigue life experi-
ment. The actual picture of the test bench is shown in
Figure 3(a). The so-called accelerated fatigue test is to apply
additional load to the test REB to accelerate its fatigue damage
rate without affecting the damage mechanism of the REB.
Figure 3(b) shows the schematic diagram of the additional
load loading on the experimental REB, and Figure 3(c) shows
the schematic diagram of the sensor installation. The experi-
mental data of one of the bearings is selected for analysis,
and the parameters and the fault characteristic frequencies
of the selected test rolling bearing are shown in Tables 1 and
2, respectively. In Table 2, f r is the rotating frequency of the
rolling bearing, f c is the fault characteristic frequency of the
rolling bearing cage, and f b, f i, and f o are the fault character-
istic frequencies of rolling bearing’s rolling element, inner
race, and outer race. One group of 20480 points is collected
per minute with sampling rate 25.6 kHz. Finally, the selected
REB is disassembled, and it is found that fault arises on the
inner race of the selected REB. The kurtosis and amplitude
indicators of the selected bearing’s vibration data throughout
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Input: The measured vibration signal s, the fault period T , noise ratio ρ, the iteration number N .
Initialize filter as f0 randomly.
For t = 1, 2,⋯,N , do
Calculate the filtered signal x: x = s∗ f t−1.
Compute the PNAR of the filtered signal x.
Compute the gradients gt by backward automatic differentiation.
Determine the filter f t for the next iteration via Adam.
End
Output: The filtered signal x.

Algorithm 1: The detailed calculation processes of the BD method.

Start

Input the measured vibration signal
into FMD calculation model

The SIs of each modes obtained by
FMD are calculated

The mode with bigger value of SI is
selected for further analysis

Calculated the fault periodic
of the diagnosed fault typeThe BD calculation model

Apply envelope analysis on the output
signal of the BD method

Fault features
are extracted

Figure 1: Flow chart of the proposed method.
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its life cycle are shown in Figures 4(a) and 4(b), respectively. It
could be seen that the kurtosis and amplitude indexes of the
REB’s life cycle data do not change abruptly before the
2297th minute, so the data collected at the 2297th minute
can be regarded as the early weak stage of the selected REB,
and its time-domain waveform is presented in Figure 4(c).
Apply ES analysis on the original weak fault signal, and the
corresponding result is given in Figure 4(d), based on which
the distribution of spectral lines is disorganized, and the fault
characteristic frequency of the selected bearing could not be
extracted effectively.

Figure 5 gives the filtered results by applying the BD
method on the original signal as shown in Figure 4(c)
directly. It could be observed that the impulse characteristics
are enhanced evidently compared with the original signal.
The modulation phenomenon could be observed based on
FFT spectrum of the filtered signal, and the inner race fault
characteristic frequency (245Hz) could be extracted by the
ES of the filtered signal. However, the harmonics of the inner
race fault characteristic frequency could not be extracted.

Apply the proposed method on the original experiment
signal, and Figure 6(a) shows the main two decomposed
modes (there are six modes obtained) by applying FMD on
the original experiment signal. Then, the SI of the six modes
is calculated, respectively, and the mode with bigger SI is
selected for further BD analysis. The ESs of the two main
obtained modes are shown in Figure 6(b), based on which
the strong separation ability of FMD is further verified:
The first mode mainly contains the rotating frequency com-
ponents and its harmonics, and the second mode containing

(a) Accelerated bearing life tester, ABLT-1A

P

P/2 P/2

Channel
1

Channel
2

Channel
3

B1 1 B2 B3 B4

(b) Sketch of load

(c) Location of sensors

Figure 3: Accelerated life test of rolling element bearing.

Table 1: The parameters of the test rolling bearing.

Type Ball number Ball diameter (mm) Pitch diameter (mm) Contact angle Motor speed (rpm) Load (kN)

6307 8 13.494 58.5 0 3000 12.744

Table 2: The fault characteristic frequencies of the test rolling
bearing.

f r f c f b f i f o
50Hz 19Hz 102Hz 246Hz 153Hz
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impulse characteristic components is still influenced by
noise, because the inner race fault characteristic frequency
could not be identified. Subsequently, the impulse character-
istic of the second mode is enhanced by the BD method, and
the results are presented in Figure 7 based on which the
inner race fault characteristic frequency (245Hz) with its
harmonics of the selected REB is extracted successfully,
and effectiveness of the proposed method is verified. Besides,
whether compared with the original signal shown in

Figure 4(c) or to the BD filtered signal shown in Figure 5,
the impulse feature enhancement effect of the proposed
method is the best.

