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For the characteristics of channel instability in wireless sensor networks, this paper proposes an intrusion detection algorithm
based on FedAvg (federated averaging) and XGBoost (extreme gradient boosting) wireless sensor networks using fog
computing architecture. First, the network edge is extended by introducing fog computing nodes to reduce the communication
delay. It reduces the transmission bandwidth and privacy leakage risk while improving the accuracy of jointly learned global
and local models. Then, the histogram-based approximation calculation method is improved to adapt to the unbalanced data
characteristics of wireless sensor networks. Finally, by introducing TOP-K gradient selection, the number of model parameter
uploads is minimized, and the efficiency of model parameter interaction is improved. The experimental results show that this
algorithm has superior detection performance and low energy consumption. It is also compared with other algorithms to
demonstrate the high detection rate and low computational complexity of this algorithm.

1. Introduction

The inherent characteristics of wireless environment make
the information traffic of wireless sensor networks (WSNs)
more vulnerable to attacks such as counterfeiting, stealing,
forgery, and tampering. Timely detection of various network
attacks hidden in the normal traffic is important for secure
and reliable information transmission. Wireless sensor net-
works are special self-organizing networks that implement
functions such as data sensing, processing, and control [1].
Wireless sensor network is a highly interdisciplinary
research field, which has a very broad research prospect
and can be widely used in battlefield reconnaissance, agricul-
tural industrial measurement and control, electronic medical
health and smart home, etc. [2, 3]. However, with the diver-
sification of network attacks and the complexity of node
deployment environments, it is of great theoretical and prac-
tical importance to study an intrusion detection method
with low energy consumption and efficient detection of mul-
tiple attacks [4, 5]. With the development of communication
network technology, Internet technology and its applications
are becoming increasingly mature [6, 7]. However, the need

for data security and privacy in the Internet poses unprec-
edented challenges for traditional Internet architectures
[8]. Blockchain technology, artificial intelligence, as a
promising new technology, has been applied to the Internet
system [9, 10].

With the increased emphasis on WSNs, many national
research organizations have joined in doing extensive and
fruitful research on intrusion detection in WSNs [11, 12].
Intrusion detection methods, while making notable progress,
exhibit certain limitations that impede their comprehensive
effectiveness. One prominent issue lies in the asymmetrical
treatment of known and unknown types of attacks. Existing
systems often excel in detecting familiar attack patterns,
showcasing a high detection rate in such scenarios. However,
when confronted with novel or unknown attack types, their
efficacy diminishes significantly. This limitation is rooted in
the reliance on predefined signatures and patterns, rendering
these systems less adaptive to emerging threats with uncon-
ventional characteristics.

Moreover, the practical implementation of intrusion
detection schemes grapples with the challenges posed by
the complex and dynamic nature of real-world application
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scenarios. The intricacies of diverse network environments,
varying traffic patterns, and evolving attack strategies con-
tribute to a substantial false alarm rate [13, 14]. The high
false alarm rate not only hampers the efficiency of intrusion
detection but also poses a significant operational challenge,
demanding a balance between sensitivity to potential threats
and minimizing unnecessary disruptions to normal network
activities.

Furthermore, the deployment of intrusion detection sys-
tems in resource-constrained environments, such as wireless
sensor networks, poses unique challenges. These challenges
include limitations in computational power, memory, and
energy resources. Conventional intrusion detection methods
may not be optimized to operate efficiently within these con-
straints, leading to compromises in detection accuracy and
system responsiveness.

Considering the above constraints and challenges in
wireless sensor networks, this paper proposes a new distrib-
uted joint intrusion detection algorithm based on FedAvg
and XGBoost algorithms. The proposed FedAvg algorithm
presents a promising avenue for enhancing intrusion detec-
tion in wireless sensor networks. By amalgamating local sto-
chastic gradient descent on individual clients with a server
performing model averaging, the FedAvg algorithm achieves
a more stable classification performance, particularly on
non-IID (nonidentically distributed) data. Significantly, it
manages to curtail the number of communication rounds
required, showcasing a substantial improvement (up to a
factor of 10-100) compared to classical synchronous sto-
chastic gradient descent algorithms. Moreover, the adoption
of a distributed learning method grounded in fog computing
introduces agility and responsiveness into the system. This
approach enables faster responses, including swift detection
alarms, and substantially improves the overall effectiveness
of intrusion detection in scenarios typical of wireless sensor
networks.

