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Received signal strength- (RSS-) based localization in wireless sensor networks (WSNs) has attracted significant attention due to
its advantages of low cost and simple implementation. In practice, RSS measurements may suffer from sensor biases, which
deteriorates the localization accuracy. However, most of the existing localization methods are designed for bias-free
measurements. In this paper, we propose a convex combination method for RSS localization in the presence of sensor biases.
The parameter vector composed of unknown location and sensor biases is estimated simultaneously by using a convex
combination of some virtual points. These virtual points form a convex hull, into which the parameter vector falls with large
probability. By this, the original nonconvex estimation problem is converted to be convex. Numerical examples demonstrate
the superiority of the proposed method in terms of localization accuracy, compared to the existing semidefinite programming
(SDP) methods.

1. Introduction

Wireless localization has gained considerable attention in
recent years due to its wide applications, such as tracking,
mobile communications, and health management [1, 2]. It
provides location estimates by using measurements of the
physical parameters of a radio signal, including the angle
of arrival, time of arrival, time difference of arrival, and
RSS [3–5]. Among these, the RSS-based approach has
become particularly popular with the advantages of low-
cost and easy implementation. For example, a built-in WiFi
module in intelligent devices makes RSS measurements eas-
ily accessed.

RSS localization is mostly on the basis of the radio prop-
agation path loss model, of which the suitability heavily
affects the localization accuracy. In practice, sensor measure-
ments are inevitably subject to a variety of errors, which
leads to biased measurement models [6, 7]. The errors
involved in the RSS measurements mainly include two types:
random error and systematic bias. Systematic bias especially

originating from sensors heavily affects localization accu-
racy, which is usually caused by a design problem or other
factors. However, only a few works focus on the RSS local-
ization in the presence of sensor biases.

There have beenmany RSS-based localizationmethods in
the existingwork. Themaximum likelihood (ML)method can
asymptotically attain the optimality [8]. But the formulated
estimation problem is nonconvex, of which the globally opti-
mal solution is difficult to achieve. To overcome this problem,
in addition to linear methods [9, 10], optimization-based
methods have been extensively studied, such as SDP and
second-order cone programming [11–14]. They are all con-
vex so that the globally optimal solution can be guaranteed.
Besides, they usually have better accuracy than linear least
squares (LS) methods. In addition, range-based localization
using RSS or time of arrival measurement has also been stud-
ied [15–17]. For example, in [15], a diffusion Gauss-Newton
algorithm with cooperation strategy is proposed for solving
target localization nonlinear-least-squares problem. How-
ever, all RSS localization methods mentioned above are
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proposed for bias-free models only. When the RSS measure-
ments reported by sensors contain biases, they will become
invalid.

In [18], two localization problems using biased RSS mea-
surements were first studied, i.e., source localization and
receiver navigation, and several optimization-based methods
were proposed. They transform the biased RSS model and
formulate different convex estimation problems using
approximation and relaxation. In this paper, for the same
localization problems, we propose a totally new method with
the scheme of convex combination, which provides better
performance than the existing SDP methods [19]. The basic
idea is to generate a convex hull, into which the parameter
vector composed of unknown location and sensor biases falls
with some probability such that the vector can be estimated
by a convex combination of some virtual points. To this
end, an optimization-based method is proposed to construct
the convex hull, of which the vertices are used as the virtual
points. Then, the original nonconvex localization problem
is converted into a constrained LS problem of calculating
combination coefficients. The implementation of the pro-
posed method can be summarized as the following proce-
dures: (1) generating the virtual points; (2) calculating the
combination coefficients; and (3) combining the virtual
points and coefficients as the final estimate. The novelty of
the proposed method is to convert the nonconvex problem
ofML estimation to convex problems with respect to the con-
struction of virtual points and the calculation of combination
coefficients. Since the formulated problems with respect to
the proposed method are all convex, the solution can be eas-
ily obtained. Numerical examples demonstrate the perfor-
mance of the proposed localization method, which shows
better localization accuracy than the existing SDP methods.

