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Maintaining good connectivity is a major concern when constructing a robust flying mesh network, known as FlyMesh. In a
FlyMesh, multiple unmanned aerial vehicles (UAVs) collaborate to provide continuous network service for mobile devices on
the ground. To determine the connectivity probability of the aerial link between two UAVs, the Poisson point process (PPP) is
used to describe the spatial distribution of UAVs equipped with omnidirectional antennas. However, the PPP fails to reflect
the fact that there is a minimum distance restriction between two neighboring UAVs. In this paper, the β-Ginibre point
process (β-GPP) is adopted to model the spatial distribution of UAVs, with β representing the repulsion between nearby
UAVs. Additionally, a large-scale fading method is used to model the route channel between UAVs equipped with directional
antennas, allowing the monitoring of the impact of signal interference on network connectivity. Based on the β-GPP model, an
analytical expression for the connectivity probability is derived. Numerical tests are conducted to demonstrate the effects of
repulsion factor β, UAV intensity ρ, and beamwidth θ on network connectivity. The results indicate that an increase in UAV
intensity decreases network connectivity when the repulsion factor β remains constant. These findings provide valuable
insights for enhancing the service quality of the FlyMesh.

1. Introduction

Unmanned aerial vehicles (UAVs) offer numerous unique
advantages for providing communication coverage to mobile
devices on the ground, including a high probability of estab-
lishing line-of-sight (LoS) links and flexible deployment capa-
bilities. UAVs act as flying base stations (FBS) and provide
services to terminal equipment on the ground [1]. To enhance
the coverage area, multiple UAVs can collaborate by building
an aerial network called the flying mesh network, or Fly-
Mesh for short, through aerial links between them. FlyMesh
provides several benefits, including rapid deployment of
networks in disaster situations, extending wireless network
connectivity to sparsely populated areas, collecting and pro-
cessing data from large mobile IoT devices, and improving
overall network resilience [2]. FBS technology enhances
wireless communication performance and offers a flexible
network architecture that can adapt to real-time traffic
changes to provide optimal services. It has been widely used

and extensively studied in mobile edge computing [3, 4].
Due to the mobility and flexibility of UAVs [5], the topol-
ogy of FlyMesh often changes [6]. To ensure a continuous
service for mobile devices, maintaining a good connectivity
among UAVs is critical for the FlyMesh maintainer. There-
fore, it is important to build an analysis model to profile
the connectivity probability among UAVs.

The essential part of building an analysis model is sculpting
the spatial distribution of the UAVs, which can move at high
speeds. Existing efforts typically adopt the Poisson point pro-
cess (PPP) to achieve this goal [7]. In the PPP-based model,
each UAV is treated as an independent point in space, and
there is no connection among the positions of UAVs. However,
the absence of distance restrictions in PPPmodel makes it chal-
lenging for existing models to account for the fact that UAVs
usually maintain a distance from each other to enhance cover-
age and prevent collisions. Existing work often neglects the
directional antennas commonly adopted by UAVs. For exam-
ple, there is an exclusion (or attraction) between UAVs, which
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means that the actual deployed UAV location typically exhibits
a more regular (or clustered) point pattern than PPP.

In this context, this paper adopts the β-Ginibre point pro-
cess (β-GPP) to describe the spatial distribution of the UAVs.
Compared with PPP, β-GPP restricts the minimum distance
between two UAVs using parameter β. When β⟶ 1,
UAVs are uniformly distributed in the GPP model. Thus, by
adjusting β in a given environment, the distribution of UAVs
can be analyzed more accurately. In other words, we can
change the distance restriction in a flexible way by adjusting
the value of β without modifying the analysis model. In addi-
tion, we assume that each UAV is equipped with a directional
antenna to improve its connectivity. Specifically, the positions
of UAVs are first modeled using β-GPP. Then, the signal-to-
noise ratio (SINR) at the receiver is calculated based on the
directional antenna assumption. Subsequently, the analytical
expression of the connectivity probability of the wireless link
between two UAVs is derived. In comparison with existing
efforts, our contributions in this paper are twofold. On one
hand, we use β-GPP tomodel the spatial distribution of UAVs
and derive an analytical expression for the connectivity prob-
ability. On the other hand, we conduct a series of numerical
tests based on the analytical expression to analyze the impacts
of the repulsion parameter β, beamwidth θ, and UAV inten-
sity ρ on network connectivity performance.