The main innovations of this paper are as follows:

(1) In this paper, we use a federated averaging (FedAvg)
learning algorithm to aggregate the data of different
users in different regions by fog nodes to break the
original data resource silos. In this process, the nodes
do not need to transmit the original data but only
need to transmit fewer model parameters to collabo-
ratively train the model. This not only ensures data
privacy but also is suitable for the limited and unsta-
ble bandwidth of wireless networks

(2) This paper uses a histogram-based approximation
algorithm to efficiently select the optimal features,
thus reducing the computational pressure on the
communication of fog nodes

(3) The gradients of the extreme gradient boosting
(XGBoost) tree are updated in combination with
the Top-K gradient selection method. In each train-
ing, the user calculates the model parameters and
sorts them according to the magnitude of their dif-
ferences from the server model parameters in abso-

lute value. The K gradient values with the smallest
difference are selected, and the server aggregates
these K gradient values for spanning tree and model
prediction. This minimizes the number of model
parameter uploads and improves the efficiency of
model parameter interaction

This paper consists of five main parts: the first part is the
Introduction, the second part is the State of the Art, the third
part is the Methodology, the fourth part is the Result Anal-
ysis and Discussion, and the fifth part is the Conclusion.

2. State of the Art

2.1. Research on Intrusion Detection Methods. Intrusion
detection methods play a pivotal role in safeguarding net-
work security, and extensive research has been conducted
by scholars worldwide in this domain.

The literature [15] proposes a hierarchical blockchain-
based federated learning framework for secure and
privacy-preserving collaborative IoT intrusion detection.
Various malicious activities can be detected while preserving
data privacy, and smart contracts can also be developed. The
literature [16] designs a blockchain-enhanced federated
learning marketplace that makes data from computationally
constrained devices available for training in social IoT. The
amount of training data is maximized for a given budget of
the federated learning task. Decentralize the FL marketplace
with blockchain. It can significantly improve the overall util-
ity of the requester and the average accuracy of the model.
The literature [17] proposes a positive-negative partitioning
mechanism that perturbs local model parameters before
aggregation. This method can reduce the error in model test-
ing accuracy with small privacy budget and number of users.

Literature [18] introduces a rough set approach to
improve the artificial immunity-based intrusion detection
model by organically combining anomaly detection and mis-
use detection and proposes an intrusion detection method.
The method can achieve vaccine injection without terminat-
ing the intrusion detection behavior, effectively reducing the
length of the detector and improving the detection speed.
However, the immune-based intrusion detection method
has the problem of low detection rate at the early stage of
training. Literature [19] proposes a K-means algorithm to
solve the problem of predetermined number of clusters
and the algorithm falling into local optimum. The final
number of detectors included in the algorithm is the number
of clustering centers. In literature [20], the adaptive AP algo-
rithm is combined with the clustering algorithm, and the
adaptive AP clustering algorithm is proposed and applied
to intrusion detection. The algorithm only clusters the base-
line data and the samples that are far from the cluster center,
and the rest of the sample data are directly correlated, which
reduces the number of samples for clustering and the time
for clustering. Data compression improves the efficiency of
clustering but inevitably causes a decrease in accuracy. In lit-
erature [21], an improved algorithm is proposed to address
the shortcomings of the traditional fuzzy C-mean clustering
algorithm. The algorithm uses the Mercer kernel to define
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the objective function of the optimized fuzzy C-mean algo-
rithm to improve the merit-seeking ability of the fuzzy C-
mean algorithm and uses the Lagrange multiplier method
to calculate the clustering center and the affiliation matrix
separately to improve the convergence speed of the algo-
rithm. However, the algorithm does not address the effects
of unbalanced clustering and noise points on the clustering
results.

