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This article considers a wireless-powered communication network (WPCN) composed of a multiantenna hybrid access point
(HAP) based on nonlinear energy harvesting (EH). To improve some distant WDs’ throughput performance, one of them is
allowed to be selected as a cluster head (CH) to help transfer information from other cluster members (CMs). Nevertheless,
the proposed clustering collaboration’s performance is essentially restricted by the CH’s energy-intensive consumption (EC),
which requires to transfer every WDs’ information, covering its own. In order to figure out the question, the HAP’s energy
beamforming (EB) capability with multiple antennas is utilized that can concentrate greater transmission power into the CH to
equilibrate its EC to assist other WDs. To be specific, each WD’s throughput performance is firstly derived under the proposed
approach. A high-efficiency optimization algorithm for addressing cooperative optimization problem is put forward. In
addition, the simulations are carried out in the actual network environment, and the results demonstrate that our proposed
clustering collaboration with multiple antennas can validly enhance the WPCN’s throughput fairness based on nonlinear EH.

1. Introduction

Wireless energy-constrained networks usually refer to the
network whose nodes can only use storage energy such as
small-capacity batteries for power supply due to the limita-
tions of their size, location, and environment, such as
wireless-powered communication networks (WPCNs)
[1–4], wireless-powered sensor network (WPSN) [5, 6],
wireless body area network [7], and a new type of wireless
Internet of things network, for instance, smart transporta-
tion, smart medical treatment, and smart agriculture. In
these networks, most wireless users are battery-powered.
However, the limited capacity of batteries makes it difficult
for them to work continuously for a long time, which has
become the main bottleneck restricting their large-scale
deployment. For example, in WPCN and WPSN, most sen-
sors are deployed in unattended areas with harsh environ-

ment, which makes it difficult and costly to replace
batteries. The use of disposable battery implantation has
severely restricted the life cycle of wireless networks. In wire-
less body area network, wearable devices, especially the sen-
sor devices implanted in the human body, have extremely
limited power storage capacity due to the volume limitation,
so it is unrealistic to extend the network life cycle by regu-
larly replacing the device battery through frequent surgery.
In [8], nonorthogonal multiple access- (NOMA-) assisted
federated learning is studied, in which a group of terminal
devices forms a NOMA cluster and sends their locally
trained models to a cellular base station for model aggrega-
tion. Thus, how to improve the performance of network sys-
tem while ensuring the energy supply of network nodes and
extending the network life cycle has become a significant
problem to be solved urgently in the design of wireless
energy-constrained networks. In addition, how to provide
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sustainable and steady power for wireless energy limited net-
works has become a new demand and challenge in the era of
intelligent connection.

In order to work out the above-mentioned issues, acade-
mia and industry, on the one hand, lower the nodes’ energy
consumption (EC) and enhance the network energy effi-
ciency and spectrum efficiency through the continuous
development and evolution of advanced wireless communi-
cation technology (such as multiantenna technology and
cooperative communication technology). On the other hand,
the technology of energy harvesting (EH) in view of radio
frequency (RF) signal is introduced to collect renewable
energy or reusable energy from the surrounding environ-
ment to provide continuous and stable energy for network
nodes. Further, combining wireless communication technol-
ogy and EH technology based on RF signal, new technolo-
gies that are efficient and meet the needs of information
and energy transmission have been proposed and studied
successively.