The rest of this paper is organized as follows: RelatedWork
briefly introduces existing efforts. Mathematical Preliminaries
provides the basic characteristics of β-GPP. System Model
and Assumptions and Performance Analysis introduce the sys-
tem model and analyze the network connectivity and network
coverage, while Simulation and Result Analysis examines the
advantages of the adopted model through experiments and
data comparisons. Finally, Conclusion briefly summarizes our
work.

2. Related Work

UAVs are one of the most common low-altitude platforms,
considered agile, low cost, and easy to deploy [8]. These fore-
seeable benefits prompt academic and industry associations
to recommend the use of drone base stations and evaluate their
performance in various applications. For example, Arshad et al.
[9] optimized the position of UAVs by utilizing their flexibility
in responding to real-time device activity to minimize uplink
transmission power. Mozaffari et al. [10] provided downlink
services to rural areas without surface base station coverage
using UAVs. Bushnaq et al. [11] considered the upstream data
aggregation scenario of IoT devices from rural areas. Choi et al.
[12] proposed not using a single UAV but letting the UAV col-
lect data from the Internet of Things devices, which transmit-
ted data as long as they were within the coverage area.
Research on mobile self-organizing networks has also provided
assistance. Cui et al. studied a quantum genetic-based OLSR
protocol for mobile self-organizing networks, while Wei et al.
analyzed the joint deployment of drones in DRL-based edge
computing [13].

Stochastic geometric modeling helped to analyze the
topological randomness of network geometry. PPP had been
widely utilized in UAV network modeling and analysis due

of its ease of handling [13–15]. Numerous theoretical results
had been obtained based on the PPP model; however, PPP
has certain limitations and cannot adequately describe the
independence of node positions in real network deploy-
ments. Therefore, the spatial distribution of UAVs in real
deployment can be better captured by considering the point
process of the spatial correlation. Fang et al. [16] proposed
an adaptive deployment-based solution that could effectively
mitigate the excessive clustering of UAVs with negligible
dispersion. Nakata and Miyoshi [17], Deng et al. [18], and
Gomez et al. [19] studied and discussed the cellular network
of base station deployment based on the β-GPP model. They
further derived a computable integral representation of the
coverage probability of typical mobile subscribers. The
deterministic point process (DPP) provided a valuable
model for describing spatial point pattern datasets in which
nearby points repel each other [20]. In addition, they dem-
onstrated an exclusive relationship between the location dis-
tribution and corresponding UAVs. The expressions for the
DPP concerning LF and PGFL were identified. Therefore, DPP
was a preferred performance analysis tool [21]. GPP is a soft-
core model, which belongs to a class of DPPs. Each DPP was
defined using a core matrix GPP, suitable for simulation
between the communication node positions [22, 23]. GPP is
more irregular than the lattice but more regular than the PPP.
Herein, a more general point process called β-GPP, 0 < β ≤ 1,
is introduced. The variation of the repulsion factor β reflects
the interrelationship between the nodes. Notably, 1-GPP is
GPP, and β-GPP weakly converges to PPP of the same strength
as β⟶ 0. In other words, the β-GPP family generalizes GPP
whereas PPP limits FlyMesh network performance. This study
found that β ⊆ ð0:2,0:4Þ is a good fit for rural areas, whereas
β ⊆ ð0:6,1Þ is a good fit for urban areas [24].

The UAVs were equipped with a directional antenna to
reduce signal interference. Anisotropic radiation (directional
antenna) can better connect UAVs than isotropic radiation
(omnidirectional antenna), which is related to the array
and design of the directional antenna. Shakhatreh et al. max-
imized indoor wireless coverage used using drones equipped
with directional antennas [25]. Guo et al. effectively covered
arbitrary two-dimensional ground areas using directional
antennas to achieve efficient and scalable deployment of
such flying base stations [26]. Peng et al. and Qin et al. ana-
lyzed the modeling and coverage performance of the UAVs
under the directional antenna [27, 28]. Beam multiplexing
techniques for directional antenna had also been widely used
and intensively studied in 4G, 5G, and 6G [29].

UAVs are distributed according to β-GPP. Our study
focussed on the network connectivity and coverage of interfer-
ence in the β-Ginibre wireless network and the fitting of real
data. Since the β-GPP family forms an intermediate class
between PPP (completely random) and GPP (relatively regu-
lar), we can intuitively use β-GPP to simulate a large number
of actual UAV networks by modulating the value of β.