Literature [22] proposes an intrusion detection scheme
based on semisupervised learning and information gain rate
for the problem of low detection rate of unknown types of
attacks by existing intrusion detection methods. In literature
[23], a hybrid multilevel intrusion detection model is pro-
posed to address the problem that the detection rates of
Probe (probing), U2R (user to root), and R2L (remote to
local) are relatively low. Experiments show that this method
can improve the detection of network attacks such as Probe,
U2R, and R2L. Literature [24] proposes a multiattribute
trust method based on fuzzy logic, which uses multiple
parameters as trust metrics and uses fuzzy computation the-
ory to calculate the final trust value of each node. Literature
[25] uses a noncooperative non-zero-sum game model and a
Nash equilibrium approach in order to detect attacks and
reduce communication overhead. Literature [26] uses the
negative selection algorithm in immune theory to achieve
the detection of attacking nodes. These algorithms balance
the issues of detection rate and resource cost for wireless
sensor network systems. However, these methods only con-
sider the analysis under a specific model, so the applicability
of the model is more limited.

In recent years, machine learning algorithms have been
gradually applied to intrusion detection and have achieved
better results [27]. Most of the traditional machine learning
methods are aimed at terrestrial wired networks and mostly
use centralized learning methods to aggregate traffic data for
centralized processing and analysis. Literature [28] proposes
a centralized intrusion detection method based on deep neu-
ral network and K-nearest neighbor algorithm. It is evalu-
ated on a public data set and has a high detection
accuracy. Literature [29] proposes a hierarchical intrusion
detection method based on extreme learning machine,
which clusters nodes according to the functions of wireless
sensor networks, improves the intrusion detection accuracy,
and reduces the detection time. However, the false alarm
rate of this algorithm is high in the case of small percentage
of attack traffic and unbalanced traffic categories in the net-
work. In literature [30], a centralized intrusion detection
algorithm based on recurrent neural network algorithm is
proposed, which has better intrusion detection capability in
software-defined network environment. In literature [31], a
K-means clustering algorithm is used to train and classify a
large amount of data for the purpose of detecting attacks.
Literature [32] uses genetic algorithm—Levenberg-
Marquardt back propagation method as a WSN intrusion
detection mechanism. These machine learning methods are
characterized by low false detection rate and moderate com-
plexity, which can effectively extract useful features from the
data and classify the data with high accuracy. However, both
machine learning methods and deep learning require higher

computing power of nodes. This undoubtedly increases the
burden of infinite sensor networks and reduces the network
life cycle, so the model still needs to be enhanced.

2.2. Wireless Sensor Network Architecture. As shown in
Figure 1(a), a wireless sensor node is a miniature electronic
device consisting of a processor, a memory unit, a trans-
ceiver module, one or more sensors, an analog-to-digital
converter, and a power source (usually a battery). The node
uses its sensors to measure fluctuations in current conditions
in the adjacent environment. These measurements are con-
verted from analog to electrical signals by an analog-to-
digital converter unit, and the information is then processed
by the node’s processor. Through a transceiver, the node can
transmit the data generated by its processor wirelessly to
other nodes, sink node, or database [33], as shown in
Figure 1(b).

The base station uses the data transmitted to itself to
both monitor the wireless sensor network to which it
belongs and to transmit relevant information to human
users or other networks (as shown in Figure 2).

2.3. Common Attacks in Wireless Sensor Networks. For the
diversification of attacks in wireless sensor networks and
information security models, in order to facilitate the analy-
sis of security attacks, this section provides a specific classi-
fication of attacks.