5. Engineering Verification

The engineering inspected object is the raw material grind-
ing equipment of a cement plant. Schematic diagram of the
unit structure is shown in Figure 8: The output speed of
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the driving motor is decelerated by the gearbox to drive the
grinding equipment to work. In the daily maintenance of the
equipment, it is found that the vibration value of the free end
of the motor is too large, and the measured vibration value is
shown in Table 3. The free end bearing of the motor is
disassembled after shutting down the equipment, and it is
found that failure arises on the inner race. The real picture
of the inner race fault is shown in Figure 8(b). The equip-
ment detection instrument is the equipment status detection

and safety evaluation system produced by Zhengzhou Expert
Technology Co., Ltd. The sensor model is EAJ03-100, and its
sensitivity is 100mv/g. The sampling frequency and
sampling length are 3200Hz and 8192 points, respectively.
The type of the monitored bearing is NU244. According to
the calculation formula of the fault characteristic frequency
of rolling bearing components, the calculated fault charac-
teristic fault frequencies of the monitored bearing are shown
in Table 4.
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Effectiveness of the proposed method is verified by the
vibration data of the channel with larger amplitude in
Table 1, that is, the channel in the horizontal direction.
Time-domain waveform and full-band ES analysis results
of the analyzed data are shown in Figures 9(a) and 9(b),
respectively. In Figure 9(a), although the shock features
can be observed, they are not obvious enough by calculating
the interval between two shocks directly, that is, the failure

period. In Figure 9(b), the frequency with the larger ampli-
tude cannot correspond to the fault characteristic frequency
shown in Table 2, which can easily lead to misdiagnosis or
missed diagnosis. The signal shown in Figure 9(a) is decom-
posed by FMD firstly according to the proposed method.
The number of FMD decomposition modes is set to 4, and
the corresponding decomposition results are shown in
Figure 10: Figure 10(a) is the obtained two main modes,

Table 3: The measured values of the measuring point.

Number Measured point Direction Value (mm/s2) Value (mm/s)

1
Free end of motor

Horizontal 46.65 0.74

2 Vertical 26.51 0.56

Table 4: The fault characteristic frequencies of the monitored rolling element bearing.

Type Inner race (Hz) Outer race (Hz) Ball (Hz) Cage (Hz)

NU244 126.12 98.00 90.50 5.16

Measuring point

(a) Structure diagram of cement raw mill (b) Failure on the inner race of monitored engineering bearing

Figure 8: Structure of the engineering equipment and the failure on the monitored rolling bearing.
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Figure 9: The measured signal of the engineering bearing with its envelope spectrum result.

9International Journal of Distributed Sensor Networks



–10
0 0.1 0.2 0.3 0.4

Time (s)

0.5 0.6 0.7 0.8

A
m

pl
itu

de
 (m

s.–2
)

–5

0

5

10

–40

–20

0

20

40

0 0.1 0.2 0.3 0.4

Time (s)

0.5 0.6 0.7 0.8

A
m

pl
itu

de
 (m

s.–2
)

(a) The obtained two main modes using FMD

Frequency (Hz)

0 50 100 150 200 250 300

A
m

pl
itu

de
 (m

s.–2
)

0

0.1

0.2

0.3

0.4

Frequency (Hz)

0 50 100 150 200 250 300

A
m

pl
itu

de
 (m

s.–2
)

0

0.5

1

1.5

2

(b) Envelope spectrum of the two main modes as shown in (a)

0 500 1000 1500 2000 2500 3000

Frequency (Hz)

2

1.5

1

0.5

0A
m

pl
itu

de
 (m

s.–2
)

(c) The FFT of the mode 1 shown in (a)

0 500 1000 1500 2000 2500

Frequency (Hz)

2

1.5

1

0.5

0A
m

pl
itu

de
 (m

s.–2
)

3000

(d) The FFT of the mode 2 shown in (a)

Figure 10: Fault signal of engineering rolling element bearing handled by FMD.
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and Figure 10(b) is their corresponding envelope spectrums.
According to the spectral structure characteristics of
Figure 10(b), FMD successfully decomposes the signal
shown in Figure 9(a) into two main modes with relatively
single components: The spectral line structure in the upper
graph in Figure 10(b) is dominated by the rotating frequency
and its harmonics, indicating that the components contained
in the corresponding mode are mainly the components of
motor rotating frequency signal; the fault characteristic fre-
quency of inner race of the monitored bearing could be