2. Problem Formulation

Consider a WSN consisting of a single target node and N
anchor nodes. Two localization problems are investigated,
i.e., source localization and receiver navigation. In source
localization, the source node is stationary with unknown
location xo, which acts as a target node and is localized with
accumulated measurements of multiple receivers (anchor
nodes) of multiple times. The receivers move all the time,
and the locations of receiver j are known as yk,j at time k.
In receiver navigation, the receiver moves with unknown
locations xok at time k, which acts as a target node and is
localized with its received measurements from multiple
sources (anchor nodes) at the current time. The sources
are stationary, and the location of source j is known as y j.
Accordingly, the RSS measurement model in the presence
of sensor biases for the two localization problems can be
written as

Pk,j = P0 + Δj Δ − 10β log10
dk,j
d0

+ nk,j, j = 1,⋯,N , 1

where Pk,j is the RSS measurement corresponding to anchor
node j at time k, P0 is the reference power at a reference dis-

tance d0, β is the path loss exponent (P0 and β are assumed
known; d0 = 1m is usually assumed), Δj Δ is the unknown
sensor bias, and dk,j = xo − yk,j or dk,j = xok − y j is the dis-
tance between the target node and anchor node j at time k.
The noise terms nk,j are assumed independent and identi-
cally distributed zero-mean Gaussian random variables with
variance σ2 [20]. Note that source localization involves mul-
tiple sensor biases while receiver navigation involves single
sensor bias, since the measurements in source localization
are collected by multiple sensors and the measurements in
receiver navigation are collected by a single sensor.

Let θ be the parameter vector to be estimated, which
consists of the unknown location and sensor biases. Then,
the ML estimators for source localization and receiver navi-
gation can be, respectively, written as

θ = arg min
θ

〠
N

j=1
〠
k

s=1
Ps,j − P0 − Δj + 10β log

ds,j
d0

2
, 2

θ = arg min
θ

〠
N

j=1
Pk,j − P0 − Δ + 10β log

dk,j
d0

2
3

Obviously, both the problems above are nonconvex so
that their globally optimal solutions are difficult to achieve.
For this, we resort to a convex combination method in this
letter. Note that the details of the proposed algorithm will
be presented for source localization only since it follows a
similar procedure for receiver navigation.

3. Convex Combination Method

3.1. Basic Idea. In source localization, θ = xo T , Δ1,⋯, ΔN
T

is to be estimated. As is well known, any point located inside
a convex hull can be represented by a convex combination of
the vertices of the hull. According to this, if we have a convex
hull such that θ falls inside, θ can be represented by a convex
combination of the vertices. That is,

θ = 〠
m

i=1
wivi, 4

where vi is the vertices of the convex hull (also termed as vir-
tual points) with i = 1,⋯,m and wi is the convex combina-
tion coefficient with ∑m

i=1wi = 1 and wi ≥ 0.
First, we rewrite the ML estimator of θ in (2) as

θ = arg min
θ

〠
N

j=1
〠
k

s=1
Ps,j − f θ, ys,j

2
, 5

where f θ, ys,j = P0 + θ j+3 − 10β log10 di θ 1 3 , ys,j /d0 ,
θ 1 3 denotes the unknown source location, and θj+3
denotes the jth sensor’s bias.
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Combining (4) with (5), the ML estimator is equal to

ŵ = arg min
ŵ

〠
N

j=1
〠
k

s=1
Ps,j − f 〠

m

i=1
wivi, ys,j

2

, 6

with w = w1,w2,⋯,wm .
Next, a mathematical theorem is introduced.

Theorem 1. Suppose a point set V ρ ≜ v1 ρ , v2 ρ ,⋯,
vm ρ form a convex hull, vi ρ ⟶ x when ρ⟶ 0, i = 1,
2,⋯,m. Let r ρ be the radius of the bounding ball B V ρ
of V ρ , and z∞ be a point outside the convex hull. Then,
for any finite integer m ≥ 2 and all possible points x, we
have

lim
ρ⟶0

∑m
i=1wi f vi ρ , z∞ − f ∑m

i=1wivi ρ , z∞
r ρ

= 0, 7

where f · is the biased RSS measurement function as in
(5) and ∑m

i=1wi = 1,wi ∈ 0, 1 .

