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With the emergence and vigorous development of 5G technology, there is a significant surge in network usage and traffic, resulting
in heightened complexity within network and IT environments. This exponential increase in activity produces a plethora of
events, making conventional systems inadequate for the efficient management of 5G networks. In comparison to 4G
technology, 5G technology brings forth a host of new features, one of which is the network data analytics function (NWDAF).
This function grants network operators the flexibility to either employ their own data analytics methodologies based on
machine learning (ML) and deep learning (DL) into their networks. In this paper, we present a dataset named “NWDAF-
NFPP” for network function performance time series prediction, collected from a laboratory at China Telecom. The dataset is
carefully anonymized to ensure maximum realism and comprehensiveness, while safeguarding sensitive information. It
encompasses eight categories of network functions, with data collected at five-minute intervals. The availability of this dataset
provides valuable resources for researchers to conduct time series prediction research on network element performance.
Following data collection, a total of six models were employed for network element performance prediction, encompassing
both machine learning and deep learning approaches. This diverse set of models was carefully chosen to ensure comprehensive
coverage of different techniques and algorithms. Through the comparison and analysis of these models, we aim to evaluate
their predictive capabilities and identify the most effective approach for network element performance prediction. This
comparative analysis will provide valuable insights into the strengths and limitations of each model, aiding in informed
decision-making for network optimization and management strategies in the future.

1. Introduction

The rapid development of 5G networks presents challenges
and issues to network analytics. The high speed and low
latency characteristics of 5G networks contribute to
increased network traffic and complexity, placing greater
pressure on network analytics [1]. The processing and anal-
ysis of large-scale real-time data streams necessitate more
powerful computing and storage capabilities, as well as more
efficient algorithms and models [2]. Furthermore, the flexi-
bility and customization options of 5G networks may result
in more complex network architectures and topologies. This
complexity adds to the challenges faced in network analytics,

as it requires consideration of interactions among multiple
network slices, services, and applications.

NWDAF (network data analytics function) was intro-
duced in the context of 5G networks as a result of the evolving
demands and challenges in network analytics. 5G networks,
with their high data speeds, low latency, and enhanced con-
nectivity, presented a need for advanced analytics capabilities
to effectively manage and optimize these complex networks.
The concept of NWDAF was conceptualized and proposed
by the 3rd Generation Partnership Project (3GPP), a global
standardization organization responsible for developing
mobile communication technologies [3]. The NWDAF oper-
ates as a network function (NF) within the 5G core network,
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utilizing machine learning and artificial intelligence algo-
rithms to analyze data pertaining to past, present, and future
states [4]. Its primary function is to provide analytical support
to various 5G control plane NFs, such as the policy control
function (PCF) responsible for traffic policy management
and the network slice selection function (NSSF) tasked with
instantiating and selecting network slices based on data inputs
[5]. This integration of machine learning and AI capabilities
empowers the NWDAF to effectively drive data analytics
operations and enhance the overall efficiency and perfor-
mance of the 5G Core network.

The network function performance prediction is a key
functionality within the NWDAF. It collects data from vari-
ous network functions and applies advanced analytics tech-
niques to predict the future performance of network
functions [6]. By analyzing historical performance data,
NWDAF identifies patterns and trends in the performance
time series of network functions. It then leverages machine
learning algorithms and predictive models to forecast the
future performance of these elements. This functionality
enables network operators to make informed decisions
regarding resource allocation, capacity planning, and net-
work optimization [7]. Network operators can proactively
identify potential congestion, troubleshoot performance
issues, and optimize their network infrastructure accord-
ingly. This ultimately leads to improved network reliability,
enhanced user experience, and better overall network man-
agement [8].

There is a significant scarcity of time series datasets
available for predicting the performance of network func-
tions (NFs), with even fewer datasets originating from
real-world network environments. The availability of the
dataset proposed in this paper offers researchers a valuable
resource for conducting research in network element per-
formance prediction. By utilizing this dataset, researchers
can develop and evaluate predictive models to enhance
the understanding and optimization of network operations.
The careful collection and preprocessing of this dataset
ensure its reliability and suitability for academic research
purposes. Its availability opens up exciting possibilities for
further advancements in the field of network analytics and
optimization.

The dataset utilized in this study is obtained from a lab-
oratory at China Telecom, offering an exceptionally accurate
representation of real-world data.

In this study, we used six models for experiments,
followed by comparative analysis. Our main goal is to pro-
vide a relatively comprehensive benchmark method for pre-
dicting the performance of various NFs to the relevant
industry and provide more ideas for model differentiation
comparison to maximize prediction rate, while considering
processing time, which is a very important factor in real-
time applications. The rest of the paper is organized as fol-
lows: Section 2 introduces the relevant knowledge of
NWDAF and research work on NF performance time series
prediction. In Section 3, we present the dataset employed in
this study, elaborate on the methodology employed for fea-
ture processing, and describe various proposed models uti-
lized during the experiment. Section 4 presents and

analyzes the obtained results. Section 5 provides conclusions
and prospects.

2. Related Works

Intelligent cellular networks based on state-of-the-art AI/ML
technologies have been extensively researched in the past
decade. Casellas et al. highlight the importance of integrating
AI/ML techniques for the control, management, and orches-
tration of various components within 5G networks. How-
ever, they do not specifically mention the role of NWDAF
in this context [9].

