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Received signal strength- (RSS-) based localization has attracted considerable attention for its low cost and easy implementation.
In plenty of existing work, sensor positions, which play an important role in source localization, are usually assumed perfectly
known. Unfortunately, they are often subject to uncertainties, which directly leads to effect on localization result. To tackle this
problem, we study the RSS-based source localization with sensor position uncertainty. Sensor position uncertainty will be
modeled as two types: Gaussian random variable and unknown nonrandom variable. For either of the models, two
semidefinite programming (SDP) methods are proposed, i.e., SDP-1 and SDP-2. The SDP-1 method proceeds from the
nonconvex problem with respect to the maximum likelihood (ML) estimation and then obtains an SDP problem using proper
approximation and relaxation. The SDP-2 method first transfers the sensor position uncertainties to the source position and
then obtains an SDP formulation following a similar idea as in SDP-1 method. Numerical examples demonstrate the
performance superiority of the proposed methods, compared to some existing methods assuming perfect sensor position
information.

1. Introduction

Over the past decade, localization using wireless sensor net-
work (WSN) has attracted a great deal of research interest
for its wide applications such as military, environmental,
health, and commercial aspects [1, 2]. It overcomes some
limitations of traditional global navigation satellite system-
(GNSS-) based methods, e.g., GPS’s invalidity in indoor
environments and vision-based localization’s instability in
poor light scenarios. Depending on different physical mea-
surements of radio signal, wireless localization can be
divided into several types, such as angle of arrival (AOA),
time of arrival (TOA), time difference of arrival (TDOA),
and received signal strength (RSS) [3–7]. Among these dif-
ferent schemes, RSS-based localization has the merits of
low cost and easy implementation since most wireless
devices have built-in receiver modules [8]. For example, a
smartphone can be directly utilized to sample the RSS mea-
surements of an emission source.

There has been large amounts of work on wireless local-
ization using RSS measurements [9–13], which includes
range-free method and range-based method. Range-free
methods do not utilize RSS model directly. They construct
RSS database at offline phase and then estimate the location
according to the database at online phase. Such methods are
generally sensible to environment changes. By comparison,
range-based methods estimate the node’s location using
the RSS measurements at known sensor positions according
to specific RSS model. For many applications, they are more
attractive and can provide better localization accuracies. The
ML and least squares (LS) are traditional range-based
methods, which are also nonlinear methods. They suffer
from nonconvexities of the formulated estimation problems
and need proper initialization. Otherwise, the globally opti-
mal solution can not be guaranteed [14]. Linear methods
provide linear estimators through linearizing the RSS model
and applying LS estimation, which include linear LS method
and weighted linear LS method [15]. Recently, optimization-
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based methods, e.g., SDP and second-order cone program-
ming (SOCP), have become popular in RSS localization
[16–18]. They usually originate from ML estimation but
overcome the nonconvexity of ML method and obtain con-
vex problems by using approximation and relaxation.
Besides, they generally have better localization accuracy than
linear methods.

For RSS-based source localization, sensor positions are
essential in addition to RSS measurements. However, in
plenty of existing work, a common assumption is that the
sensor positions are perfectly known. Unfortunately, the
exact information about the sensor positions is not prior
known and usually obtained by some self-localization
schemes, e.g., GPS, which is inevitably erroneous [19]. As a
result, this error (uncertainty) will pass to source localization
if it is ignored. Especially, when the sensor positions have
large uncertainties, the accuracy of the source localization
will be affected significantly.

There has been somework on source localization with sen-
sor position uncertainty, in which the uncertainty is usually
assumed Gaussian random variable [19–22]. In [19], a joint
ML algorithm is proposed for estimating source position and
anchor positions, in which an iterative trust region strategy is
used to solve the corresponding nonlinear problem. In [20],
ranging measurements are used to formulate a robust localiza-
tion problem with the ML criterion and an SOCP problem is
devised using convex relaxation. In [9], SDP algorithms are
devised, which use distance between nodes obtained from
TOA measurements. In [21], an RSS difference-based method
is presented to localize a source. It uses a constrained adaptive
weighted LS technique to obtain an initial estimate and then
improves it with a computationally efficient modified Newton
method. Overall, most of existing work deals with range mea-
surements (obtained from TOA or TDOA measurements),
and only a few is designed for RSS measurements.