Before 2015, the research on wireless EH only consid-
ered the linear EH model’s application. Not until 2015 the
nonlinear logic EH model was proposed, and both linear
and nonlinear EH models began to be considered for explo-
ration. For energy transformation efficiency, in the linear EH
pattern, it is usually expressed by a constant. Therefore, [9]
in 2016 pointed out that the energy transformation effi-
ciency was a nonlinear variable, which was expressed by a
polynomial function, and a heuristic EH model was pro-
posed. However, the mathematical expressions of these two
nonlinear EH models are complicated and difficult to ana-
lyze in many research problems. It is hard to obtain the stud-
ied problems’ closed-form analytical results. In addition, in
order to simplify the model, facilitate theoretical analysis,
and depict the EH’s nonlinear characteristics, the approxi-
mate nonlinear piecewise EH pattern was proposed in [10]
in the same year. To describe the actual EH circuit’s sensitive
property, namely, the starting voltage, the modified logic EH
model was proposed in 2017 in [11]. When the EH receiver’s
input power does not reach input voltage requirement, out-
put power is zero, indicating that the EH circuit is still in the
nonworking state. In the same year, because logical EH pat-
tern and heuristic EH pattern are with the respect to math-
ematics not suitable for the complex problems’ analysis
and derivation, through data fitting, [12, 13], respectively,
proposed quadratic polynomial EH model and fractional
EH model for the problem under study. In 2018, in order
to explore the limited sensitivity and nonlinear characteris-
tics of far-field actual EH system, piecewise EH model I
was proposed in [14].

Figure 1 illustrates a multiantenna cluster-based collabo-
ration for WPCNs in view of nonlinear EH. The hybrid
access point (HAP) with multiple antennas in WPCNs
adopts wireless energy transfer to provide a cluster of distant
WDs for energy and accept their data transfer. This might
correspond to a real-world setting in WPSNs, in which the
moving HAP is paused in its course to provide energy to a
densely deployed cluster of transducers supervising a specific
location. As with traditional WSNs, one of the WDs is des-
ignated as a cluster head (CH), which forwards other cluster

members’ (CMs’) information to the HAP. The article’s spe-
cific contribution is shown below.

(i) A multiantenna clustering collaboration approach is
proposed in WPCNs, where one WD is specified as
a CH to relay the other sensors’ message. In view of
the CH’s high energy consumption in traditional
cluster-based collaborative solutions, EB technology
is applied in the HAP to equilibrate the WDs’
diverse EC rates

(ii) Using the proposed collaborative approach, a coop-
timization issue for the design of EB, the emission
time distribution between HAP and WDs, and the
CH’s emission power distribution is developed for
max-min throughput, which can be obtained
between all WDs to enhance user fairness. A high-
efficiency optimum solution algorithm is put for-
ward for figuring out the nonconvex optimization
issues

(iii) A numerical calculus is performed to investigate the
effectual various system settings on the proposed
approach’s performance. Compared with other
benchmark approaches, we find that the collabora-
tion scheme can validly enhance throughput perfor-
mance. In addition, when the cluster nearest to the
cluster center is chosen as a CH, while the cluster
location is close, the channel within the cluster is
strong, and the amount number of cluster collabo-
ration is medium, the proposed coordination mode
is the most effective

The organization of the rest part in the article is as fol-
lows. Wireless EH models are introduced in Section 2. Sec-
tion 3 illustrates the system pattern and proposes the
multiantenna clustering collaboration approach based on
nonlinear EH. Section 4 analyzes the per-WD throughput
performance. The maximum-minimum throughput optimi-
zation issue is formulated and an optimal band-aid arith-
metic is put forward in Section 5. Section 6 evaluates the
proposed collaboration’s performance employing simula-
tions. In the end, Section 7 summarizes the full text.

2. Wireless EH Models

Wireless EH technology adopts radio frequency (RF) signals
as EH sources. Compared with traditional natural EH
sources (such as wind, solar, and lightning), wireless EH
technology has been widely concerned by industry and aca-
demia because of its better controllability and stability. The
existing wireless EH models for energy collectors (ECs) can
be roughly separated into two categories: linear EH pattern
and nonlinear EH pattern.