The NWDAF, which is the network data analytics func-
tion, has been introduced in the 5G core network to facilitate
data analytics and machine learning model training. It is
anticipated that NWDAF will assume a critical role and
serve as an indispensable functional entity in the forthcom-
ing AI-native 6G wireless network [10]. Quality of experi-
ence (QoE) refers to the level of user satisfaction and
dissatisfaction with an application or service. QoE manage-
ment involves three steps: modeling, monitoring, and con-
trolling [11]. Predicting network function performance is
part of the monitoring phase, and the subsequent control
phase makes decisions based on the predicted results
obtained here. Kao et al. propose a native QoE sustainability
architecture for 5G and B5G networks. The architecture uti-
lizes standard interfaces of NWDAF to facilitate the
exchange of analytical data between a 5G system (5GS)
and application domains. It integrates QoE predictors to
effectively conduct the aforementioned QoE management
procedures.

Mhedhbi et al. propose the utilization of importance
sampling techniques and a modified detection threshold,
known as the M-KNN scheme, to enhance prediction per-
formance [12]. In the paper [4], three ML models, namely,
linear regression, long-short-term memory, and recursive
neural networks, are applied to investigate the estimation
of behavior information and network load prediction capa-
bilities of NWDAF. To minimize the mean absolute error
in network load prediction, three different models are uti-
lized by comparing the model prediction value with the
actual generated data. It is worth noting that the dataset used
in the study was synthetically generated based on the 3GPP
specifications.

Given the expected proliferation of connected devices in
5G systems, centralizing all data for analytics purposes is
deemed inefficient. Hernández-Chulde et al. propose a dis-
tributed architecture to perform network analytics by apply-
ing ML techniques in the context of network operation and
control of 5G networks [13]. The proposed distributed ana-
lytics architecture involves a centralized NWDAF instance
and multiple distributed instances colocated with other
NFs, solely collecting data from those colocated NFs. Díaz
González et al. [14] effectively enhanced local performance
with minimal additional costs by selectively aggregating
updates from other components in the global model. This
approach was further validated through their application of
LSTM for time series prediction.
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Li et al. [15] propose a model transfer framework based
on intracluster federated learning. This framework enables
the transfer of models by facilitating information exchange
among network elements. The experimental outcomes vali-
date the effectiveness of this framework in enhancing the
efficiency of traffic prediction.

3. Materials and Methods

In this section, we provide a description of the time series
dataset utilized in our study for training various predictive
models. Furthermore, we present an overview of several
well-established time series predictors and classical perfor-
mance indicators commonly used for evaluating time-
series predictions. The purpose of this paper is to conduct
a comprehensive experimental comparison of these predic-
tive factors, aiming to provide guidance for researchers in
the field when selecting models.

3.1. Datasets. This paper introduces a dataset named
“NWDAF-NFPP” (network function performance predic-
tion), which consists of 6 columns: “beginTime,” “counterId,”
“elementIp,” “elementType,” “measObjLdn,” and “measRe-
sult”. It was collected from a laboratory at Research Institute
of China Telecom Corporation Limited [16]. The dataset
has been meticulously sorted based on the “beginTime” col-
umn, encompassing a time span from June 23, 2023, 00 : 00
AM to June 27, 2023, 11 : 45 AM.We divided our dataset into
a training set and a test set using the timestamp of June 27,
2023, at 00 : 00 (midnight) as the cutoff point. The data col-
lected before this timestamp was used for training, while the
data collected from this timestamp onwards was designated
for testing. The quantity information is shown in Table 1.
Notably, the “measResult” column assumes the role of target
values for our future time series prediction analysis.

Table 2 illustrates the presence of four nonnumeric fea-
tures within the NWDAF-NFPP dataset in our study. The
term “counterId” refers to the category ID of the predicted
metric, which corresponds to the category of the target pre-
diction column “measResult.” In the dataset, the perfor-
mance metric column “measResult” corresponds to specific
performance indicators for different network function (NF)
elements. For the AMF NF, “measResult” represents the
count of initial registration requests. For the EDS NF, it
denotes the count of ENUM local query requests. The I-
CSCF and LDRA NFs have their “measResult” column asso-
ciated with the total count of received messages. Likewise,
for the PSBC NF, “measResult” indicates the count of IMS
registration requests. The S-CSCF NF’s “measResult” col-
umn reflects the total count of sent messages. In the case
of the SMF NF, “measResult” is the count of UE-initiated
PDU session establishment requests. Finally, for the UDM
NF, “measResult” represents the count of AUSF authentica-
tion service requests. However, it is important to note that
the specific meanings of these performance indicators do
not have any influence on the subsequent experimental pro-
cedures. In the experiment, we treat all the mentioned met-
rics as numerical values uniformly. The “elementIp”
indicates the IP address of the network element, while the

“elementType” denotes the specific type of network element.
Within the dataset, eight types of network functions are
present: “PSBC,” “S-CSCF,” “EDS,” “LDRA,” “I-CSCF,”
“UDM,” “SMF,” and “AMF” [17]. Lastly, the “measObjLdn”
refers to the link code that establishes connectivity between
network functions.