This theorem can be proved by using mathematical
induction. The complete proof can be found in the
Appendix.

Equation (7) indicates

〠
m

i=1
wif vi ρ , z∞ ≈ f 〠

m

i=1
wivi ρ , z∞ 8

when the convex hull used is sufficiently small.
By applying (8), when a small convex hull is available,

problem (6) can be approximated as

ŵ = arg min
w

〠
N

j=1
〠
k

s=1
Ps,j − 〠

m

i=1
wif vi, ys,j

2

9

3.2. The Generation of Virtual Points. As can be seen from
above, the key of the convex combination method is virtual
points. We aim to construct a convex region, in which the

source falls inside in the sense of probability. Consider
model (1), we have the following ring region:

rs,j = xo 10 εk, j−αk, jσ /5β ≤ xo − yk,j
2
≤ 10 εk, j+αk, jσ /5β ,

10

where εk,j = P0 − Pk,j + Δj and αk,j determines the size of the
region, i.e., the probability of the source falling inside. The
larger αk,j is, the more likely the source is to fall inside. Obvi-
ously, the source is most likely located inside the intersection

of all rs,j’s with s = 1,⋯k, j = 1,⋯,N , i.e., ∩ s=k,j=N
s=1,j=1 rs,j.

By applying the first-order Taylor series expansion for
αk,j, the ring region (10) can be approximated as

r0k,jγj 1 − cαk,j ≤ xo − yk,j
2
≤ r0k,jγj 1 + cαk,j , 11

where r0k,j = 10 P0−Pk, j /5β, γj = 10Δ j/5β, and c = ln 10σ/5β.
That is,

r0k,j γj − cαk,j ≤ xo − yk,j
2
≤ r0k,j γj + cαk,j , 12

where αk,j = γjαk,j.
To make the approximation error in (9) small, the region

produced by the intersection of all rk,j is supposed to be as

Table 1: Complexity comparison of the methods considered.

Method Complexity

CCRL O k + 1 2 3k + 1 N3 2kN + 1

URSS-SDP O 2k + 1 2kN + 4 2N2 2kN + 4

DRSS-SDP O 2k + 1 2kN + 4 2N2 2kN + 4

Input:

The biased RSS measurements, P = Ps,j
s=k,j=N
s=1,j=1 ;

The locations of receivers at each time, ys, j
s=k, j=N
s=1,j=1 ;

Output:

An estimate of the source location and sensor biases θ ;

1: Generate the virtual points matrix V by solving the QCQP problem ((13a)–(13d)) with P and ys,j
s=k,j=N
s=1, j=1 , and then obtain the

matrix Φ;
2: Obtain the convex combination coefficients ŵ by solving problem (14) with P and Φ;

3: Obtain θ =Vŵ;

Algorithm 1: Convex combination method.
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small as possible. To this end, a quadratically constrained
quadratic programming (QCQP) problem is formulated as

arg min
x,z,γ j ,αi, j

〠
N

j=1
〠
k

i=1
αi,j, 13a

s t  z − 2yTi,jxo + yTi,jyi,j ≥ r0i,jγj − cr0i,jαi,j, 13b

z − 2yTi,jxo + yTi,jyi,j ≤ r0i,jγ j + cr0i,jαi,j, 13c

z ≥ xo Txo 13d

Remark 2. (1) The objective function (13a) is formulated to
make the intersection as small as possible since αi,j deter-
mines the width of each ring. (2) The constraints (13b)
and (13c) guarantee the existence of the intersection of all
ring regions. (3) In (13d), z = xo Txo is relaxed to z ≥
xo Txo so that it becomes a convex constraint [21].