2.1. Linear EH Pattern. In the Linear EH model, the EC’s
output and input energy increase linearly, which is

f x = ηx, 1
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where η and x are the EC’s transformation efficiency and
input power, respectively. It can be seen from Equation (1)
that η is independent of x. However, the actual EH circuit
has nonlinear characteristics in the peer-to-peer energy
transformation. To be specific, in the realistic EH circuit,
while the input power arrives a certain level, the collected
energy will reach saturation value and no longer increase lin-
early; that is, there is a maximum value of EH. Therefore, the
application of linear models to practical EH circuits may
lead to uncoordinated resource allocation. On the basis of
linear EH models, researchers have proposed nonlinear EH
models that can be roughly separated to five categories.

2.2. Nonlinear EH Pattern

2.2.1. The First Kind of Nonlinear EH Model (Case I). On the
basis of the linear EH pattern, [14] proposes a new input-
output relationship for the EC after testing dozens of practi-
cal ECs. Be associated with the linear EH pattern, case I is
written as

f x = η x x, 2

where η x is the EC’s transformation efficiency and x is the
input power from the EC. Different from the linear EH pat-
tern, case I’s energy transformation efficiency is not inde-
pendent of the EC’s input power constant. Here, the EC’s
transformation efficiency is given as the input power’s func-
tion, which is

η x = p2x
2 + p1x + p0

q3x
3 + q2x

2 + q1x + q0
, 3

where p0, p1, p2, q0, q1, q2, and q3 are obtained through curve
fitting in [10–13]. For the EC of [10–15], the energy input
and output relation of EC can be expressed as

f x = η x x = p2x
3 + p1x

2 + p0x
q3x

3 + q2x
2 + q1x + q0

4

As can be seen from Equation (4), within the input pow-
er’s certain range, the EC’s output power advances with
input power. While the input power arrives a fixed value,
the EC’s input power reaches saturation state. According to
Equation (4), while the input power advances, the nonlinear
EH model’s output power is virtually close to p2/p1. In addi-
tion, the linear EH pattern f x = ηx is regarded as obtained
through disposing of Equation (4)’s highest terms in the
numerator and denominator while x is tiny. This is the cir-
cumstance while the input power is tiny.

2.2.2. The Second Kind of Nonlinear EH Model (Case II). The
actual parametric nonlinear EH model proposed by Bosh-
kovska et al. [15] can describe the nonlinear characteristics
of the actual EH circuit’s peer-to-peer power conversion, as
shown below:

Φ =
ΨERn

−MnΩn

1 −Ωn
, 5
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Figure 1: A diagram of the considered clustering collaboration for WPCNs, in which W0 is the CH and the remaining N − 1 WDs
are CMs.
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Ωn =
1

1 + exp anbn
, 6

ΨERn
= Mn

1 + exp −an PERn
− bn

, 7

where ΨERn
is the conventional logic function relative to the

RF power received by the user SUn. The actual nonlinear EH
model can describe the nonlinearity caused by hardware
constraints by adjusting the parameters an, bn, and Mn. In
particular, Mn represents the collected maximum power at
the EH user SUn while the EH circuit is satiation. an and
bn are concerned with a minute EH circuit specification.
These three parameters can be obtained through the given
standard curve in view of a fixed EH circuit’s measured data.

2.2.3. The Third Kind of Nonlinear EH Model (Case III).
Case I and case II can describe the saturation of nonlinear
models, but it is difficult to derive the mean value, the col-
lected energy’s probability density function, and the cumula-
tive distribution function. On this basis, [14] proposed a
simpler nonlinear EH model, which is written as

f x = ax + b
x + c

−
b
c
, 8

where the parameters a, b, and c are invariable regulated
through fitting the standard curve. The term b/c is summed
to satisfy the case that the output power is zero while the
EC’s input power is small. In addition, similar to case I
and case II, the EH model described in Equation (6) is more
able to describe the nonlinearity and saturation of EH by the
EC than the linear EH model. However, compared with case
I and case II, the nonlinear EH model expressed in Equation
(6) (case III) is simpler to operate, and it is easier to deal
with the mean derivation.