In our dataset, we have identified eight types of network
functions, namely, PSBC, S-CSCF, EDS, LDRA, I-CSCF,
UDM, SMF, and AMF. Let us take a closer look at each of
these network functions and their respective roles within
the NWDAF (network data analytics function) ecosystem
[18]:

(1) PSBC. Signify a specific functionality resulting from
the amalgamation of P-CSCF and SBC within a net-
work setup. P-CSCF, integral to the IP multimedia
subsystem (IMS), manages signaling traffic between
user devices and the network, overseeing call session
establishment, termination, and data forwarding.
SBC, situated at the network edge, provides func-
tions for VoIP communication management, includ-
ing security features, call routing, media conversion,
and traffic adjustment

(2) S-CSCF (Serving-Call Session Control Function). It
acts as a user-facing session control function in the
IMS architecture, responsible for managing and con-
trolling user sessions for VoIP and multimedia ser-
vices. It interacts directly with end users, handling
authentication, authorization, and service session
establishment

(3) EDS (ENUM/DNS). Comprising two logical network
elements, ENUM and DNS, it serves as a universal
addressing system within the IMS domain for route
resolution across the entire network, without engag-
ing in routing or forwarding functionalities

(4) LDRA (Low-Level Data Router and Authentication
Server). Denotes a data router and authentication
server strategically deployed at a provincial level
within the network architecture. This nomenclature
implies its positioning within a lower administrative
or geographical tier in contrast to HDRA, which

Table 1: Breakdown of data records in the NWDAF-NFPP.

Dataset Total

Train 16217

Test 1704

Table 2: Features of NWDAF-NFPP dataset.

No. Feature Type No. Feature Type

1 counterId Nonnumeric 3 elementType Nonnumeric

2 elementIp Nonnumeric 4 measObjLdn Nonnumeric
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signifies a data router operating across broader
regional boundaries

(5) I-CSCF (Interrogating-Call Session Control Func-
tion). It serves as an edge node in the IMS architec-
ture, positioned at the boundary of the IMS core
network, responsible for receiving user data from
external networks and routing it to the appropriate
S-CSCF. In the context of IMS architecture, the
S-CSCF and I-CSCF play distinct roles

(6) UDM (User Data Management). It handles user data
storage and management, encompassing identity,
policies, and session states. UDM ensures user
authentication, authorization, and configuration in
the 5G core network. In addition to data storage,
UDM communicates with other components within
the 5G core network (such as AMF and SMF) to
ensure access and utilization of necessary user data
across network elements

(7) SMF (Session Management Function). It oversees
and controls data sessions within the 5G network,
managing data transmission, quality of service
(QoS), and security. Its primary objective revolves
around ensuring efficient and secure communication
between mobile devices while executing various ses-
sion management tasks

(8) AMF (Access and Mobility Management Function). It
oversees the access and registration processes for
user devices. It manages user authentication, device
tracking, and access control for mobile users inter-
acting with the network. AMF is also responsible
for facilitating smooth transitions during initial
access and handovers between different network ser-
vices for mobile users

3.2. Evaluation Metrics. In general, within the context of
time series prediction, several commonly employed evalua-
tion metrics can be found. These metrics serve as valuable
indicators for assessing the performance of predictive models
and are widely recognized in the scientific community:

3.2.1. MAE. Mean absolute error is a statistical metric used
in machine learning to measure the average magnitude of
errors between predicted and actual values. It calculates the
absolute difference between each predicted value and its cor-
responding actual value and then takes the average of these
differences. A lower MAE indicates better accuracy and a
closer fit between predicted and actual values. For ground
truth time series y and predicted time series yt of length T ,
it is computed as

MAE = 1
T
〠
T

t=1
y − yt 1

3.2.2. RMSE. Root mean squared error measures the average
magnitude of errors between predicted and actual values. It
considers both the direction and magnitude of errors. By

taking the square root of the average of squared differences,
RMSE provides a more sensitive measure of error compared
to MAE. Lower RMSE values indicate better accuracy and a
closer fit between predictions and actual values. For ground
truth time series y and predicted time series yt of length T , it
is computed as

RMSE = 1
T
〠
T

t=1
y − yt

2 2

3.2.3. RMSPE. Symmetric mean absolute percentage error is
a statistical metric used to measure the accuracy of forecasts.
It calculates the average percentage difference between pre-
dicted and actual values, giving equal weight to overestima-
tions and underestimations. It provides a symmetric view
of errors, providing a balanced evaluation of prediction
accuracy. The lower the SMAPE value, the better the accu-
racy of the forecast. For ground truth time series y and pre-
dicted time series yt of length T , it is computed as

RMSPE = 100∗ 1
T
〠
T

t=1

y − yt
2

yt
3

Due to the large fluctuation and irregularity in the exper-
imental dataset, along with the presence of zero values, this
study has opted to utilize root mean square percentage error
(RMSPE) as the evaluation metric for assessing the perfor-
mance of models.

3.3. Experimental Method

3.3.1. Cross-Validation. In this study, a five-fold cross-
validation approach was employed to assess the predictive
performance of the model. The methodology for this verifi-
cation technique is as follows: Firstly, the entire dataset
was randomly partitioned into five nonoverlapping subsets.
Then, in each iteration, one subset was chosen at random
as the validation set to evaluate the model, while the remain-
ing four subsets were used as the training data to train the
prediction model. This process was repeated five times,
ensuring that each subset served as the validation set exactly
once. Finally, the results obtained from the five iterations
were averaged to derive the final prediction outcomes.