3. Mathematical Preliminaries

In this subsection, we briefly introduce some background
information on β-GPP. Consider a simple local limited point
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process defined on a locally compact space Ω. Next, let us
examine the correlation functions λn for any bounded and dis-
joint subsets Anðn = 1, 2,⋯∞Þ ⊂ℝ2.

E
Yn
k=1

Ω Aið Þ
" #

=
ð
A
⋯
ð
A
λ nð Þ t1,⋯,tnð Þf t1,⋯,tnð Þdt1 ⋯ dtn,

ð1Þ

where λn indicates the spatial indensity ofΩ. Let us consider a
positive integer ∂, β = −1/∂. A Hilbert-Schmidt operator K
from L2ðℝ2Þ into L2ðℝ2Þ is defined by Kf ðtz1 , tz2Þ =

Ð
R2K

ðtz1 , tz2Þf ðtz2Þdtz2 . K was assumed to be bounded by the
symmetric operator and the spectrum of K ∈ ½0, 1/β�. Here,
the kernel of β-GPP is the function K. Then, when the cor-
relation function λn of Ω exist and fulfill

λ nð Þ t1,⋯,tnð Þ = detβ K tz , tz2
À ÁÀ Á

1≤z1,z2≤n
, ð2Þ

where detβðAÞ instructs the β-determinant of a matrix A

= ðAz1,z2Þ1≤z1,z2≤n.
The Fredholm determinant is a generalization of the

matrix determinant that defines bounded operators on the
Hilbert spaces. For a kernel K and β, the Fredholm determi-
nant can be numerically evaluated as [30]

Det I − βKð Þ1/β =
Y
n≥0

1
n!

ð
detβ K tz1 , tz2

À ÁÀ Á
1≤z1,z2≤n

dt1 ⋯ dtn:

ð3Þ

For a β-GPP Ω with kernel K , regarding the Fredholm
determinant, the hole probability can be computed as

Pr Ω ∩ A =∅ð Þ = Det I + βKAð Þ− 1/βð Þ, ð4Þ

where KAðtz1 , tz2Þ = Kðtz1 , tz2Þ1Aðtz1Þ1Aðtz2Þ is a restriction

on A2 and 1Að·Þ is the indicator function of set A, 1Aðtz1Þ
= 1 for tz1 ∈ A and 1Aðtz1Þ = 0 for tz1 ∉ A.

Here, for a β-GPP Ω with kernel K and a function ξ: R2

⟶ ½0,∞Þ, we know that the Laplace transform is given by

E exp −Σti∈Ω
ξ tzð ÞÀ ÁÂ Ã

= Det I + βKξ

À Á− 1/βð Þ, ð5Þ

where the kernel Kξ is defined as

Kξ t1, t2ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − exp −ξ t1ð Þð Þ

q
K t1, t2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − exp −ξ t2ð Þð Þ

q
:

ð6Þ

Therefore, there is a primary characteristics of the β
-GPP. Now, we focus on β-GPP, one of the main types of β-
DPPs. The observation window is set to BðO, RÞ. For t1 and
t2, ∈BðO, RÞ. The formula in (5) and the cavity probability in
(4) can be calculated by inserting the Ginibre kernel in (6),
respectively. Given that the spaceΩ is the repulsive parameter

β and the intensity ρ, the core matrix can be defined as

Kξ t1, t2ð Þ = ρ exp π
ρ

β
t1�t2 − π

ρ

2β t1j j2 + t2j j2À Á� �
: ð7Þ

If Ω ~ DPPðKÞ with kernel K is used for a point process,
the reduced Palm distribution Ω/ti ∈ℝ

2 which has the kernel

K !
ti
ðt1, t2Þ coincides with another DPP [23].

K !
ti
tz1 , tz2
À Á

= 1
K ti, tið Þ

K tz1 , tz2
À Á

K tz1 , ti
À Á

K ti, tz2
À Á

K ti, tið Þ

�����
�����: ð8Þ

The minimalist kernel of β-GPP at ti is expressed as [23]

K !
ti
t1, t2ð Þ = ρ exp πρ

β
t1�t2 −

πρ

2β t1j j2 + t2j j2À Á� �

− ρ exp πρ

β
t1�ti +

πρ

β
ti�t2 −

πρ

β
tij j2 − πρ

2β t1j j2 + t22
À Á� �

:

ð9Þ

Let jtij = di, and ti is assumed to be located at ðdi, 0Þ with-
out loss of generality. Therefore, K !