2.2.4. The Fourth Kind of Nonlinear EH Model (Case IV).
There are nonlinear components, for example, diodes in
the EH circuit, so the output energy pout =Θ pin of the
EC has a nonlinear relationship with the input energy pin
of the EC. And this nonlinear function must meet the below
characteristics:

(i) While pin is less than the EC’s threshold of sensitiv-
ity p0, define pout =Θ pin = 0

(ii) Θ pin is about increasing function

(iii) With the increase of pin, the conversion efficiency
Θ pin /pin of the EC will gradually increase until it
arrives the maximum value and then decrease

(iv) For all pin of Θ pin ≤ Pmax, where Pmax is the max-
imum energy collected while the EH circuit arrives
saturation

Based on characteristics (i)-(iv), the curve of the relation
formula should be an S shaped curve. In order to meet this
feature, a logical model is put forward in [16], but [15]’s
model does not meet the sensitivity feature (i). To solve this

problem, [17] modifies the model proposed in [15], which
can be expressed as

Θ pin = Pmax
exp −τp0 + ν

1 + exp −τp0 + ν

1 + exp −τpin + ν
− 1

+

9

In view of the above equation, the collected energy at the
EH equipment i is Θ 1 − βi,mpm gH

i,mvm
2 . All the features

for (i)-(iv) can be verified from the above equation. Also,
the parameters’ (τ’s and v’s) steepness can control functions,
i.e., in equation (9).

2.2.5. The Fifth Kind of Nonlinear EH Model (Case V). The
collected energy through the EH circuit is sculptured as

P n
har ≡ P n

har P n
R = p P n

R , 10

Here,

p x Δ =
0, x ∈ 0, Psen

in ,
η x ∗ x, x ∈ Psen

in , Psat
in ,

η Psat
in ∗ Psat

in , x ∈ Psat
in ,∞

11

Function η Pn
R denotes the function of the input power

energy conversion efficiency. Define PinΔ = Psen
in , Psat

in . Psen
in

represents the sensitivity of the EC. For every input power
less than the sensitivity, the energy harvested through the
EC is 0. When x ≤ Psen

in , P x = 0. Let Psat
in denote the satura-

tion value of the energy collected through the EC, after
which the collected energy is all constant.

(i) EC’s function harvested energy P: assume R+ ⟶
R+

(ii) Nondecreasing

(iii) Continuity

The experiments prove that the above assumption is
consistent with the EH curve in the EH circuit in the prior
art. The energy conversion efficiency is written as

η x = ω0 + 〠
W

i=1
ωi 10log10 x , 12

where x is in units of milliwatt, W is the fitting polynomial’s
order in units of dBm, and ωi

W
i=0 is the polynomial’s coeffi-

cient. For the model, the polynomial of the fitting function’s
order is W = 10 and W = 12, respectively. Furthermore,
Pin = 10−4 25, 101 6 and Pin = 10−1 2, 10 are all in units of
milliwatt.

3. System Model

3.1. Channel Model. AWPCN is considered as demonstrated
in Figure 1, which is composed of one HAP and N WDs.
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The HAP has power supply stablility and is installed with
M-antenna (N > >M in practice). Every sensor with one
antenna has a built-in battery to save wireless collected
energy from the HAP. To be specific, the HAP multicasts
radio energy to the sensors and accepts the sensors’ wireless
information transfer (WIT). The HAP and each WD oper-
ate in the identical frequency band and carry out a time-
division duplex circuit to realize the separation of energy
and information transfer.

One of the sensors is chosen as the CH to assist transfer-
ring other CMs’ WIT in this paper. Without loss of general-
ity, make W0 and W1,⋯, WN−1 index as the CH and CMs,
respectively. Suppose all channels are mutual independence,
keeping to quasistatic flat-fading; in this way, the coefficients
of all channels hold constant for transferring time per block,
expressed as T ; however, it can be different by block. Make
ai ∈CM×1 represent the channel coefficient’s vector between
the HAP and Wi, where ai ~CN 0, σ2

i I and σ2i , i = 0, 1,
⋯,N − 1, represents the average channel gain. Besides, cj ~
CN 0, δ2j represents path coefficient between the CH and

the j-th CM (j = 1,⋯,N − 1). Here, hi ≜ ai 2 and gi ≜ ci
2

represent the relevant channel gains, in which · represents
the 2-norm operator.