Cross-validation is a widely utilized method for evaluat-
ing machine learning models, particularly in scenarios where
the dataset is limited in size. Although less commonly
employed in deep learning, due to the relatively large com-
putational expenses, it can still be successfully applied when

Table 3: Statistical overview of network functions.

No. Element type Train Test No. Element type Train Test

1 PSBC 1391 142 5 I-CSCF 2782 284

2 S-CSCF 2782 284 6 UDM 3948 426

3 EDS 1391 142 7 SMF 1316 142

4 LDRA 1291 142 8 AMF 1316 142
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the available data is relatively small. Considering the con-
straints of the deep learning training process, the adoption
of a five-fold cross-validation scheme allows for a robust
assessment of the model’s performance in this study.

3.3.2. Independent Testing. Compared with cross-validation,
independent testing is time-consuming and logically simple.
First, the algorithm is trained on the training set. Secondly,
the parameters of the model are adjusted by observing the
performance of the model according to the evaluation indi-
cators each time. At the same time, independent testing is
also a method to test the effect of the model. Generally, inde-
pendent test sets are used to verify the effect of the model in
the end of experiments. The specific way is to use indepen-
dent test sets as common data to compare with other
methods to be compared. The above two experimental
methods have been applied in this study. Generally, cross-
validation and independent testing experiments at the same
time will make the experimental results more convincing.

3.3.3. The Proposed Predictive Frameworks. In this study, we
aim to conduct a comprehensive comparative analysis of
multiple time series forecasting models on the given dataset.
Our goal is to evaluate the performance of these models
across various dimensions. By utilizing a diverse set of fore-
casting techniques, we can gain valuable insights into their
effectiveness in capturing different patterns and trends in
the data. To compare the models, we will primarily utilize
the root mean squared percentage error (RMSPE) metric,
which quantifies the prediction errors. RMSPE calculates
the percentage difference between the predicted and actual
values and then takes the square root of the mean of the
squared differences. This metric is commonly used in the
evaluation of regression models and provides a measure of

the relative accuracy of predictions while accounting for
the scale of the target variable.

By employing the RMSPE metric, we can effectively
assess the performance of the models in terms of their ability
to accurately predict the target variable. Lower values of
RMSPE indicate better predictive performance, as it signifies
smaller prediction errors relative to the actual values. This
comparative analysis allows us to identify the model that
exhibits superior predictive capabilities in our study.

3.4. Time Series Prediction Algorithm

3.4.1. ARIMA. The ARIMAmodel [19], short for autoregres-
sive integrated moving average model, is a widely used time
series forecasting technique in various research fields. It
requires three crucial parameters to be specified:

(1) Autoregressive Order (p ). This parameter represents
the number of lagged observations included in the
model. It captures the linear relationship between
the current observation and its historical values

(2) Integrated Order (d ). The integrated order parame-
ter refers to the degree of differencing performed
on the time series data. It is used to stabilize the
series and make it stationary by eliminating trends
and seasonality

(3) Moving Average Order (q ). The moving average
order parameter denotes the number of lagged forecast
errors that are considered in the model. It captures the
short-term dependencies between observations

These three parameters, namely, the autoregressive order
(p), the integrated order (d), and the moving average order
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Figure 1: Correlation matrix heatmap: visualizing relationships among network functions.
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(q), play a crucial role in determining the effectiveness of the
ARIMA model in capturing the underlying patterns and
making accurate forecasts in time series analysis.

By carefully selecting appropriate values for these
parameters, researchers can ensure the model’s ability to
effectively capture and explain the dynamics of the data, ulti-
mately contributing to the advancement of scientific knowl-

edge and understanding in their respective fields. However,
the ARIMA model assumes linearity and stationarity in the
data, which may limit its effectiveness for complex and non-
linear time series patterns.

3.4.2. Random Forest. The random forest model [20] offers
a powerful and versatile machine learning approach.
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Figure 3: Partial autocorrelation function (PACF) among network functions.
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Figure 2: Autocorrelation function (ACF) among network functions.
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However, it is important to note that random forest is not
inherently designed for time series data. Nevertheless,
there are adaptations and extensions of random forest spe-
cifically tailored for time series prediction tasks.

One important parameter in a time series forecasting
model based on random forest is the “MaxLags” parameter.
It determines the maximum number of lagged observations
that are included as input features in the model. Lagged
observations refer to past values of the target variable that
are used as predictors for future values.

Choosing an appropriate value for the MaxLags
parameter is crucial as it directly influences the model’s
ability to capture temporal dependencies and patterns.
Too few lags might result in underutilizing valuable histor-
ical information, leading to suboptimal predictions. Con-
versely, including too many lags may introduce noise and
overfitting, compromising the model’s accuracy on unseen
data.

3.4.3. ExtraTrees. The ExtraTrees model [21] is another
powerful machine learning algorithm. Similar to random for-
est, ExtraTrees is a type of ensemble learning method that
combines multiple decision trees to make predictions. How-
ever, unlike random forest, ExtraTrees adopts amore random
approach in building individual decision trees, leading to
increased diversity and reduced bias. Consistency with the
random forest model is observed in many of its parameters.