In practice, sensor position uncertainty may originate
from system error, which is a deterministic parameter. As
such, it is reasonable to model the uncertainty as an unknown
nonrandom variable. Besides, prior information on its range is
probably available. In view of this, in this paper, we study the
RSS-based source localization with different assumptions on
the sensor position uncertainty. Two types of uncertainties
will be considered: Gaussian random case and unknown non-
ranodm case. For either of the two cases, two SDP methods,
i.e., SDP-1 and SDP-2, are presented. The SDP-1 method uses
the original model to formulate the ML estimation of the
source and sensor positions and transforms its nonconvex
problem to an SDP problem with approximation and relaxa-
tion techniques. The SDP-2method transfers the uncertainties
of sensor positions to source position and obtains a new
model. On basis of this, a new SDP problem is also presented
with the ML criterion. In summary, the innovative contribu-
tion of this paper is tomodel the uncertainty of sensor position
in RSS-based localization and propose new and efficient local-
ization methods, including modeling the uncertainty as deter-
ministic unknown error and deriving new SDP methods with
transformed model.

The rest of the paper is organized as follows. Section 2
presents two different models for the RSS-based source

localization with sensor position uncertainty. Section 3 pre-
sents the SDP methods for source localization with Gaussian
random uncertainty of sensor position. Section 4 presents
the SDP methods for source localization with unknown non-
random uncertainty of sensor position. In Section 5, perfor-
mance of the proposed methods is demonstrated through
numerical examples. Section 6 concludes the paper.

2. Problem Formulation

We consider a WSN consisting of a single source to be local-
ized and n sensors with locations subject to uncertainties.
The uncertainties will be modeled as random variables and
nonrandom variables, respectively, in this paper. Accord-
ingly, we will provide two formulations of source localiza-
tion using RSS measurement models with sensor position
uncertainties.

2.1. Gaussian Random Uncertainty. For the Gaussian ran-
dom case, we have the following measurement model:

Pi,j = P0 − 10β log10
dj x, x j
À Á
d0

+ ni,j,

zj = x j + vj, i = 1, 2,⋯, k, j = 1, 2,⋯, n,
ð1Þ

where Pi,j denotes the RSS measurement of sensor j at ith
sampling time, P0 is the reference power at a reference dis-
tance d0 (d0 = 1m is usually assumed), β is the path loss
exponent (assumed to be known), x is the source location,
x j is the true unknown position of sensor j, djðx, x jÞ denotes
the distance between the source and sensor j, and zj is the
uncertain position of sensor j. ni,j is the noise of RSS mea-
surement, assumed to be independent and identically dis-
tributed (i.i.d) zero-mean Gaussian random variable with
variances ðσr

i,jÞ2, and vj is the noise of sensor position mea-
surement, also assumed to be Gaussian random variable
with zero-mean and covariance matrix Φj. ni,j and vj are
assumed to be mutually independent. It is reasonable to
model the position uncertainty as Gaussian random variable,
since the sensor positions are inevitably obtained with
coupled random errors in some cases. These errors may be
generated by a variety of factors. When these factors are
independent, the sum of the errors in sensor position
approximately has the Gaussian distribution according to
the central limit theorem.

2.2. Unknown Nonrandom Uncertainty. For the nonrandom
case, we have the following measurement model:

Pi,j = P0 − 10β log10
dj x, x j
À Á
d0

+ ni,j,

zj = x j + εj,

εj
�� �� ≤ aj, j = 1, 2,⋯, n,

ð2Þ

where zj is also the uncertain position of sensor j with the
unknown deterministic error εj. Additionally, some range
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information on the error is assumed to be available. Other
notations have the same meanings as in model (1). ni,j is also
assumed i.i.d zero-mean Gaussian random variable with var-
iance ðσri,jÞ2.

For both models (1) and (2), source localization is to
estimate the source location x using the noisy RSS measure-
ments Pi,j and uncertain sensor positions zj. Two SDP
methods will be proposed: SDP-1 and SDP-2, according to
either of the two models.