Denote the solution of θ in problem ((13a)–(13d)) as θo.
Obviously, it is only a point rather than a convex hull as

expected, which can be regarded as a special case of the
intersection region. To obtain a convex hull, a multidimen-
sional polyhedron can be expanded with θo being the central
point, i.e., V = θo1 + δ1, θo1 − δ1 ;⋯ ; θo3+N + δ3+N , θo3+N −
δ3+N , where δj indicates the hull size. This is reasonable
because θ is intuitively located around the intersection point
θo with a large probability. As such, the virtual points vi can
be generated as the vertices of V . Obviously, there will be
23+N virtual points.

3.3. Convex Combination Coefficients. With the virtual
points, problem (9) is equal to the following constrained
LS problem:

ŵ = arg min
w

〠
N

j=1
〠
k

s=1
Ps,j − Φw s×j

2

 s t w 1 = 1,w ≥ 0
, 14

where Φs×j,i = f vi, xs,j and w = w1,⋯,w23+N
T .

Since the above problem is convex, the combination
coefficients can be easily obtained.
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Figure 1: RMSE versus time for source localization.
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3.4. A Summary of the Convex Combination Method. Using
the virtual points and combination coefficients obtained in
the above subsections, θ can be estimated with the convex
combination method. That is, the source location can be
estimated by

x̂o =V 1 3, ŵ, 15

and the sensor bias can be estimated by

Δ j =V 3 + j, ŵ, 16

where V = v1, v2,⋯, v23+N . The whole calculation proce-
dures can be summarized as Algorithm 1.

4. Complexity Analysis

In this section, we analyze the computational complexity of
the proposed method and compare with the SDP methods
in [18]. For the proposed method, it follows the QCQP for-
mulation. Denote the number of variables as m and the
number of quadratic constraints as s, respectively, in the fol-
lowing standard QCQP problem.

min cTy
s t f i y = yTBiy + bTi y + ci ≤ 0, i = 1,⋯, s

, 17

where Bi is an m ×m positive semidefinite symmetric
matrix. The arithmetic cost of one step in solving this QCQP
problem is dominated by O m + s m2 , and the number of
iterations is bounded by O s . Thus, the total complexity is
given by O s0 5 m + s m2 [22].

The computational cost of the proposed method mainly
includes two parts. One corresponds to obtain an intersec-
tion point, and the other corresponds to calculate the convex

combination coefficients. Obviously, the two optimization
problems in these two parts are both QCQPs. But the latter
has a fixed dimension since the number of the virtual nodes
is 8. As a result, its cost will be constant and can be neglected
when N or k is large enough. That is, the computational
complexity of the proposed convex combination RSS local-
ization method (denoted by CCRL) is mainly determined
by solving the QCQP problem ((13a)–(13d)). Obviously,
for problem ((13a)–(13d)), we have the number of variables
m = k N + 1 + 4 and the number of quadratic constraints
s = 2kN + 1. Then, the computational complexity of the
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Figure 2: RMSE versus noise level for source localization.
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proposed method can be written as O k + 1 2 3k + 1 N3

2kN + 1 .
For the SDP methods, their computational complexities

can be analyzed by solving a standard SDP problem.

min cTy
s t A y ≥ 0

, 18

where

A y = A0 + 〠
m

i=1
yiAi 19

y, c ∈ Rm, A0,⋯, Am ∈ Rl×l are symmetric matrices. The
computational cost for each iteration is given by O m2l2

at least, where m and l are the numbers of variables and
dimensions of the LMI involved, respectively. If the con-
straints contain k LIMs, we have l =∑k

i=1li, where li is the
dimension of the ith LMI. The number of iterations is
bounded by O l . Thus, the total complexity of solving
an SDP problem is given by O m2l2 5 .

For both the URSS-SDP and DRSS-SDP methods, we
havem = 2k + 1 N + 4 and l = 2kN + 4. Their computational
complexities can be written as O 2k + 1 2kN + 4 2N2

2kN + 4 [23, 24].
The computational cost of all methods considered is

summarized in Table 1. Obviously, their dominant terms
are different. For the proposed CCRL method, it is O 3k3
N3 2kN + 1 . However, for the URSS-SDP and DRSS-SDP
methods, they are both O 16k4N4 2kN + 4 . As such, the
proposed CCRL method is more computationally efficient
than the URSS-SDP and DRSS-SDP methods when the
number of sensors N and moving time k are large.