3.4.4. LGBM. The LGBM (light gradient boosting machine)
model [22] stands out as a powerful machine learning algo-
rithm. LGBM belongs to the category of gradient boosting
methods, which iteratively builds an ensemble of weak pre-
diction models, typically decision trees, to form a strong pre-
dictive model.

3.4.5. DeepAR. The DeepAR model [23] is a deep learning
approach proposed by Amazon for time series forecasting.
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Figure 4: RMSPE indicator curves of different p values of ARIMA.

Table 4: Confirmed parameter of ARIMA predictor.

No. Element type Parameter (p, d, q) No. Element type Parameter (p, d, q)

1 PSBC (60, 0, 2) 5 I-CSCF (30, 0, 2)

2 S-CSCF (60, 0, 2) 6 UDM (60, 0, 2)

3 EDS (20, 0, 2) 7 SMF (50, 0, 2)

4 LDRA (60, 0, 2) 8 AMF (30, 0, 2)
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It combines the power of recursive neural networks (RNNs)
and long short-term memory (LSTM) structures to handle
complex time series data with seasonality, trends, and peri-
odicity. By leveraging historical data patterns and contextual
information, the DeepAR model generates probabilistic fore-
casts for future time points. It utilizes various parameters to
optimize its performance in time series forecasting. One of
these parameters is N_PAST, which plays a crucial role in
determining the historical context considered for prediction.
N_PAST represents the number of past time steps that the
model takes into account when generating forecasts. By
adjusting N_PAST, the model can capture different levels
of historical information, influencing the accuracy and com-
plexity of the predictions.

3.4.6. Autoformer. Autoformer model [24] is a novel predic-
tor for long-term time series forecasting. It maintains the
residual and encoder-decoder structure but introduces a
decomposition forecasting architecture. By incorporating
decomposition blocks as internal operators, autoformer
effectively separates long-term trend information from pre-
dicted hidden variables. This design allows for progressive
decomposition and refinement of intermediate results dur-
ing the forecasting process. Inspired by stochastic process
theory, it replaces self-attention with an autocorrelation
mechanism that identifies subseries similarity based on
series periodicity and aggregates similar subseries from
underlying periods. Theoretically, this predictor is better

suited for long-term data and may not be suitable for the
data used in this study.

3.4.7. One-Hot Feature Representation. One hot coding is
commonly employed in numerous experimental studies to
extend the values of discrete data features into a European
space, where each discrete feature value corresponds to a dis-
tinct point in this space. By encoding discrete features using
the one-hot method, it becomes easier to calculate distances
between features, which not only enhances the interpretability
but also ensures a more reasonable measure of feature dissim-
ilarity. The one-hot feature extraction technique, as high-
lighted in the works of Rodríguez et al. [25], finds extensive
applications in various fields such as sequence recognition,
natural language processing (NLP), and related domains. In
the majority of cases, this approach yields outstanding exper-
imental outcomes. As mentioned above, the NWDAF-NFPP
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Figure 5: RMSPE indicator curves of different MaxLags values of RF.

Table 5: Confirmed MaxLags of RF predictor.

No. Element type MaxLags No. Element type MaxLags

1 PSBC 50 5 I-CSCF 60

2 S-CSCF 50 6 UDM 60

3 EDS 10 7 SMF 20

4 LDRA 10 8 AMF 60
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dataset has 4 nonnumeric features. We need to convert all
nonnumeric features into digital representation.

4. Results and Discussion

The column “measResult” in the dataset represents the per-
formance metric values that serve as the prediction targets
for the model. However, we have identified certain instances
where these values are given as zeros, which deviates from
the actual observations. In order to rectify this discrepancy,
we have employed linear interpolation to fill in the missing
data. This decision was made based on the expertise of
domain specialists to ensure accurate representation of the
dataset.

However, this leads to a problem of excessive data vola-
tility, which is abnormal. Therefore, we addressed this issue
through code implementation by constraining some outliers
within a range of 2 standard deviations. Any data points
exceeding this range were set to the upper limit, while data
points falling below this range were set to the lower limit
within the specified range. This approach helps to ensure
that the data remains within a reasonable range and miti-
gates the impact of extreme values.

Regarding the dataset, it covers the time period from
June 23, 2023, 00 : 00 to June 27, 2023, 11 : 45. The dataset
was categorized into eight network element types for more
effective analysis and experimentation. To create the training
and test sets, we utilized June 27, 2023, 00 : 00 as the cut-off

point. Specifically, the training set consists of data before
June 27, 2023, 00 : 00, while the test set includes data from
June 27, 2023, 00 : 00 to June 27, 2023, 11 : 45. The categori-
zation of the dataset based on network element types is pre-
sented in Table 3.

4.1. Feature Engineering of Network Functions. Based on rel-
evant domain knowledge and considering the actual data, we
extract the hour and minute from the timestamp as new fea-
ture columns to be included in the model training. Next, we
will assess the necessity of these features by performing cor-
relation analysis.

Subsequently, an individual analysis was conducted on
eight categories of network element data. The experimental
results, as illustrated in Figure 1, were represented using cor-
relation matrix heatmaps. We considered a correlation coef-
ficient value of approximately 0.2 or higher as an indication

Table 6: Confirmed MaxLags of ET predictor.