3. Source Localization with Gaussian Random
Uncertainty of Sensor Position

First, we consider the source localization with model (1). We
first propose an SDP-1 method that originates from the ML
estimation using combined RSS and sensor position mea-
surements. Then, we propose an SDP-2 method with a
transformed model that transfers the uncertainty of sensor
position to source position.

3.1. SDP-1 Method. Let X = ½x, x1, x2,⋯, xn� be the unknown
parameter vector comprising true source location and sensor
locations. On basis of the assumption on the the noises nj

and vj as before, the likelihood function of X given the

RSS measurements P = ½P1,1,⋯, Pk,1,⋯, P1,n ⋯ , Pk,n�T and

noisy sensor positions Z = ½z1, z2,⋯, zn�T can be written as

p P, Z Xjð Þ = p P Xjð Þ × p Z Xjð Þ

=
Yk
i=1

Yn
j=1

1ffiffiffiffiffiffi
2π

p
σri,j

exp
− Pi,j − P0 + 10β log10 dj x, x j

À Á
/d0

À ÁÀ Á2
2 σr

i,j

� �2
0
B@

1
CA

×
Yn
j=1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π Φj

�� ��q exp
− zj − x j
À ÁTΦ−1

j zj − x j
À Á

2

 !
:

ð3Þ

Then, ML estimation of the unknown position vector X is

X̂ = arg min
X

〠
k

i=1
〠
n

j=1

1

σri,j

� �2 Pi,j − ~Pi,j
À Á2 + 〠

n

j=1
zj − x j
À ÁTΦ−1

j zj − x j
À Á

, ð4Þ

where ~Pi,j = P0 − 10β log10ðdjðx j, xsÞ/d0Þ.
Since Pi,j − ~Pi,j = 5βðlog10d2j 10ðPi, j−P0Þ/5βÞ and log10d2j 1

0ðPi, j−P0Þ/5β ≈ ð1/ln 10Þðd2j 10ðPi, j−P0Þ/5β − 1Þðd2j 10ðPi, j−P0Þ/5β ⟶
1 as ni,j ⟶ 0Þ, problem (4) can be approximated as

X̂ = arg min
X

〠
k

i=1
〠
n

j=1

5β
ln 10σri,j

 !2

d2j 10 Pi, j−P0ð Þ/5β − 1
� �

+ 〠
n

j=1

1

σsj

� �2 zj − x j


 

2, ð5Þ

where vj is assumed to have the same variance ðσsjÞ2 in x and

y directions (Φj is diagonal with all elements being ðσs
jÞ2).

Problem (5) can be further represented as

X̂ = arg min
X

〠
k

i=1
〠
n

j=1
wr

i, j λi,jhj − 1
À Á2 + 〠

n

j=1
ws

j zj − x j


 

2, ð6aÞ

s:t: hj = x − x j


 

2

2, ð6bÞ

where λi,j = 10ðPi, j−P0Þ/ð5βÞ, wr
i,j = ð5β/ln 10σr

i,jÞ2, and ws
j = 1/

ðσs
jÞ2. It can be seen that the cost function consists of two

parts. The first reflects the likelihood of RSS measurements
with weighted coefficient wr

i,j, and the second reflects the
likelihood of sensor positions with weighted coefficient ws

j.

By introducing an auxiliary variable Z =XTX, problem
(6a) and (6b) can be converted into the following SDP
problem:

X̂ = arg min
ti,j ,sj ,hj ,
X,Z

〠
k

i=1
〠
n

j=1
ti,j + 〠

n

j=1
sj, ð7aÞ

s:t:wr
i,j λi,jhj − 1
À Á2 ≤ ti,j, ð7bÞ

ws
j zj − x j
À ÁT zj − x j

À Á
≤ sj, ð7cÞ

x j =X : ,j + 1ð Þ, ð7dÞ

hj =
02

e1 − ej

" #T I2 X
XT Z

" # 02
e1 − e j

" #
, ð7eÞ

I2 X
XT Z

" #
≥ 0n+3, ð7fÞ

where ej is a ðn + 1Þ × 1 unit vector with jth element being

1. Note that Z =XTX is relaxed to
I2 X
XT Z

" #
≥ 0n+3 such

that it becomes a linear matrix inequality and satisfies the
constraint of an SDP [23]. Besides, hj in (7e) is actually

hj = d2j = xs − x j


 