ti
ðt, tÞ can be expressed as

K !
ti
t, tð Þ = ρ − ρ exp πρ

β
tj j2 − 2tiR tð Þ + t2i
À Á� �

: ð10Þ

Let A ⊂ℝ2 and C ⊂ℝ2. Then, we can express the covari-
ance of β-GPP with kernel K as

Cov N Að Þ,N Cð Þð Þ = β
ð
A×C

K t1, t2ð Þj j2dt1dt2, ð11Þ

which contrasts to the PPP with zero covariance described
above. In fact, in PPP, the position of one point does not
depend on the position of the other points. In contrast to the
PPP setting for the above equation, since β < 0, the number
of points in the two disjoint sets is negatively correlated.
Therefore, β-GPP shows more dispersion and less clustering
than PPP.

4. System Model and Assumptions

4.1. Network Model. This paper considers the FlyMesh con-
sisting of three types: flying base station (ABS), aerial mobile
terminal (AMT), and ground mobile terminal (GMT), as
shown in Figure 1.

The UAV network is regarded as a FlyMesh, where the
flying base stations (FBS) provide information storage and
forwarding functions for mobile terminals. In complex
electromagnetic environments, UAVs are equipped with
directional antennas to reduce interference. The location
distribution of drones in space is modeled as β-GPP model.
Only the transmission between the transmitter and receiver
was considered, and all other signals are considered to have
interference, as shown in Figure 2. We also assumed that the
receiver was deployed at the origin position of t0ð0, 0, 0Þ.
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The transmitter tiðxi, yi, ziÞ is di =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2i + y2i + z2i Þ

p
away

from t0.

4.2. Antenna Gain. A directional antenna is a phased array
antenna. By varying the feed phase of the radiation unit in
the array antenna, the direction of the antenna’s maximum
range in the antenna map can be changed, thereby altering
the direction and range of antenna radiation. The directional
antenna is more focused in a specific direction compared to
the omnidirectional antenna. It reduces interference between
UAVs, improves the transmission distance, and enhances
the spatial multiplexing of the channel. The schematic dia-
gram of antenna beamforming is shown in Figure 3.

The implementation of a directional antenna signifi-
cantly improves the gain of the main lobe antenna. There-
fore, the antenna gain is closely related to antenna width.
In this study, we mainly focus on the influence of the main
valve, ignoring the side and back valves. Using a simpler
model, we also describe the relationship between beam angle
and antenna gain [31]. The receive antenna gain Gr and the
transmission gain Gt can be expressed as described in the
following equation:

Gr θð Þ = 1 + γ cos nθð Þ, ð12Þ

Gt θð Þ = 1 + γ cos n θ + φð Þð Þ: ð13Þ

As shown in Figure 4, γ regulates the influence of the main
lobe beamwidth on gain, when n represents the number of
main lobes of the nodal antenna. Notably, the receive

antenna gain Gr of the antenna depends only on the receiver
antenna beam angle θ ∈ ð0, 2πÞ, while the transmitter gain Gt

depends on its transmission antenna angle φ ∈ ð0, 2πÞ.
4.3. Path Loss and Fading. The SINR indicates the quality of
communication links quantitatively. SINR depends on path
loss attenuation and small-scale attenuation. In this case,
small-scale fading between the transmitter and the receiver
using jhij2 was modeled. SINR determines the distribution
of the mean of the exponential distribution of a random var-
iable. Since the power of the signal received by the receiving
node in the far field is inversely proportional to the distance,
a simple path loss attenuation function gðdÞ facilitates math-
ematical analysis.

g dð Þ = d−α, ð14Þ

where α is the path loss index and different values describe
different communication environments. Generally, α > 2 in
complex-urban environments, while α < 2 in open-field
environments.

5. Performance Analysis

5.1. Network Connectivity. In this paper, the instantaneous
snapshot at a specific time point is considered to simplify
the model, which does not compromise generality. UAVs
communicate with each other without implying any channel

FBS
FMT
GMT

Figure 1: A flying base station mesh network.

i

Figure 2: Spatial signal interference model.

𝜃

Figure 3: UAV directional antenna beam diagram.
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Figure 4: Directional antenna pattern.
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access protocol. The absence of channel access regulation
may result in mutual interference between nearby UAVs,
leading to increased packet loss rates or decreased data rates.
Therefore, it is crucial to consider the SINR of transmitter i
when its intended receiver locates at the origin. The received
SINR of the associated receiver at ti is expressed as

SINRi =
Pthid

−α
i Gr

iG
t
i

rI +N0
, ð15Þ

where N0 is the average background noise power and I =
∑j∈Ω,≠iPthjd

−α
j Gr

jG
t
j is the total background interference at

the receiver, which we considered as shot noise. r ∈ ð0, 1Þ
represents the proportion of the desired signal affected by
the interference. r = 0 means that there is no interference,
and r = 1 implies that all communication nodes impact each
other. Pt is the constant transmitted power of the node.