No. Element type MaxLags No. Element type MaxLags

1 PSBC 50 5 I-CSCF 10

2 S-CSCF 40 6 UDM 10

3 EDS 10 7 SMF 60

4 LDRA 50 8 AMF 60
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Figure 6: RMSPE indicator curves of different MaxLags values of ET.
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of correlation. From the graph, it is evident that the majority
of network element data exhibit a significant correlation
between their hourly features and the prediction target, with
values centered around 0.2. Therefore, it can be inferred that
the hourly features in the dataset exhibit a significant corre-
lation with the prediction target. In the subsequent experi-
ments, we incorporated the hour features into the training
process for these elements.

4.2. Time Series Predictor Optimization. The preliminary
determination of parameter ranges for the ARIMA model
can be facilitated by analyzing the autocorrelation function
(ACF) and partial autocorrelation function (PACF) plots.
These plots provide insights into the correlation structure
of the time series data, aiding in the identification of suitable
parameter values.

The ACF plot illustrates the decay of the autocorrelation
coefficients as the lag increases. Points on the plot that rap-
idly decline and become close to zero indicate the presence
of truncation. Truncation points suggest the potential order
of the autoregressive (AR) component (p) in the ARIMA
model.

Similarly, the PACF plot displays the decay of the partial
autocorrelation coefficients. Points that rapidly decrease and
approach zero signify truncation. Truncation points in the
PACF plot can guide the determination of the moving aver-
age (MA) component (q) in the ARIMA model.

However, it is important to note that these truncation
points serve as initial guidelines and should be further eval-
uated and refined using additional methods. Techniques
such as grid search with model evaluation metrics (RMSE
and MAPE) and domain knowledge can be employed to
finalize the selection of appropriate values for p and q.

By incorporating these analyses, researchers can obtain a
preliminary range of p and q values, providing a foundation
for subsequent model optimization and forecasting.

As illustrated in Figure 2, the ACF plot with eight sub-
plots, each subplot exhibits different characteristics. Some
of them have lag values reaching 60 without a significant
decreasing trend. However, excessively high lag values can
lead to overfitting, which is not desirable. For most of the
plots, the autocorrelation coefficients intersect with the con-
fidence interval around lag 50. Therefore, we intend to use
lag 50 as the initial value for the parameter “p” in the
ARIMA model.

Table 7: Confirmed MaxLags of LGBM predictor.

No. Element type MaxLags No. Element type MaxLags

1 PSBC 10 5 I-CSCF 30

2 S-CSCF 20 6 UDM 40

3 EDS 10 7 SMF 50

4 LDRA 60 8 AMF 40
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Figure 7: RMSPE indicator curves of different MaxLags values of LGBM.
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It is important to note that selecting an appropriate lag
value involves considering the balance between capturing
autocorrelation patterns and avoiding overfitting. By choos-
ing a lag value where the autocorrelation coefficients inter-
sect with the confidence interval, we ensure that the
estimated coefficients are not significantly different from
zero. The specific lag value of 50 is based on this
consideration.

As illustrated in Figure 3, the PACF plot displays eight
subplots, each exhibiting slight differences. However, in each
subplot, there is a significant decline observed around lag 2.
Based on this observation, we propose selecting 2 as the ini-
tial value for the “q” parameter in the ARIMA model. It
insights into the direct relationship between an observation
and its lagged values while controlling for the effects of inter-
vening observations. Analyzing the PACF plot allows us to
identify significant lags where the autocorrelation drops
noticeably. By choosing lag 2 as the initial value for the “q”
parameter, we take into account the significant decline
observed around this lag in all of the PACF subplots. This
choice ensures that the ARIMA model captures important
autocorrelation patterns while maintaining parsimony.

It is essential to consider these preliminary findings as a
part of the broader methodology for time series analysis and
modeling. Further validation and evaluation of the selected
ARIMA model should be performed using appropriate diag-
nostics and model selection criteria. Based on observations
and experience, the d parameter in the ARIMA model is

set to 0. This choice is made considering the data’s charac-
teristics and assuming no differencing is needed for
stationarity.

In accordance with the conducted experiment, the q
parameter of the ARIMA model was fixed at 2, and a further
investigation was carried out to explore the impact of differ-
ent p values. The parameter search ranged from 10 to 60
with a step size of 10. By referring to Figure 4, the minimum
values for the RMSPE indicators of various network func-
tions were identified: q = 30 for the AMF element, q = 20
for the EDS element, q = 30 for the I-CSCF element, q = 60
for the LDRA element, q = 60 for the PSBC element, q = 60
for the S-CSCF element, q = 50 for the SMF element, and
q = 60 for the UDM element. These critical data points have
been determined and will be used as the basis for forthcom-
ing comparative experiments. The final confirmed parame-
ter values are documented in Table 4.
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Figure 8: RMSPE indicator curves of different N_PAST of DeepAR.

Table 8: Confirmed N_PAST of DeepAR predictor.

No. Element type N_PAST No. Element type N_PAST

1 PSBC 40 5 I-CSCF 30

2 S-CSCF 60 6 UDM 50

3 EDS 10 7 SMF 20

4 LDRA 40 8 AMF 60
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In the following step, we conducted time series predic-
tion experiments using the random forest model on eight
network functions to investigate the impact of different
MaxLags values. In the random forest time series prediction
model, the MaxLags parameter plays a crucial role. It deter-
mines the number of lagged observations included in the
model, allowing the algorithm to consider past values as pre-
dictors for future predictions. By adjusting the MaxLags
parameter, we can control the memory or dependence of
the model on past observations.