3.2. Clustering Collaborative Protocol in View of Nonlinear
EH. Figure 2 illustrates the run of our proposed clustering
cooperation protocol based on nonlinear EH in a transport
time block. At the start of a transfer block, it spends a con-
stant duration τ0 on acting channel estimation (CE). At
the CE’s section, the WDs alternate order to radio their pilot
signals, making the HAP and the CH to know ci
(i = 1,⋯,N − 1) and ai (i = 0, 1,⋯,N − 1), separately. After
that, the CH transmits the HAP ci’s estimation, making the
HAP have all the information about CSI in the mesh.

After the CE’s phase, three phases are run for the system.
During the first stage, time duration is τ1, and the HAP mul-
ticasts wireless energy with a settled transmitting power of P.
During the next two stages with T − τ0 − τ1, the N sensors
transfer their separate nessages to the HAP adopting their
acquired energy. To be specific, firstly, the N − 1 CMs
transfer sequentially to the CH, in which the i-th CM trans-
fers at the time of τ2,i (i = 1,⋯,N − 1). During the third
phase, the CH transfers the N − 1 CMs’ decoded informa-
tion to the HAP in conjunction with its own information.
Make τ3,i(i = 0, 1,⋯,N − 1) as the time spent on transferring

the i-th WD’s message. Obviously, time allocations meet the
below inequations

τ0 + τ1 + 〠
N−1

i=1
τ2,i + 〠

N−1

i=0
τ3,i ≤ T 13

Note that τ0 is a given coefficient. Without lossing gener-
ality, this article supposes T = 1. On account of the global
CSI’s knowledge, the HAP can figure out the optimum time
allocation, which is thus broadcast to each WD so that time-
switching circuits are kept by them with synchronizing for
either information and energy transmission. The next part
will deduce the proposed collaborative protocol’s through-
put performance and formulate the optimization problem
of maximum-minimum (max-min) throughput.

4. The Analysis of Per-WD Throughput

4.1. Phase I: Energy Transmission. Note that the CH becomes
the network’s performance bottleneck, because the CH
requires to transfer a total of N messages, which will con-
sume obviously more energy than the other CMs. During
the first stage of τ1, the HAP transfers w t ∈ CM×1 stochas-
tic energy signals on the M-antenna, in which the HAP’s
transmitting power is influenced on

E w t 2 = tr E w t w t H ≜ tr Q ≤ P, 14

where tr · , · H , and Q ≥ 0 express a matrix’s trace, the
complex conjugation operator, and the EB matrix, respec-

tively. The receiver noise power is denoted by n 1
i t , and

thus, the received energy signal by the i-th WD can be writ-
ten as

y 1
i t = aTi w t + n 1

i t , i = 0,⋯,N − 1, 15

With ignoring interference power, the obtained energy
through sensors is indicated as [7]

ECHNL
i = M/ 1 + exp −a τ1 tr AiQ − b − M/ 1 + exp ab

1 − 1/ 1 + exp ab

≜ ψ τ1tr AiQ , i = 0,⋯,N − 1
16
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Figure 2: Our suggested clustering collaboration protocol for WPCNs.
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Here, Ai ≜ aiaHi , ψ xi = β xi −MΩ / 1 −Ω , Ω = 1/
1 + exp ab , β xi =M/ 1 + exp −a xi − b , ECHNL

i is
an input power’s typical Sigmoid function, Ω is used to
ensure this model’s zero input and zero output and keep the
quantity constant,M is the circuit’s maximum output power
at saturation, which is also a constant, and a and b are related
to the impedance, capacitance, and conduction voltage of the
diode in the circuit, keeping their values constant.