2

2 = aTj Aaj, ð8Þ

where aj = 0 0 1 0 ⋯ −1 ⋯ 0½ �T with the
dimension of ðn + 3Þ × 1 and the (j + 3)th element being

-1, A =

1 0 x x1 ⋯ xn

0 1 y y1 ⋯ yn

x y xTx xTx1 ⋯ xTxn
x1 y1 xT1 x xT1 x1 ⋯ xT1 xn
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

xn yn xTn x xTn x1 ⋯ xTn xn

2
666666666664

3
777777777775
, x = ½x, y�T ,

and x j = ½xj, yj�T .
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3.2. SDP-2 Method. Consider model (1). The true sensor
position can be written as

x j = zj − v j: ð9Þ

Then, the RSS measurement can be represented as

Pi,j = P0 − 10β log10
dj x, zj − v j
À Á

d0
+ ni,j: ð10Þ

Since djðx, zj − v jÞ = djðx + v j, zjÞ, (10) is equivalent to

Pi,j = P0 − 10β log10
dj x + v j, zj
À Á

d0
+ ni,j: ð11Þ

As such, a new model for RSS localization with sensor
position uncertainty can be obtained as

Pi,j = P0 − 10β log10
dj xvj , zj
� �
d0

+ ni,j, ð12aÞ

xvj = x + v j, i = 1, 2,⋯, k, j = 1, 2,⋯, n, ð12bÞ

where xvj is a new unknown variable, and other notations are
defined as before.

3.2.1. Remark. Compared to model (1), the new model (12a)
and (12b) transfers the uncertainties in sensor positions to
source position and introduces new variable xvj , which can
be seen as a measurement of source position. By this, it is
easier for optimization since the unknown variables become
fewer in the RSS function of the new model. That is, only xvj
is unknown for djðxvj , zjÞ while both x and xj are unknown
for djðx, xjÞ.

Let Xv = ½xv1, xv2,⋯, xvn� be the noisy source locations and
Y = ½x,Xv�. Assume that xvj is available in (12b), we can for-
mulate the likelihood functions of Xv and x, respectively.
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Figure 1: Three scenarios.
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Figure 2: RMSE versus the noise level of RSS measurement for random case.
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Figure 3: RMSE versus the uncertainty level of sensor position for random case.
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p P Xvjð Þ =
Yk
i=1

Yn
j=1

1ffiffiffiffiffiffi
2π

p
σr
i,j

exp
− Pi,j − P0 + 10β log10 dj xvj , zj

� �
/d0

� �� �2
2 σri,j

� �2
0
B@

1
CA,

ð13Þ

p Xv xjð Þ =
Yn
j=1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π Φj

�� ��q exp
− xvj − x
� �T

Φ−1
j xvj − x
� �

2

0
B@

1
CA: ð14Þ

Then, a combined ML estimation problem can be for-
mulated through the common Xv as following:

Ŷ = arg min
Y

〠
k

i=1
〠
n

j=1

1

σri,j

� �2 Pi,j − Pv
i,j

� �2
+ 〠

n

j=1
xvj − x
� �T

Φ−1
j xvj − x
� �

,

ð15Þ

where Pv
i,j = P0 − 10β log10ðdjðxvj , zjÞ/d0Þ.

By following the similar procedures from (4) to (7a),
(7b), (7c), (7d), (7e) and (7f), an SDP problem with respect
to (15) can be obtained as

arg min
ti,j ,sj ,hj ,X,Z

〠
n

j=1
〠
k

i=1
wr

i,jti,j + 〠
n

j=1
ws

jsj, ð16aÞ

s:t: λi,jhj − 1
À Á2 ≤ ti,j, ð16bÞ

hj = Z i + 1, i + 1ð Þ−2 zj
À ÁTY : ,i + 1ð Þ + 2 zj

À ÁTzj, ð16cÞ

sj =
02

e1 − ej

" #T I2 Y
YT Z

" # 02
e1 − e j

" #
, ð16dÞ

I2 Y
YT Z

" #
≥ 0n+3, ð16eÞ

where wr
i,j, w

s
j, λi,j, and ej are defined as before. Also, sj in

(16d) is actually

sj = aTj Baj, ð17Þ

where

B =

1 0 x xv1 ⋯ xvn

0 1 y yv1 ⋯ yvn

x y xTx xTxv1 ⋯ xTxvn
xv1 yv1 xv1ð ÞTx xv1ð ÞTxv1 ⋯ xv1ð ÞTxvn
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

xvn yvn xvnð ÞTx xvnð ÞTxv1 ⋯ xvnð ÞTxvn

2
666666666664

3
777777777775
,

ð18Þ

aj is defined as before, and xvj = ½xvj , yvj �T .