In our experimental setup, we conducted a parameter
search from 10 to 60, with a step size of 10, to explore the
impact of different MaxLags values on the prediction perfor-
mance of the random forest model for eight network func-
tions. The goal was to identify the optimal MaxLags values
that minimize the root mean square percentage error
(RMSPE) for each specific network element.

The selection of appropriate MaxLags values is crucial as
it affects the model’s ability to capture the underlying pat-
terns and dependencies in the time series data. By setting
higher MaxLags values, the model can consider a longer his-
tory of observations, potentially capturing long-term pat-
terns and trends. On the other hand, lower MaxLags values
allow the model to focus on more recent observations, which
may be more relevant for short-term predictions.

Through our analysis and examination of Figure 5, we
determined the optimal MaxLags values for each network
element. For example, the AMF, I-CSCF, and UDM ele-

ments showed the lowest RMSPE when MaxLags was set
to 60. In contrast, the EDS, S-CSCF, and LDRA elements
achieved the best results with MaxLags of 10. When Max-
Lags is 20, the best result is achieved for SMF network
functions. Lastly, the PSBC and UDM elements demon-
strated improved prediction accuracy with MaxLags set
to 50. These critical data points have been determined
and will be used as the basis for forthcoming comparative
experiments. The final confirmed parameter values are
documented in Table 5.

These findings highlight the importance of selecting the
appropriate MaxLags value for each specific network ele-
ment. By choosing the optimal MaxLags value, we can
improve the accuracy and overall performance of the ran-
dom forest model in time series prediction tasks.

Subsequent to the preceding experimental steps involv-
ing the random forest model, we proceeded to conduct the
same experiments utilizing the ExtraTrees model. The
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Figure 9: RMSPE indicator curves of different N_PAST of autoformer.

Table 9: Confirmed N_PAST of autoformer predictor.

No. Element type N_PAST No. Element type N_PAST

1 PSBC 10 5 I-CSCF 10

2 S-CSCF 50 6 UDM 50

3 EDS 30 7 SMF 60

4 LDRA 20 8 AMF 20
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results of these experiments are illustrated in Figure 6. Spe-
cifically, we sought to determine the optimal MaxLags values
across the eight network functions. In contrast to the ran-
dom forest model, the ExtraTrees model is known for its
ability to construct decision trees using random subsets of
features and samples. This randomness enhances the diver-
sity and robustness of the model, leading to improved gener-
alization and accuracy. The final confirmed parameter
values are documented in Table 6.

The LGBM (light gradient boosting machine) model is
a powerful and efficient gradient-boosting algorithm. It
excels in handling large-scale datasets with its optimized
algorithm and histogram-based approach for split point
computations.

In the subsequent analysis, we replaced the existing
model with the LGBM model and configured the learning
rate to be 0.01. Figure 7 depicts the results of the present
experiment. Our objective was to explore the optimal Max-
Lags for each of the eight network functions. The final con-
firmed parameter values are documented in Table 7.

In our upcoming experiments, we conducted separate
trials for each of the eight types of network element data.
Our aim was to determine the optimal value of “N_PAST”
for each specific type.

The “N_PAST” refers to the number of past observations
(or time steps) used as input to the model for making predic-
tions. By varying “N_PAST” independently for each network
element type, we aimed to identify the most suitable value
that would yield the best forecasting results for that specific
type of data.

In the following experiment, we employ the DeepAR
model with a configuration of 3 LSTM layers. Through
empirical investigation and evaluation, we analyzed the
performance of the DeepAR model across different values
of “N_PAST” for each network element type, as illus-
trated in Figure 8. By selecting the optimal “N_PAST”
value for each case, we sought to enhance the accuracy
and effectiveness of our time series predictions tailored
to the characteristics of each network element type. The
final confirmed parameter values are documented in
Table 8.

The autoformer model employs a multilayered encoder-
decoder structure, allowing it to encode historical informa-
tion and generate accurate predictions. Through an iterative
training process, the model optimizes its parameters to min-
imize the discrepancy between predicted and actual values.
In the following experiment, we employ the autoformer
model with a configuration of 3 encoder layers and 3
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Figure 10: Performance comparison of optimal network function models based on RMSPE metric.
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decoder layers. We conduct experiments on eight types of
network element data individually to determine their respec-
tive optimal N_PAST values. The results of these experi-
ments are illustrated in Figure 9.

Furthermore, we present the optimal N_PAST values
obtained from the experiments in Table 9.

While autoformer has been proposed as a promising
model for long-term time series forecasting, its applicability
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Figure 11: Predicted curves for network functions.
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to the specific dataset used in this study needs to be carefully
considered. Based on the experimental results, it is evident
that this model is clearly not suitable for short-term data
in this study. Therefore, we will not consider comparing it
with other models.

4.3. Comparative Experiments and Analysis for Network
Functions. Based on the experiments conducted above, opti-
mal parameters have been selected for each type of network
element under each model. A separate test was then con-

ducted on the test dataset, evaluating the experiments based
on the root mean square percentage error (RMSPE) metric.
The experimental results are presented in Figure 10, illus-
trating the performance comparison between different
models. The specific RMSPE of different models are pre-
sented in Table 9.