4.2. Phase II: Intracluster Transfer. Suppose in the second
phase the CMs will consume the collected energy to the
CH. Then, the i-th CM’s transmitting power is

PCHNL
2,i = ECHNL

i

τ2,i
≜
ψ τ1tr AiQ

τ2,i
, i = 1,⋯,N − 1 17

The i-th WD’s baseband signal transferred in the second

stage and the receiver noise with power are denoted by s 2
i

t with E s 2
i t

2
= 1 and n 2

i t with E n 2
i t

2
=N0,

respectively. Then, the signal received at the CH is

y 2
0,i t = ci PCHNL

2,i s 2
i t + n 2

i t 18

Thus, the i-th CM’s messages are decoded through the
CH with a fixed rate by

R 2
i = τ2,i log2 1 + giP

CHNL
2,i
N0

, i = 1,⋯,N − 1 19

In the meantime, the HAP can eavesdrop on the CMs’
transfer as well, so that it receives within the i-th CM’s
transfer

y 2
H,i t = ai PCHNL

2,i s 2
i t + n 2

H,i t , i = 1,⋯,N − 1, 20

where n 2
H,i t ~CN 0,N0I .

For the sake of simplicity, the decoding’s EC is ignored,
and the data transmission’s EC is only considered. However,
by introducing an unchanging circuit power term, our pro-
posed approach is readily expanded when the decoding EC
is nonzero.

4.3. Phase III: Cluster-to-HAP Transfer.When completing to
decode the CMs’ information, the CH sends the N − 1
CMs’ information to the HAP one by one, along with its
own information. The CH’s baseband signal and the i-th
CM’s reencoded baseband signal transmitted in the third

stage are denoted by s 3
0 t and s 3

i t , respectively. In addi-
tion, suppose the power adopted to transfer the i-th WD’s

information is expressed as PCHNL
3,i and E s 3

i t
2
= 1, i = 0,

⋯,N − 1. Then, at the HAP, the i-th WD information’s
received signal is

y 3
i t = a0 PCHNL

3,i s 3
i t + n 3

i t , i = 0, 1,⋯,N − 1 21

The aggregated EC through the CH is upper bound on
the energy it harvests E0, i.e.,

〠
N−1

i=0
τ3,iP

CHNL
3,i ≤ ψ τ1tr A0Q 22

Suppose that maximal ratio combining (MRC) is adopted
by the HAP to maximize the receive signal-to-noise power
ratio (SNR), in which the i-th WD’s combiner output SNR is

γ
3
i = a0 2PCHNL

3,i
N0

= h0P
CHNL
3,i
N0

, i = 0,⋯,N − 1 23

The time distribution and transmitting power are
denoted as τ = τ1, τ2,1,⋯,τ2,N−1, τ3,0, τ3,1,⋯,τ3,N−1 ′ and

PCHNL = PCHNL
3,0 , PCHNL

3,1 ,⋯,PCHNL
3,N−1 ′. Then, the CH’s through-

put at the HAP is

RCHNL
0 τ, PCHNL = τ3,0 log2 1 + h0P

CHNL
3,0
N0

24

However, the second and third stages can receive every
CM’s information. On this occasion, the HAP could code-
code every CM’s information at a given rate across two
stages by

RCHNL
i τ, PCHNL ,Q =min R 2

i τ,Q , V 2
i τ,Q +V 3

i τ, PCHNL ,

i = 1,⋯,N − 1,
25

where (19) gives R 2
i τ,Q and V 2

i τ,Q expresses the
information extracted from the received signal by the
HAP, where an optimal MRC receiver is used in (18)
(during the second phase) that is written as