reflected clearly relatively in the lower graph of Figure 10(b),
indicating that the corresponding mode mainly contains peri-
odic impact characteristic components. Figures 10(c) and
10(d) are the frequency spectrum of the signals shown in
Figure 10(a), which further verifies the better separation effect
of the FMD method for the signal shown in Figure 9(a): The
twomodal signals are concentrated in the low frequency (rota-
tion frequency and its harmonic frequency) and the high
frequency part (the characteristic component of impact failure
of rolling bearing). Besides, the SIs of the two modes are very
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Figure 12: The reconstructed signal of test bearing with its envelope spectral analysis result.
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different, and the secondmode is bigger than the first mode, so
the second mode is selected for further analysis. However, the
motor rotating frequency and its harmonics still cause rela-
tively strong interference on the inner race fault characteristic
frequency in the lower graph of Figure 10(b). Besides, the har-
monics of the inner race fault characteristic frequency are not
extracted. Further fault information sensitive frequency band
selection analysis is needed. Apply the BD method on the sec-
ond mode as shown in Figure 10(a), and the corresponding
results are given in Figure 11: Comparing the filtered signal
with the original mode signal shown in Figure 10(a), the
impulse characteristics of the former are not only enhanced
effectively, but also, the modulation features are more obvious.
Through statistical calculation, the former is 3.2 times that of
the latter. Besides, it could be observed that not only the inner
race fault characteristic frequency and its harmonics are
extracted based on the frequency spectrum and envelope spec-
trum of the filtered signal but also the modulating frequency;
that is, the rotating frequency is extracted when failure arises
on the inner race of bearing. Effectiveness of the proposed
method is further verified through the analysis results of this
engineering signal.

6. Comparison

In the section, two methods are used for comparison to
verify the advantages of the proposed method. The first
one is a new time-frequency decomposition method, and
the second one is a new frequency band selection method
based on cyclostationarity.

As a relative time-frequency analysis method, successive
variational mode decomposition (SVMD) [48] is an
improved method of VMD, which overcomes the defect of
VMD needing determine the precise number of modes in
advance. Besides, the modes containing single component
could be extracted successively by SVMD without needing
to know the number of modes. In the section, SVMD is used
to compare first and to decompose the original experimental
signal shown in Figure 4(c), and the obtained series of
modes are presented in Figure 12(a). Then, the SIs of the
obtained modes are calculated, and the mode as shown in
Figure 12(b) owning the biggest SI is selected for ES analysis,
and the last result is given in Figure 12(c). The inner race
fault characteristic frequency could be extracted based on
Figure 12(c). However, its harmonics are not extracted the
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Figure 13: Analysis result of the experimental signal as shown in Figure 4(c) using IESCFFOgram.
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same as the extracted result as shown in the last figure of
Figure 7 by using the proposed method.

Cyclostationarity is another classical and effective
method, and spectral correlation (SC) with its normalized
version based on cyclostationarity, that is, SCoh [49], is
the most effective second-order cyclostationary method
for fault feature extraction of REB. Then, squared envelope
spectrum (SES) or enhanced envelope spectrum (EES) for
identifying the fault characteristic frequencies could be
obtained by integrating SCoh over the whole spectral fre-
quency band. But the defect of SES or EES is sensitive to
noise. To address this issue, a feature-adaptive method
called IES via Candidate Fault Frequency Optimization-
gram (IESCFFOgram) [50] is proposed to determine the
informative spectral frequency band from SCoh for bear-
ing fault diagnosis, which is used as the second method
for comparison. The last analysis results are given in
Figure 13(d): Figure 13(a) is the spectral coherence of
the signal shown in Figure 4(c), Figure 13(b) is the EES
result based on Figure 13(a), and Figure 13(c) is the
IESCFFOgram spectral result. Unfortunately, the inner
race fault characteristic frequency is not extracted, and
the main reason is due to the inference of strong back-
ground noise and the complex multicomponent of the
original fault signal.

7. Conclusion

In conclusion, a two-step method by combining FMD with a
BD algorithm is proposed for weak fault feature extraction of
REB. Firstly, FMD taking the impulsiveness and periodicity
of fault signal into consideration simultaneously is used to
decompose the original complex multicomponent signal
into several modes containing relative single component.
Subsequently, a SI with high reliability measuring the impact
characteristics is used to calculate the SIs of the obtained
modes, and the mode with the largest SI is selected for fur-
ther analysis. Then, the selected mode is input into the BD
calculation model to further enhance the impact characteris-
tics and remove inference of background noise. At last, apply
ES on the filtered signal of the BD method, and satisfactory
fault features are extracted. Besides, the following conclu-
sions can be drawn:

(1) SI could reflect the periodic impact signal much
more effectively than the other related indexes
through simulation verification

(2) FMD could separate the complex multicomponent
signal into several modes containing relative single
component through experiment and engineering
verification, which could overcome the defects of tra-
ditional time-frequency analysis methods such as
wavelet transform, EMD, and VMD

(3) The BD method could enhance the impact charac-
teristics of REB’s vibration signal effectively through
experiment and engineering verification

(4) The proposed combined method could extract the
fault features of REB much more effective than the
other methods through comparison

In addition, some parameters used in the used methods
are obtained through experience and trials. So, research on
adjusting the algorithm parameters will be carried out in
the further work. Besides, the paper mainly solves the diffi-
cult problem of extraction of weak fault features of rolling
element bearing under constant speed. In the future
research, the order tracking analysis method being suitable
for analyzing variable speed conditions will be combined
with the proposed method to extend the research for fault
diagnosis of rotating machinery working on variable speed
condition and make the proposed method more universal
in engineering application.
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