By observing the graph, it can be seen that the optimal
models for five network functions are the ARIMA models,
specifically for AMF, EDS, I-CSCF, S-CSCF, and UDM. On
the other hand, the RF model is identified as the optimal

Table 10: RMSPE of optimal network function prediction models.

Model Type RMSPE Model Type RMSPE

ARIMA AMF 1.42 ARIMA EDS 9.69

RandomForest AMF 16.21 RandomForest EDS 18.93

ExtraTrees AMF 20.16 ExtraTrees EDS 40.58

LGBM AMF 13.60 LGBM EDS 39.21

DeepAR AMF 41.55 DeepAR EDS 56.42

ARIMA I-CSCF 0.47 ARIMA LDRA 6.07

RandomForest I-CSCF 7.32 RandomForest LDRA 1.26

ExtraTrees I-CSCF 8.62 ExtraTrees LDRA 3.98

LGBM I-CSCF 7.35 LGBM LDRA 2.88

DeepAR I-CSCF 75.79 DeepAR LDRA 13.68

ARIMA PSBC 6.81 ARIMA S-CSCF 5.56

RandomForest PSBC 3.96 RandomForest S-CSCF 35.48

ExtraTrees PSBC 11.97 ExtraTrees S-CSCF 15.93

LGBM PSBC 8.22 LGBM S-CSCF 14.52

DeepAR PSBC 112.31 DeepAR S-CSCF 65.84

ARIMA SMF 2.38 ARIMA UDM 0.20

RandomForest SMF 3.42 RandomForest UDM 3.01

ExtraTrees SMF 1.87 ExtraTrees UDM 1.12

LGBM SMF 3.13 LGBM UDM 3.61

DeepAR SMF 2.44 DeepAR UDM 5.07
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Figure 12: Predicted curves of ensemble model for I-CSCF network function.
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model for LDRA and PSBC network functions, while the ET
model is the optimal choice for the SMF network element.
Due to the small size and short time span of the dataset, it
is expected that deep learning models, which are suitable
for capturing long-range sequential features, would not per-
form well in this context. The experimental results in this
study provide support for this point. In Figure 10, it is evi-
dent that the predictive performance of the deep learning
model, DeepAR, is unsatisfactory.

Figure 11 illustrates the prediction curves obtained using
the optimal models for each network element. The black line
represents the actual values to be predicted, while the blue
line represents the final prediction curves generated by the
models. Although we applied some preprocessing tech-
niques to the dataset, such as filling missing values and
constraining ranges, the data still exhibits significant fluctu-
ations, lacking sufficient stability and regularity. The experi-
mental results presented in Figure 11 indicate that the
overall time performance curves of the eight network func-
tions are challenging to accurately predict. However, when
examined individually, the AMF, UDM, and SMF network
functions demonstrated relatively accurate prediction results.

4.4. Ensemble Model Analysis. Ensemble model analysis
involves the systematic evaluation and examination of
ensemble models, which are a combination of multiple indi-
vidual models to improve predictive accuracy and stability.
Various ensemble techniques, such as bagging, boosting,
and stacking, are applied to integrate predictions from
diverse base models. In this paper, a method of ensemble
model analysis was employed, which involved averaging
the predictions of two individual models. The ensemble
model will simply take the mean prediction of individual
models. This approach is a form of ensemble model analysis.

The I-CSCF network element was chosen to validate our
hypothesis. Based on the content of Figure 10 and Table 10,
we selected the ARIMA model and the random forest model,
which ranked first and second in terms of prediction perfor-
mance. We constructed an ensemble model and the final
prediction is shown in Figure 12. From the graph, it is evi-
dent that the ensemble model outperformed the individual
models in the first half of the prediction curve. The trend
of the curve indicates that the ensemble model achieved
more accurate fitting.

Ensemble model analysis demonstrates the efficacy of
averaging the predictions of two models, providing valuable
insights into the performance and reliability of this
approach. This contributes to the wider understanding and
adoption of ensemble modeling techniques within the field.

5. Conclusions

This paper presents a comprehensive comparative analysis
of time series forecasting techniques applied to predict the
performance of network functions in 5G networks. By
employing a range of time series forecasting algorithms,
the study is aimed at achieving accurate predictions for
network function performance and providing a detailed
comparison of their respective performances. Despite the

inclusion of both machine learning and deep learning models
in this study, along with a thorough comparative analysis,
there are still certain limitations that need to be addressed.

In this study, the data was collected at a five-minute
interval, spanning a duration of a few days. As a result, the
absence of observable seasonal patterns precluded the utili-
zation of the SARIMA model and Prophet model, well-
established methods for capturing seasonality feature. Addi-
tionally, the dataset lacks long-term sequential features,
which hinders the deep learning models from leveraging
their inherent advantages. The absence of such characteris-
tics restricts the ability of deep learning models to effectively
capture temporal dependencies and patterns over extended
periods. To address this limitation, we plan to expand our
research by incorporating longer-term experimental data,
which will provide a more comprehensive understanding
of the capabilities of deep learning models. By including a
wider time range, we aim to gain valuable insights into sea-
sonal and long-term sequential features and enhance the
robustness of our analysis. Furthermore, we intend to
explore the use of real-time data in future work to establish
further experimental validation, with the ultimate objective
of deploying our findings within real-world production
and operational systems.
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