V 2
i τ,Q = τ2,i log2 1 + ψ τ1tr AiQ gi

τ2,i
26

V 3
i τ, PCHNL ,Q expresses the transmissions’ attain-

able rates from the CH to the HAP, which is

V 3
i τ, PCHNL = τ3,i log2 1 + h0P

CHNL
3,i
N0

27

The max-min throughput is a WPCN’s significant per-
formance index, defined as

SCHNL = min
0≤i≤N−1

RCHNL
i 28

5. Maximum and Minimum
Throughput Optimization

5.1. Problem Formulation. This part maximizes all WDs’
max-min throughput within each block, through cooptimizing
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EB Q and the allocation of time τ and transmitting power
PCHNL , that is,

P1 : max
τ,PCHNL ,Q

 S = min
0≤i≤N−1

Ri τ, PCHNL ,Q

s t   1 and 10 ,
  τ1 ≥ 0, τ2,i ≥ 0, i = 1,⋯,N − 1,

  τ3,i ≥ 0, PCHNL
3,i ≥ 0, i = 0, 1,⋯,N − 1,

  tr Q ≤ P,Q ≥ 0, τ ≥ 0

29

We introduce a variant SCHNL and equivalently convert
problem (P1) to its inscription form:

P2 : max
τ,PCHNL ,Q,S

CHNL
SCHNL

s t   1 and 10 ,

  R0 τ, PCHNL ≥ SCHNL ,

  V 2
i τ,Q +V 3

i τ, PCHNL ≥ SCHNL ,

  R 2
i τ,Q ≥ SCHNL , i = 1,⋯,N − 1,
  tr Q ≤ P,Q ≥ 0, τ ≥ 0

30

Because of user collaboration and beamforming design,

R 2
i τ,Q and V 2

i τ,Q , i.e., the throughput within
intracluster communication, are concave functions. Mean-

while, R0 τ, PCHNL and V 3
i τ, PCHNL , i.e., the data rates

within cluster-to-HAP communication, are also not concave
functions. In addition, the (10)’s left hand side is not convex
as well. Therefore, the (P2)’s present form is a nonconvex issue
and lacks efficient optimization algorithm. The algorithm for
optimal solution (P2) will be proposed in the next subsection.

5.2. (P2) Optimization Algorithm. Above all, define W ≜ τ1
Q ≥ 0. With the total transmitted power constraint is at
(14), which we have

tr W = tr τ1Q ≤ τ1P 31

Therefore, the variables are changed as

zi ≜ τ1tr AiQ = tr AiW , i = 0,⋯,N − 1 32

Therefore, R 2
i τ,Q and V 2

i τ,Q in (19) and (26) are
represented as the functions of τ and z = z1,⋯,zN−1 :

R 2
i τ, z = τ2,i log2 1 + ρi

zi
τ2,i

, i = 1,⋯,N − 1,

V 2
i τ, z = τ2,i log2 1 + ρi

zi
τ2,i

, i = 1,⋯,N − 1,
33

in which ρi ≜ gi/N0 and ρi ≜ hi/N0 are parameters.

Then, define θ3,i ≜ τ3,iP
CHNL
3,i (i = 0, 1,⋯,N − 1); thus, R0

τ, PCHNL and V 3
i τ, PCHNL in (24) and (27) is reformu-

lated as the functions of τ and θ = θ3,0,⋯,θ3,N−1 , i.e.,

R0 τ, θ = τ3,0 log2 1 + ρ0
θ3,0
τ3,0

,

V 3
i τ, θ = τ3,i log2 1 + ρ0

θ3,i
τ3,i

, i = 1,⋯,N − 1,
34

where ρ0 ≜ h0/N0. Therefore, given in (10) of power con-
straint is rerepresented as again

〠
N−1

i=0
θ3,i ≤ z0 35

Thus, (29) is converted into the same question as fol-
lows:

P3 : max
τ≥0,θ,z,S

CHNL ,W≥0
SCHNL

s t  R0 τ, θ ≥ SCHNL ,

  V 2
i τ, z +V 3

i τ, θ ≥ SCHNL ,

  R 2
i τ, z ≥ SCHNL , i = 1,⋯,N − 1,

  τ0 + τ1 + 〠
N−1

i=1
τ2,i + 〠

N−1

i=0
τ3,i ≤ 1,

  zi = tr AiW , i = 0, 1,⋯,N − 1,

   〠
N−1

i=0
θ3,i ≤ z0, tr W ≤ τ1P

36

From [18, 19], (P1)’s and (P3)’s optimal solution can be
easily obtained.