4. Source Localization with Unknown
Nonrandom Uncertainty of Sensor Position

Next, we consider the source localization with model (2).
Prior information on the range of the sensor position error
is assumed available. Taking this as a constraint in localiza-
tion, two SDP methods will be also presented: SDP-1 and
SDP-2.

4.1. SDP-1 Method. According to model (2), given the RSS
measurements of all sensors, an ML estimation for the
source location can be obtained using the constraints on
the the sensor positions as

X̂ = arg min
X

〠
k

i=1
〠
n

j=1
Pi,j − ~Pi,j
À Á2,

s:t: zj − x j


 

 ≤ aj,

ð19Þ

where X, ~Pi,j are defined as before.
That is

X̂ = arg min
X

〠
k

i=1
〠
n

j=1
λi,jhj − 1
À Á2,

s:t: hj = x − x j


 

2

2,

zj − x j


 

 ≤ aj,

ð20Þ

Then, an SDP problem for the estimation of the source
location X̂ð: ,1Þ can be formulated as

arg min
ti, j,hj ,
X,Z

〠
k

i=1
〠
n

j=1
ti,j,

s:t:  λi,jhj − 1
À Á2 ≤ ti,j,

zj − x j


 

 ≤ aj,
x j =X : ,j + 1ð Þ,

hj =
02

e1 − e j

" #T I2 X
XT Z

" # 02
e1 − ej

" #

I2 X
XT Z

" #
≥ 0n+3,

ð21Þ

By solving this SDP problem, an estimate of the source
location is given by x̂ = X̂ð: ,1Þ.

Table 1: Running time (s) for random case.

Method k = 1 k = 2
SDP-1 1.78 2.29

SDP-2 1 1.49
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(d) RMSE for circular scenario with k = 2
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(e) RMSE for rectangular scenario with k = 1
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(f) RMSE for rectangular scenario with k = 2

Figure 4: RMSE versus the noise level of RSS measurement for nonrandom case.
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(b) RMSE for random scenario with k = 2
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(c) RMSE for circular scenario with k = 1
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(d) RMSE for circular scenario with k = 2
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(e) RMSE for rectangular scenario with k = 1
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(f) RMSE for rectangular scenario with k = 2

Figure 5: RMSE versus the uncertainty level of sensor position for nonrandom case.
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4.2. SDP-2 Method. By transferring the uncertainties of sen-
sor positions to source position as in the random case, a new
model with respect to model (2) can be also obtained as

Pi,j = P0 − 10β log10
dj xvj , zj
� �
d0

+ ni,j,

xvj − x



 


 ≤ aj,

ð22Þ

where xvj denotes the source location with error.
On basis of the ML estimation with the new model, an

estimate of the source location can be also obtained by solv-
ing the following SDP problem

arg min
ti,j ,hj ,X,Z

〠
k

i=1
〠
n

j=1
ti,j,

s:t:  λi,jhj − 1
À Á2 ≤ ti,j,

xvj − x



 


 ≤ a,

x = Y : ,1ð Þ,
xvj = Y : ,j + 1ð Þ,
hj = Z i + 1, i + 1ð Þ−2 zj

À ÁTY : ,i + 1ð Þ + 2 zj
À ÁTzj,

I2 Y
YT Z

" #
≥ 0n+3,

ð23Þ

5. Numerical Examples

The proposed methods were compared with the best linear
unbiased estimator in [15] (denoted by BLUE-R) and the
SDP estimator in [16] (denoted by SDP-R), both of which
assume perfect sensor position information. Different sce-
narios of sensor placement were used as in Figure 1, includ-
ing random, circular, and rectangular cases. The effects of
the levels of both RSS noise and sensor position uncertainty
were illustrated. The path-loss exponent and transmit power
in the RSS model were set to β = 3 and P0 = −40 dBm,
respectively. All SDP methods were implemented through
a standard CVX toolbox using SeDuMi [24]. The root-
mean-square error (RMSE) was used averaged over 200
Monte Carlo runs in each example to evaluate the localiza-
tion accuracy.