5. Numerical Examples

The performance of the proposed CCRL is demonstrated
for both source localization and receiver navigation, in
which the RSS measurements suffer from different biases
for different sensors. It is also compared with the two SDP
methods in [18], i.e., URSS-SDP (URSS-SDP-l1) and
DRSS-SDP (DRSS-SDP-l1). Besides, the Cramer-Rao lower
bound (CRLB) is provided as a benchmark for performance
evaluation. The path-loss exponent and reference power
were set to β = 3 and P0 = −40 dB, respectively [25, 26].
The hull size of the proposed method was set to δn = 0 5
for all ns, if not specified. All simulation results were aver-
aged over 300 Monte Carlo runs.

5.1. Source Localization. As Figure 1(a) shows, three receivers
(sensors) moved around an emission source, of which the
true location was xo = 5, 5, 5 T , in a 3D circular motion pat-
tern. The true values of sensor biases for the three receivers
were Δ1 = 5 dB, Δ2 = 7 dB, and Δ3 = 3 dB, respectively. At
each time, the source was localized with the accumulated
measurements of all receivers. Figures 1(b) and 1(c) show

the root-mean-square error (RMSE) of each method versus
time, where the standard deviation of noise was set to σ =
2 dB. As is shown, all RMSEs become lower as time goes,
since more and more measurements are available. In esti-
mating the source location, the proposed method performs
best among all the methods considered, especially much bet-
ter than the DRSS-SDP method. In estimating sensor bias,
taking sensor 3 for instance, the proposed method also
shows the superiority in many cases (time 5 to time 9).

Figure 2 shows the RMSE versus noise standard devia-
tion, in which the moving time of receivers was fixed at 7.
All RMSEs increase as the noise level grows. Clearly, the pro-
posed method provides the best performance in estimating
both location and sensor bias. In some cases, its RMSE is
even lower than the CRLB, which is a lower bound for unbi-
ased estimator only [8]. This indicates that the proposed
method may be biased.

As mentioned before, the ML method is nonconvex,
and its solution heavily depends on the initialization.
Figure 3 shows the results of the ML method using differ-
ent initializations, where ML-RAND and ML-CCRL denote
the ML methods initialized with random value and the
result of the proposed method, respectively. It can be seen
that the ML method performs rather poorly when a ran-
dom initialization is used. By contrast, the performance is
significantly improved when the result of the proposed
method is used as the initialization, which verifies the
necessity of a good initialization for the ML method.
Besides, the CCRL method outperforms the ML-CCRL
method at some time (time 3 to 6). This indicates that it
is not necessary to refine the ML estimator for better per-
formance in some cases, when an estimation by the pro-
posed method is available.

For the proposed method, the effect of the hull size (δj)
on the performance has two aspects. On the one hand, a
large size helps increase the probability of the target falling
inside the convex hull, which contributes to improve local-
ization accuracy. On the other hand, a large size leads to
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Figure 4: Effect of hull size on RMSE.
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large approximation error involved in the algorithm, which
deteriorates localization accuracy. As Figure 4 shows, the
RMSE remains stable when the size is less than 1. This indi-
cates that there is a trade-off between the two aspects. How-
ever, when the size gets larger than 1, the RMSE grows
quickly. Obviously, in this case, the effect of approximation
error involved in the algorithm is dominant. In practice,
the selection of δj depends on the size of localization sce-
nario. Generally, a larger scenario induces larger errors to
the RSS measurements. As a result, a larger δj is needed to
make the target node fall inside the convex hull with higher
probability. As the experiment results show, δj can be
selected as about 0 5 for a three-dimensional scenario of
size 10 × 10 × 10.