The connection probability is a fundamental quality mea-
sure for a point-to-point topological link. It can be obtained
from (15) by setting a minimum reception threshold Q on
SINRi to decode the signal from the antenna transmitter i
successfully. When SINRi >Q, the network is connected.
The connection probability can be expressed as

Pcon = P SINRi >Qð Þ = P
Pthid

−α
i Gr

iG
t
i

rI +N0
>Q

� �
: ð16Þ

Subject to interference item (I), Equation (16) can be
written as

Pcon = E hjf g j∈Ω,≠if g, P
Pthid

−α
i Gr

iG
t
i

rI +N0
>Q

� �� �

= exp −
rΣj∈Ω,≠iPthjd

−α
j Gr

jG
t
j + N0/Ptð Þ

� �
Q

d−αi Gi
�Gi

2
4

3
5

= exp −
QN0

Pthid
−α
i Gr

iG
t
i

� �
× exp −

rΣj∈Ω,≠ihjd
−α
j Gr

jG
t
jQ

d−αi Gr
iG

t
i

= exp −
QN0

Pthid
−α
i Gr

iG
t
i

� �
× exp

Y
j∈Ω,≠i

−
rhjd

−α
j Gr

jG
t
jQ

d−αi Gr
iG

t
i

 !
:

ð17Þ

Let Ci = exp ð−QN0/Pthid
−α
i Gr

iG
t
iÞ, and dj represents the

distance from the jamming node to the origin. Then, we can
obtain

Pcon = Ci

Y
j∈Ω,≠i

exp −
rhjd

−α
j Gr

jG
t
jQ

d−αi Gr
iG

t
i

 !

= Ci

Y
j∈Ω,≠i

1 +
rd−αj Gr

jG
t
jQ

d−αi Gr
iG

t
i

 ! !−1

= Ci exp − 〠
j∈Ω,≠i

ln 1 +
rd−αj Gr

jG
t
jQ

d−αi Gr
iG

t
i

 ! ! !" #
:

ð18Þ

In space Ω with intensity ρ, the probability generating
function of the inhomogeneous β-GPP model with repulsion
coefficient β is

Pcon = Ci 〠
∞

n=0

−1ð Þn
n!

ð
Ωn

det K !
ti
tz1 , tz2
À Áh i

z1,z2∈V

� �

×
Yn
j=1

rd−αj Gr
iG

t
iQ

rd−αj Gr
jG

t
jQ + d−αi

" #
d d1ð Þd d2ð Þ⋯ d dnð Þ:

ð19Þ

Since it is difficult to calculate the numerical result, it was
solved using the quasi-Monte Carlo integral numerical
method [32]. In this paper, we try to give a more manageable
theoretical expression. According to the Hadamard inequality
[32, 33], this is a Hermitian positive definite matrix whose
determinant can be the upper bound of the product of its diag-
onal terms.

det K !
ti
tz1 , tz2
À Áh i

z1,z2∈V

� �
≲
Y
1<k<n

K !
ti
tz1 , tz1
À Á

: ð20Þ

Due to the fact that e−x =∑∞
n=0ðð−xÞn/n!Þ, connection

probability (19) is approximately expressed as

Pcon ≈ Ci exp −
ð
Ωn
K !

ti
t, tð Þ 1 − exp −

rd−αj Gr
jG

t
jQ

d−αi

 ! !
d dj

À Á !
:

ð21Þ

Converting the rectangular coordinate system to the polar
coordinate system, we can get

Pcon ≈ Ci exp −rρ
ð∞
0

1 − exp
d−αj Q

d−αi

� �
d dj

À Á�

×
ð2π
0

ð2π
0
Gr
iG

t
idθidφi

�

×
ð2π
0

1 − exp −
πλ d2j + d2i − 2djdi cos θi
� �

β

0
@

1
A

0
@

1
Adθi,

ð22Þ

where θi is the polar angle difference between the transmitting
node and the jamming node in the polar coordinate system.
We can go further:

Pcon ≈ Ci exp −rρ
1
2

Q
d−αi

� �2/α
Γ 1 − 2

α

� �ð2π
0

ð2π
0
Gr
iG

t
idθidφi

 !0
@

× 2π − exp −
πλ d2j + d2i
� �

β

0
@

1
Að2π

0
exp

−2djdi cos θi

β

 !
dθi

0
@

1
A
1
A:

ð23Þ

To facilitate engineering processing, Equation (23) is
approximately treated as
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Pcon ≈ exp −
QN0

Pthid
−α
i Gr

iG
t
i

� �
exp

Á r

Gr
iG

t
i

× −2πρ × 1
2

Q
d−αi

� �2/α
   

Á Γ 1 − 2
α

� �ð2π
0

ð2π
0
Gr

jG
t
jdθjdφj +

β

2πρ

!!!
:

ð24Þ

Here, we obtain the approximate expression of the con-
nection probability under the β-GPP model, which can quan-
titatively analyze the influence of various indicators on the
connection probability.

5.2. Upper and Lower Limits of UAV Intensity. In general,
FlyMesh provides network services in areas where network
coverage is needed. The primary requirement is to ensure
continuous and uninterrupted network coverage in the
desired area. Therefore, it is crucial to design the strength
of key nodes to ensure network coverage. In UAV network
engineering, it is a common practice to consider a regular
hexagon of circular cells.

As shown in Figure 5, we projected the beam coverage of
UAV nodes i, j, and k in three-dimensional space onto a two-
dimensional plane for ease of analysis. We observed beam
overlap between nodes i and j, while node k remained isolated
with no overlapping beams. The coverage area of each node
was represented by a circle of radius l. In this study, we
assumed that the beam radius between connected nodes is
equal under ideal conditions. In addition, ensuring continuous
coverage of desired areas is a fundamental network require-
ment, which implies that the range of the UAVs will overlap.
Therefore, there should be no gaps. Full network coverage
means that the network will cover every point in the desired
area. The critical density refers to the UAV intensity where
full network coverage will occur. In this context, the critical
density of the covered area was determined based on the
infiltration theory. Directional antenna increases the beam
coverage radius in the main lobe direction. The relation
between the beam coverage radius l of the UAVs and the
radiated power Pi can be expressed as

l = l0 ×
c × Pi

λ

� �1/α
, ð25Þ

where c is a constant depending on the signal gain and
wavelength from the transmitter to the receiver, λ is the
power threshold value, and Pi is the radiated power of the
directional antenna on the main lobe. l0 denotes the radius
of the beam at the omnidirectional antenna. The relation-
ship between gain and power is given by

G dBð Þ = 10 lg Pi

Pt

� �
, ð26Þ

where Pt is the transmitted power of the omnidirectional
antenna. Gain GðdBÞ = GðθÞ. The receiver can receive the sig-
nal when the power exceeds greater than the threshold. There-

fore, the closed-form solution of radius l can be obtained as

l = l0 ×
Pt × c × 10 1+γ cos nθð Þð Þ/10

λ

� �1/α
: ð27Þ

The nodal beams onto a two-dimensional plane for ease of
analysis. The coverage shape of themain flap beamwas a sector.
When the beamwidth is θ, the beam coverage area St is
expressed as

St =
θl2

2 = θ

2 l0 ×
Pt × c × 10 1+γ cos nθð Þð Þ/10

λ

� �1/α !2

: ð28Þ

Since the UAVs are affected by repulsive force, the regions
within the repulsive range are defined as invalid regions. This
area does not transmit information to adjacent UAVs and can
be expressed as

Sn =
θD2

K

2 : ð29Þ

That is, the effective coverage area of the node beam is

St = St − Sn =
θ

2 l0 ×
Pt × c × 10 1+γ cos nθð Þð Þ/10

λ

� �1/α !2"

− ρ exp −
π

2β ti − t j
À Á2� �2

#
:

ð30Þ

In a limited area, the size of the network coverage area
determines the network connectivity. In order to determine
the maximum distance between two overlapping UAVs, we
must find an approximate overlapping area. A common prac-
tice for this in cellular networks is to consider a regular hexagon.
In Figure 6, we consider the UAVs to be connected in this
region.