(1) Based on the behavioral initiation of attackers, they
can be classified as internal attacks and external
attacks [34]. External attacks are mainly initiated
by external attackers and the external physical envi-
ronment. Its purpose is to physically damage the
nodes in the network or impersonate the base station
to prevent the communication transmission among
the network members. Internal attacks are mainly
initiated by malicious nodes in the network, which
may be nodes captured by external attackers or
nodes that choose to behave selfishly due to the need
to reduce energy consumption

(2) Based on the protocol level of wireless sensor net-
works, intrusion attacks can be classified as physical
layer attacks, data link layer attacks, network layer
attacks, transport layer attacks, and application layer
attacks [35–38]. The wireless sensor network intru-
sion attacks are categorized and organized as shown
in Figure 3

2.4. Wireless Sensor Network Intrusion Detection Model.
Intrusion detection is the process of detecting computer net-
works and systems to find events that violate security poli-
cies [39]. For the data that needs to be analyzed, we
collectively call it an event. Intrusion detection is the analysis
and processing of events [40]. A typical intrusion detection
system should include at least three functional modules:
(1) an information source that provides a stream of event
records, (2) an analysis engine that finds signs of intrusion,
and (3) a response component based on the analysis engine.
The intrusion detection system consists of three main
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components (event generators, event analyzer, and response
module), and its generic model is shown in Figure 4.

3. Methodology

The model in this paper adopts a 3-tier network architecture
for fog computing. The top layer is the cloud server, which
has the strongest computing and storage capacity. The mid-
dle layer is the fog layer, where sensors, servers, or base sta-
tions with less computing power are used as fog nodes to
share the computing and storage tasks for the cloud. The
bottom layer is the terminal device.

In this paper, we use joint learning algorithm; fog nodes
aggregate data from different users in different regions,
breaking the original data resource silos. The nodes do not
need to transmit the original data but only need to transmit
a small number of model parameters to collaborate in train-

ing the model. This not only ensures data privacy but also
fits into the limited and unstable bandwidth of wireless net-
works. Assume that there are a total of K nodes (or clients)
and the z-th node stores a local dataset of Dz , size Dz . The
dataset consists of input-output pairs ix, jx

t
x=1, where the

input sample vector with d features is ix ∈ Rd , and the label
of the input sample is jx ∈ R.

As shown in Figure 5, the training process of the joint
intrusion detection algorithm consists of the following 3
steps:

Step 1. Task initialization.
The server specifies the global model and the hyperpara-

meters of the training process, such as the learning rate, the
maximum depth of the tree, and the minimum leaf node
sample weights. The server broadcasts the initialized global
model parameters Mn

A, the server-side data volume D, and
the sampling rate εs to the selected participants.
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Sensor module Processor module Wireless communication module
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Figure 1: Schematic diagram of wireless sensor network structure.
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Figure 2: Typical architecture of a wireless sensor network.
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These hyperparameters, such as the learning rate and
the maximum depth of the decision tree, are pivotal in
determining the algorithm’s effectiveness and experimental
performance. The learning rate, influencing the step size
during training, requires careful experimentation to find
the right balance. Furthermore, the decision tree’s maxi-
mum depth significantly impacts the model’s complexity
and generalization ability. Evaluating the algorithm’s per-
formance across varying tree depths illuminates the inher-
ent trade-off between model complexity and generalization
ability.

Step 2. Local model training and updating.
Based on the global model parameters Mn

A, Z fog nodes
with high computational power are randomly selected
according to the set ratio. Each fog node uses a specific sam-
pling rate to segment the local data separately. The local
model parameters are updated iteratively using the
improved extreme gradient boosting (XGBoost) algorithm,
and the final model parameters are noted as az , bz .

Step 3. Global model aggregation and update.
All Z clients share and collaborate to train a global pre-

diction model.

The server averages the client model parameters to
obtain the new global model.

an+1A = anA + 〠
Z

z=1

Dz

T
an+1z ,

bn+1A = bnA + 〠
Z

z=1

Dz

T
bn+1z

1

where T =∑Z
z=1 Dz is the total number of data samples

from Z clients; anA is the global aggregation parameter; bnA
is the global update parameter; z denotes the client (i.e.,
fog node), z = 1, 2,⋯, Z. The updated global model parame-
ters are sent back to the data owner.

Since the limited data owned by any party can easily fall
into a local optimum, the global model aggregation and
updating process of the above Fed-XGB algorithm can opti-
mize the local model parameters using the models learned
by other participants. This can help the participants to get
rid of local preferences and obtain more accurate models.