5.1. Gaussian Random Uncertainty. Figure 2 shows the
RMSE versus the noise standard deviation of RSS measure-
ment, in which σsj is fixed as 3m and σri,j varies from 1 to
10 dBm. As the magenta lines show, the proposed methods
clearly help improve the localization accuracy compared
with the methods in the literature for all cases, especially
for random scenario. The SDP-1 method performs better
than SDP-2 method in random scenario but worse than
SDP-2 method in circular and rectangular scenarios for

most cases. Besides, the RMSEs of all methods grow more
slowly with sampling for twice than once.

Figure 3 shows the RMSE versus the uncertainty level of
sensor position, in which σri,j is fixed as 2 dBm and σsj varies
from 1 to 10 m. As with the results in Figure 2, the proposed
methods provide lower RMSE than the methods in the liter-
ature for all cases. Also, the SDP-1 method performs better
than the SDP-2 method in random scenario. However, nei-
ther of them shows performance priority than the other
one in other scenarios considered. The BLUE-R method per-
forms better than the SDP-R method in random scenario,
but an opposite result is shown in other two scenarios.
Table 1 shows the relative running time of the two proposed
methods (all relative to SDP-2 with k = 1). Obviously, their
computational cost increases with more sampling times,
due to the increasing RSS measurements. The SDP-2
method is more computationally efficient than the SDP-1
method for both one and two sampling times.

5.2. Unknown Nonrandom Uncertainty. Figure 4 shows the
RMSE versus the noise level of RSS measurement, in which
εj = 3m is used and σr

i,j varies from 1 to 10 dBm. As is shown,
the proposed methods provide better performance than the
BLUE-R and SDP-R methods as expected for most cases.
Besides, the SDP-2 method performs better than the SDP-1
method for random and rectangular scenarios but close to
the SDP-1 method for circular scenario.

Figure 5 shows the RMSE versus the uncertainty level of
sensor position, in which σr

i,j is fixed as 2 dBm and the max-
imum threshold aj varies from 1 to 10 m while the true error
εj is given randomly during ½1, aj� for each Monte Carlo run.
Also, the proposed methods provide better performance
than the methods in the literature. The SDP-1 and SDP-2
methods have close performance except in the case of circu-
lar and rectangular scenarios with large uncertainty level.

Table 2 shows the relative running time of the SDP-1
and SDP-2 methods for the nonrandom uncertainty (all rel-
ative to SDP-1 with k = 1). Obviously, the SDP-1 method is
more computationally efficient than SDP-2 method, which
is opposite from the result in Table 1.

6. Conclusion

In this paper, we have studied the source localization using
RSS measurements with sensor position uncertainty. By
modeling the uncertainty as Gaussian random and unknown
nonrandom variables, two SDP methods, i.e., SDP-1 and
SDP-2, are proposed, respectively. For random case, the
SDP-1 method proceeds from the ML estimation with com-
bined RSS and sensor position measurements and then
transforms the corresponding nonconvex problem to an

Table 2: Running time (s) for nonrandom case.

Method k = 1 k = 2
SDP-1 1 1.25

SDP-2 1.28 1.38
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SDP problem with proper approximation and relaxation
techniques. The SDP-2 method transfers sensor position
uncertainty to the source position and obtains a new model.
Then, an SDP problem is also obtained on basis of the ML
estimation, which uses the similar techniques as in SDP-1
method. For nonrandom case, sensor position uncertainties
are used as some constraints in formulating the ML estima-
tion. Also, two SDP methods are obtained by following the
similar idea as in the random case. Numerical examples ver-
ify the good performance of the proposed methods. Com-
pared with some existing methods that assume perfect
sensor position information, the proposed methods clearly
show better localization accuracies. As for the two proposed
methods, they have their own superiorities in terms of both
localization accuracy and computational efficiency in some
cases.
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