6. Simulation Result Analysis

This part assesses our proposed collaborative approach’s
performance. In the simulations below, suppose that the
HAP’s transmitted power P = 3 watts (W), energy collecting
efficiency η = 0 51 (please see the detailed product specifica-
tions on the website of Powercast Co. (http://www
.powercastco.com)), the quantity of HAP antennas M = 5,
the antenna gain GA = 2, the carrier frequency f c = 915
MHz, the path-loss factor α = 3, and the interference power
N0 = 10−10 W for all receivers’ bandwidth. The average chan-
nel gain between every two sensors (HAP or one WD) keeps
to a path-loss pattern. For example, make dH,i as the distance
between the HAP and the i-th WD, and then, the mean
channel gain δ2i =GA 3 × 108 /4πdH,i f c

α. In addition, 15
WDs are uniform distribution in a circle of radius r meters
(m), and the circle’s center is d m away from the HAP. Every
point in the graphs is an individual WD location with an
average of 20 [1].
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Figure 3 examines cluster-to-HAP information links’
effect on the total throughput’s performance through setting
r = 3 and changing d. We can observe from Figure 3 that the
proposed collaborative approach gains significant perfor-
mance advantage over the benchmark method. However,
when d is further increased, very low data rates of both
schemes are achieved because the energy signal dramatically
attenuates over distance. The simulation results demonstrate
that the collaborative approach’s effective working scope
under consideration is essentially confined by the relatively

low energy transfer efficiency. As a matter of fact, WPC is
only available if the power does not travel very far, which
allows the WDs to gather enough power to transmit infor-
mation. In a practical applications, the performance can be
enhanced in several ways, for example, augmenting the
number of HAP antennas, optimizing the routing for mov-
ing HAP, or adding the HAP’s transmitting power.

In Figure 4, throughput performance’s stability is evalu-
ated as the number of WDs N is increased from 5 to 50 by
setting d = 6m and r = 3m. Figure 4(a) shows that the
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Figure 3: The effect of CH selection on max-min throughput when d = 6m. EB technology is used in HAP in (a), but not in (b).
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Figure 4: The influence on CH selection on maximum-minimum throughput when r = 3m. EB technology is used in HAP in (a), but
not in (b).
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maximum-minimum throughput of both approaches lessens
with N . The worst-performing WD lessens throughput due
to the shorter average transfer time per sensor. Specially, as
N increases from 35 to 50, the lessen in maximum-
minimum throughput is modest. However, Figure 4(b)
shows that the total throughput adds with N , although the
throughput per WD may lower. This manifests that there
is a trade-off between the throughput per WD and the total
network. Even so, we can still become conscious of the pro-
posed approach’s important performance improvement over
the benchmark method, while the network is big (for exam-
ple, N equals 30).

7. Conclusions

In this article, a clustering collaborative approach is pro-
posed for WPCNs based on nonlinear EH, in which one
sensor is specified as a CH to help other WDs’ propaga-
tion. An efficient algorithm is put forward to reach the
optimal maximum-minimum throughput among the sen-
sors, through cooptimizing the design of EB, the emission
time distribution among the HAP and sensors, and the
CH’s emission power distribution. A large number of sim-
ulations in real mesh settings demonstrated that our sug-
gested approach might remarkably advance user fairness
and spectral efficiency, compared with nontrivial bench-
mark approaches.
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