Internal
attack

External
attack

Sewage
pool attack

Witch
attack

Selective
forwarding

attack

Depletion
attack

Eavesdropp
ing attack

Replay
attack

Injection
attack

Jamming
attack

Data link
layer attack

Network
layer attack

Transport
layer attack

Application
layer attack

Physical
layer attack

Signal
jamming

Physical
capture

Depletion
attack

Collision
attack

Sewage
pool attack

Impulse
attack

Witch
attack

Flooding
attack

Malicious
tampering

Malicious
code

Selective
forwarding

attack

Attacker's behavior initiation Protocol level

Attack classification

Figure 3: Classification of wireless sensor network intrusion attacks.
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Figure 4: WSN intrusion detection model.
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In this paper, in order to avoid transmitting irrelevant
local updates, each client needs to know the trend of coopti-
mization in the global aggregation. In each learning itera-
tion, clients should compare their local updates with the
global updates to determine whether their updates are rele-
vant. The optimization goal of the algorithm in this paper
is to minimize the cumulative number of communications
while ensuring the convergence of the learning algorithm,
that is

minimize〠
N

n=1
Cns t lim

N⟶∞

1
N
〠
N

n=1
f in − f i∗ = 0, 2

where Cn is the number of clients that upload local updates
to the server in the n-th iteration; f in is the model learned
in the n-th iteration; f i∗ is the optimal model.

In this paper, we combine the Top-K gradient selection
method and CMFL algorithm for gradient update selection.
Specifically, in each training, the user calculates the model
parameters ax and bx and selects the Z gradient values with
the smallest difference according to the absolute value of the
difference between them and the server model parameters.
The server will aggregate these Z gradient values for span-
ning tree and model prediction.

In the context of the y-th global model update, where
My = b1, b2,⋯,bT represents the local model parameter
update andMy denotes the global model parameter, the cor-
relation measure is computed as the percentage of identical
symbolic parameters.

e M,M =
1
T
〠
T

x=1
X sign My = sign My 3

If My and My have the same sign, then X sign My =
sign My = 1; otherwise, it is 0. The updated relevance mea-
sure e M,M is ranked, and then, the highest-ranked Z
values are selected and uploaded for server-side model aggre-
gation, which is used for tree generation and model predic-
tion. In this way, the aggregation mechanism can speed up
the model convergence and effectively prevent the uploading
of parameters that are detrimental to the overall model,
reduce Cn, and lower the communication overhead.

In this section, the XGBoost algorithm is improved by
introducing a cost-sensitive function for unbalanced data
samples on different fog nodes. The XGBoost algorithm is
built upon the CART regression tree model [41]. Given a
dataset D = ix, jx with t samples and m features, the CART
regression tree assigns the input sample features to each leaf
node. Its prediction function is

ĵ
n
x = 〠

Q

q=1
f q ix = ĵ

n−1
x + f q ix , 4

where f i =my i , my i is the weight of leaf node y; f q i is
the fifth regression tree. f i is the update parameter of the
model. The learning process of the XGBoost algorithm is
to optimize the objective function by adding the f q function
to reduce the error between the prediction result and the
actual result. The defined objective function is as follows.

Obj n = 〠
t

x=1
l jx, ĵ

n−1
x + f q ix +Ω f q

= 〠
t

x=1
ax f q ix +

1
2
bx f

2
q ix +Ω f q ,

5

Step 1: Task initialization Step 2: Local model training
and updating

Step 3: Global model aggregation
and update

Model parameter

Fog nodes End devices

Cloud servers

Alerting Network attacks

Figure 5: The intrusion detection framework based on FedAvg and XGBoost.
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where Ω f q is the regularization term, which is used to pre-
vent overfitting of the model. l · is the loss function, which
is used to measure the error between the predicted value and
the true value.

Ω f q = γNn + λ
1
2
〠
N

y=1
m2

y , 6

where γ is the weight factor; Nn is the number of leaf nodes
occupied; λ is the regularization factor.