5.2. Receiver Navigation. For receiver navigation, we con-
sider the scenario in Figure 5(a), where 16 source nodes were
distributed on the boundary of a cube with known coordi-
nates. A receiver (sensor), moved in a circular pattern inside
the cube, was localized with the real-time measurements
from all source nodes. Figures 5(b) and 5(c) show the
RMSEs for navigation and sensor bias versus time, in which
the noise standard deviation σ and the true value of sensor
bias were set to 2 dB and 3dB, respectively. As is shown,
the proposed CCRL method still outperforms both the
SDP-URSS and SDP-DRSS methods in all cases. Besides, it
is close to the CRLB in some cases.

Figure 6 shows the RMSE versus noise standard devia-
tion for receiver navigation, in which the moving time of
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Figure 5: RMSE versus time for receiver navigation.
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the receiver was fixed at 7 and σ still varied from 1dB to
10 dB. Similar to the results in Figure 2, all RMSEs increase
with the growth of noise level. The proposed method per-
forms best in estimating receiver location. As for estimating
sensor bias, the proposed method performs close to the
DRSS-SDP method and the CRLB. However, the URSS-
SDP method does not perform as well as others.

To verify the robustness of the proposed CCRL method,
invalid measurements are considered in receiver navigation.
Denote the results with 7 and 5 invalid sensor measure-
ments by CCRL-I1 and CCRL-I2, respectively, and each
invalid measurement involves with the error of 100 dB. As
Figure 7 shows, the CCRL-I1 and CCRL-I2 are still close

to the CRLB, which demonstrates the good robustness of
the proposed method.

6. Conclusion

In this paper, we propose a convex combination method for
RSS-based localization using measurements in the presence
of sensor biases. The parameter vector composed of target
location and sensor biases is simultaneously estimated by a
convex combination of some virtual points. A QCQP prob-
lem is formulated to construct the convex hull (virtual
points). The combination coefficients are then determined
by solving a constrained LS problem. Numerical examples
demonstrate the performance of the proposed method. In
estimating location, it performs better than the existing
URSS-SDP and DRSS-SDP methods for all scenarios consid-
ered, and in estimating sensor bias, it also shows superiority
in many cases. Besides, it significantly outperforms the ML
method with a random initialization.

Appendix

A.1. Proof of Theorem 1

To prove Theorem 1, we use mathematical induction. First,
we consider the two-point case (i.e., m = 2).

Suppose that the 2D plane is spanned by unit vectors rx
and ry. Let x be at the origin. v1 = −R1rx, v2 = R2rx, R1 and
R2 are scalars, and v j ρ = 1 − ρ x + ρv j, j = 1, 2. Thus, x is
in the hull of V ρ . The radius of the bounding ball of V ρ
is r ρ = ρ R1 + R2 /2. Let v ρ = λv1 ρ + 1 − λ v2 ρ . We
can see that the hull shrinks to x as ρ⟶ 0. z∞ = hxrx + hy
ry = hx, hy T . Let S ρ

j,∞ = S v j ρ , z∞ , where S · is the biased
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Figure 6: RMSE versus noise level for receiver navigation.
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RSS function. That is,

S v1 ρ , z∞ = P0 + Δv1 ρ − 10β log10d1,

S v2 ρ , z∞ = P0 + Δv2 ρ − 10β log10d2,

S v ρ , z∞ = P0 + Δv ρ − 10β log10d3,

A 1

where v ρ = λv1 ρ + 1 − λ v2 ρ , Δv ρ = λΔv1 ρ + 1 −
λ Δv2 ρ , d1= h2y + h2z+ hx+ρR1

2, d2 = h2y+h2z + hx − ρR2
2,

d3 = h2y + h2z + hx − ρR2 + λρ R1 + R2
2.