z

i j

y

k

l

x

Figure 5: Schematic diagram of UAV base station coverage.
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The maximum distance between two overlapped foot-
print is

dij = 2 × l sin π

3
� �

=
ffiffiffi
3

p
l: ð31Þ

Based on the hexagonal mosaic model, we assume that
the expected coverage area is a regular hexagonal lattice, as
shown in Figure 7. The area of the regular lattice hexagon
differed from that of the overlapping regular hexagon. As
shown in Figure 8, a hexagon is blue if it contains at least
one beam coverage center. The maximum distance between
two adjacent hexagons is

ffiffiffiffiffi
13

p
τ′ for two UAVs. The area

covered by the hexagon is Sf = ðð3 ffiffiffi
3

p Þ/2Þτ′2. Studies had

shown that the critical probability of seepage in the hexago-
nal mosaic is ph = 0:17 [34]. The permeation condition of
regular hexagonal tessellation is expressed as

1 − exp −ρSf
À Á

> ph, ð32Þ

⟹
3
ffiffiffi
3

p

2 τ′2 > 1
ρ
ln 1

1 − ph

� �
, ð33Þ

⟹τ′2 > 2
3
ffiffiffi
3

p 1
ρ
ln 1

1 − ph

� �
: ð34Þ

To make the connectivity of the network good, the con-
tinuous coverage condition is

ffiffiffiffiffi
13

p
τ′ <

ffiffiffi
3

p
l, ð35Þ

⟹τ′2 < 3
13 l

2: ð36Þ

Therefore, by combining (34) and (36), the critical UAV
intensity of the coverage is

ρ > 2
l2
: ð37Þ

However, repulsion forces exist between the UAV sub-
ject to interference, as shown in Figure 9. In the space of

𝜏

𝜏
i

Dk

l

d
j

2

Figure 6: Maximum effective beam coverage between UAVs.

𝜏ʹ

dij

i

j

Figure 7: The regular hexagon lattice shows effective beam coverage
between the two UAVs.

Figure 8: A regular hexagon tessellation shows a whole network
coverage regarded as a mosaic of multiple regular hexagons.

l

Dk

l

Figure 9: Minimum effective beam coverage between UAVs.

Table 1: Simulation parameters.

Definition Parameters Values

Beamwidth of antenna θ Variables

Repulsion factor β Variables

Point intensity β Variables

Transmitting power Pt 1

Beamwidth factor γ 0.3

Noise N0 1

Connectivity threshold Q 1

Power threshold λ 1

Constant c 1

Path attenuation factor α 4
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UAV intensity ρ, the distance between neighboring nodes
should exceed the rejection distance.

dij >Dk, ð38Þ

⟹
ffiffiffi
3

p
l > ρ exp −

π

2β ti − t j
À Á2� �

⟹ ρ <
ffiffiffi
3

p
l

exp − π/2βð Þ ti − t j
À Á2� � : ð39Þ

The beamwidth affects the coverage radius of the beam.
Thus, the relationship between beamwidth and UAV intensity
can be given as

2

l0 × Pt × c × 10 1+γ cos nθð Þð Þ/10À Á
/λ

À Á1/α� �2
< ρ <

ffiffiffi
3

p
l0 Pt × c × 10 1+γ cos nθð Þð Þ1+γ cos nθð Þ/10À Á

/λ
À Á1/α

exp − π/2βð Þ ti − t j
À Á2� � :

ð40Þ

Here, we get the upper and lower limits of the UAV inten-
sity. Within this range, the connectivity of the network cover-
age is guaranteed.

6. Simulation and Result Analysis

This section and numerical simulations have verified the
derived theoretical results. The simulation parameters are
shown in Table 1. This section is divided into three parts
for simulation. To simulate an infinite domain, we used a
three-dimensional hemisphere with a radius of R = 50 km
and the receiving UAV was located at the center of the disk.
In the simulation, the jamming transmitter was assigned a
random orientation angle φk in ½0, 2π�. Another transmitter
was then placed at ti with the orientation φi in ½0, 2π�. The
receiver orientation was θ. Channel gain jhij2 was generated
according to a distribution with a mean exponential distribu-
tion. The simulation was repeated 3 × 104 times for different
UAV positions, beamwidths, beam directions, and channel
gains in Monte Carlo simulation.

6.1. Antenna Gain Verification. Figure 10 depicts the simula-
tion results of the antenna gain effect under a single beam.
The results demonstrate that the directionality of the antenna
concentrates the radiation energy, resulting in improved
gain. Additionally, the beamwidth factor determines the
extent to which changes in angle affect the gain.

Figure 11 illustrates the simulation results of the antenna
diagram with three main lobes. In this configuration, the
gain reaches its maximum value in all three directions. The
gain varies more rapidly with the beamwidth, while the
influence of the side lobes is significantly diminished.