Since v1 ρ , v2 ρ , and v ρ all shrink to x as ρ⟶ 0,

lim
ρ⟶0

λS v1 ρ , z∞ + 1 − λ S v2 ρ , z∞ − S v ρ , z∞ = 0,

A 2

and lim
ρ⟶0

r ρ = 0. Then, we have

lim
ρ⟶0

λS v1 ρ , z∞ + 1 − λ S v2 ρ , z∞ − S v ρ , z∞
r ρ

= lim
ρ⟶0

∂/∂ρ λS v1 ρ , z∞ + 1 − λ S v2 ρ , z∞ − S v ρ , z∞
∂ r ρ /∂ρ

= lim
ρ⟶0

λS′ x1 ρ x1′ ρ + 1 − λ S′ x2 ρ x2′ ρ − S′ x3 ρ x3′ ρ
R1 + R2/2

= lim
ρ⟶0

−λS′ 0 R1 + 1 − λ S′ 0 R2 − S′ 0 −λR1 + 1 − λ R2
R1 + R2/2

= 0,

A 3

where x1 ρ , x2 ρ and x3 ρ denote the x coordinates of
v1 ρ , v2 ρ , and v ρ , respectively, and the L’Hopital’s rule
has been used.

Thus, Theorem 1 holds for the two-point case.
Next, we consider the multiple-point case. Suppose that

Theorem 1 holds for m = t ≥ 2, that is,

lim
ρ⟶0

∑t
j=1λjS

ρ
j,∞ − S z∞,∑t

j=1λjv j ρ
r ρ

= 0 A 4

For m = t + 1, we constitute a new point

v1 = 〠
t+1

j=2
λj′v j ρ , A 5

where λj′= λj/1 − λ1 = λj/λ1.
Obviously, ∑t+1

j=2λj′= 1/1 − λ1 ∑t+1
j=2λj = 1. Thus, we have

lim
ρ⟶0

∑t+1
j=2λj′S

ρ
j,∞ − S z∞,∑t+1

j=2λj′v j ρ
r′ ρ

= 0, A 6

where r′ ρ is the radius of H v2 ρ ,⋯, vt+1 ρ (the hull
composed by v2 ρ , v3 ρ ,⋯, vt+1 ρ ).

It can be easily seen that v2 ρ , v3 ρ ,⋯, vt+1 ρ all con-
verge to x as ρ⟶ 0. Thus, r′ ρ and r ρ are infinitesimal
of the same order (ρ⟶ 0). Then, we have

lim
ρ⟶0

∑t+1
j=2λj′S

ρ
j,∞ − S z∞,∑t+1

j=2λj′v j ρ
r ρ

= 0 A 7

That is,

〠
t+1

j=2
λj′S

ρ
j,∞ = S z∞, 〠

t+1

j=2
λj′v j ρ + o r ρ , A 8

where o r ρ represents a high-order infinitesimal over r ρ .
Then, we have

〠
t+1

j=1
λjS

ρ
j,∞ = λ1S

ρ
1,∞ + 〠

t+1

j=2
λjS

ρ
j,∞ = λ1S

ρ
1,∞ + 〠

t+1

j=2
λ1λj′S

ρ
j,∞

= λ1S
ρ
1,∞ + λ1S z∞, 〠

t+1

j=2
λj′v j ρ + λ1o r ρ

= λ1S
ρ
1,∞ + λ1S z∞, v1 + λ1o r ρ

A 9

From the above, it follows that

lim
ρ⟶0

∑t+1
j=1λ jS

ρ
j,∞ − S z∞,∑t+1

j=1λ jv j ρ
r ρ

= lim
ρ⟶0

λ1S
ρ
1,∞ + λ1S z∞, v1 + λ1o r ρ − S z∞, λ1v1 ρ +∑t+1

j=2λjv j ρ
r ρ

= lim
ρ⟶0

λ1S
ρ
1,∞ + λ1S z∞, v1 − S z∞, λ1v1 ρ + λ1∑

t+1
j=2λ j′v j ρ

r ρ
+ λ1o r ρ

r ρ

= lim
ρ⟶0

λ1S
ρ
1,∞ + 1 − λ1 S z∞, v1 − S z∞, λ1v1 ρ + 1 − λ1 v1

r ρ
+ λ1o r ρ

r ρ

= lim
ρ⟶0

λ1S z∞, v1 ρ + 1 − λ1 S z∞, v1 − S z∞, λ1v1 ρ + 1 − λ1 v1
r ρ

+ λ1o r ρ

r ρ
two − point case for v1 ρ and v1 = 0

A 10

Thus, Theorem 1 holds for all finite numbers m. This
completes the proof.
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