6.2. Verification of Approximate Pcon. Figure 12 shows the
relationship between connection probability and distance.

As the distance increases, the connection probability
decreases. Meanwhile, the rejection factor β has an impact
on the connectivity probability. The magnitude of β repre-
sents the relationship between the location distribution of
the drones. The connectivity probability is higher when the
UAVs are deployed uniformly compared to random deploy-
ment. This is attributed to the reduced electromagnetic
interference resulting from uniform deployment.

Under the same conditions as described above, Figure 13
shows the effect of different spatial intensities on the connec-
tivity probability. In the PPP model, an increase in UAV
intensity enhances the network connectivity probability.
However, in the β-GPP model, the opposite effect is
observed. The increase in intensity leads to a simultaneous
rise in electromagnetic interference, resulting in a decrease
in the connectivity probability.

Figure 14 shows the effect of different beamwidths θ on the
connectivity probability. The directionality of the antenna aids
in concentrating the signal energy and minimizing energy loss
during propagation. Furthermore, the narrow beam reduces
electromagnetic interference in unmanned networks. There-
fore, the utilization of directional antennas enhances the con-
nectivity probability.

6.3. UAV Intensity Verification. We utilized the network sce-
nario illustrated in Figure 1 to validate our findings regarding
network coverage. To simulate the network coverage scenario,
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we assumed that the directional antenna implemented omni-
directional scanning of 360°, and the UAVs were assumed to
follow the β-GPP model. The simulation area was performed
using an R = 40 km2 black circle. The covered area was
depicted in blue, while the uncovered area remained white.
The red portion indicated an exclusion zone where UAV
deployment was restricted. All UAVs in the network were ini-
tialized with the parameter values specified in Table 1.

Figure 15 shows the simulation results for the coverage
effect of UAVs to 40 and comparing the network coverage
of UAVs under model β-GPP and model PPP. It is evident
that the network coverage effect is generally similar in both
models. However, in the β-GPP model, the UAVs exhibit a
certain distribution pattern with a repulsive area, effectively
reducing signal interference between UAVs. At the same
time, decreasing the beamwidth noticeably reduces signal
interference and leads to a more regular spatial distribution
of the network.

Figure 16 reduces the number of simulated UAVs to 20.
As the number of UAVs decreases, the network coverage
deteriorates, resulting in the network coverage deteriorates,
resulting in the emergence of numerous blank areas. Nota-
bly, the network coverage of the β-GPP model exhibits a
notably uniform pattern, whereas the coverage in the PPP
model is more concentrated. Consequently, the distribution
of UAVs in the β-GPP model is more regular compared to
that in the PPP model. In this scenario, the analysis demon-
strates that the β-GPP model outperforms the PPP model in
terms of network coverage performance.

6.4. Discussion. This section is aimed at simulating the
impact of the environmental repulsion factor β, node inten-
sity ρ, and beamwidth θ on network connectivity. Based on
the simulation results, it can be seen that regular deployment
of network nodes can improve the network performance.
The intensity of nodes should be within certain upper and
lower limits within a finite area. The lower limit ensures net-
work connectivity, while the upper limit helps minimize
interference. Additionally, the beamwidth of the directional
antenna plays a crucial role in enhancing antenna gain and
maintaining stable connections between nodes. In practical
applications, the environmental factor β reflects different
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application environments, enabling engineers to configure
network node strength and antenna beamwidth accordingly
to optimize network performance.

7. Conclusion

In this paper, we analyze the network performance of Fly-
Mesh. The location distribution of FlyMesh is modeled as
β-GPP to represent the spatial exclusion and correlation
between these UAVs. The flexibility of the repulsion factor
β enables us to adapt the FlyMesh to various engineering
environments. We approximate the network model as an
inhomogeneous PPP, ignoring the small fading of the wire-
less links, and employ stochastic geometry tools to derive
approximate expressions for connectivity. By applying per-

colation theory, we determine the lower and upper limits
of the critical node density that ensures basic network con-
nectivity and effectively mitigates interference between
nodes. Finally, the simulation results verified the correctness
of the theoretical derivation and accurately described the
performance of the FlyMesh. In practical deployments of
FlyMesh in different environments, we optimize the system
parameters based on the obtained performance metrics,
which helps to improve the network performance and
ensure its stability.

Data Availability

No underlying data was collected or produced in this study.
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Figure 15: The network coverage diagram under the analysis (β-GPP) and simulation (PPP) models is simulated, and the number of UAVs
n = 40.
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