The traffic data categories collected by each fog node are
unbalanced, among which the abnormal traffic of the attack
class belongs to small samples. In order to improve the
intrusion detection model to pay attention to small samples,
the cost sensitivity function in each fog node is designed as
follows.

v cx =
sum cx
num cx

, 7

where sum cx is the number of samples of all categories;
num cx is the number of samples of category cx. The cost-
sensitive function v cx in equation (7) is incorporated into
the optimization process of the objective function Obj n in
equation (5). Specifically, the coefficients of the loss func-
tions ax and bx coefficients in equation (5) are updated
according to the following equation (8), where acx and bcx
are the first-order and second-order derivatives of the Taylor
expansion of the loss function, respectively.

acx = v cx
∂l jx , ĵ

n−1
x

∂ ĵ n−1x

,

bcx = v cx
∂2l jx, ĵ

n−1
x

∂2 ĵ n−1x

8

The loss function is expanded by Taylor as follows.

Obj ncx = 〠
t

x=1
l jx, j

n−1
x + f q ix +Ω f q

= 〠
t

x=1
acx f q ix +

1
2
bcx f

2
q ix +Ω f q

9

The optimal fraction of leaf nodes is obtained by solving

m∗
y = −

∑x∈Xy
acx

∑x∈Xy
bcx + λ

, 10

where Xy is the set of instances of leaf node y. The final
objective function is derived as follows.

Obj n = −
1
2
〠
N

y=1

∑x∈Xy
ax

2

∑x∈Xy
bx + λ

+ γNn 11

The tree structure will select the feature with the largest
gain drop as the optimal splitting point, and the formula
for gain drop is

Gain =
1
2

∑x∈XL
acx

2

∑x∈XL
bcx + λ

+
∑x∈XR

acx
2

∑x∈XR
bcx + λ

−
∑x∈X acx

2

∑x∈X bcx + λ
− γ

12

In the process, the most important thing is the acx and
bcx of the training samples. Due to the introduction of the
cost-sensitive function, the optimal segmentation point
selection according to gain will pay more attention to the
small sample categories in the fog nodes, thus improving
the detection accuracy of the small sample categories. This
is more suitable for wireless sensor networks with uneven
traffic data categories.

The optimal tree model for training XGBoost needs to
calculate the gain fraction gain to find the splitting point.
This means that for each data sample and feature, the corre-
sponding gradient acx and second-order derivative bcx need
to be computed.

Most of the gradient boosting algorithms for joint learn-
ing allow the clients involved in training to transfer the gra-
dient or feature value split candidates to the aggregator to
determine the best splitting point for the overall model. A
common approach to search for the best splitting point is
to use the exact greedy algorithm. This algorithm enumer-
ates the entire feature and value space to find the best split-
ting point. If t samples, d features, and w rounds are
required, the complexity of this greedy algorithm can be as
high as O t × d ×w × la t , imposing a significant computa-
tional burden on the communication of fog nodes. To rem-
edy this deficiency, this paper uses a histogram-based
approximation algorithm to select the optimal features
efficiently.

The histogram-based approximation algorithm first par-
titions all the cut points u u = 1, 2,⋯,w of the feature into
buckets based on the quantile to obtain a set of candidate
cut points Su = su1, su2,⋯,sul . Then, the values of the sam-
ple features are divided into buckets according to the set, and
the gradient and second-order derivatives of the sample sta-
tistics in each bucket are accumulated to obtain Aul and Bul.
Finally, the best splitting point is found on these accumu-
lated statistics. The core idea of the quantile algorithm is to
take the quantile of a feature according to its distribution
and replace the true feature value by the quantile. In essence,
it is a segmented discretization of continuous features to
reduce the computational complexity. However, the direct
application of this approximation algorithm to the joint
learning framework may lead to the inability of the trained
model to adapt to the bias of each data, especially in unbal-
anced data and non-IID data.
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To solve this problem, instead of bucketing all partici-
pants’ data in the same proportion, the improved algorithm
in this paper considers the size of the local dataset on the
participant’s client in relation to the size of other partici-
pants to bucket proportionally (e.g., percentile). First, Dp is
defined to represent the eigenvalue of the u-th dimensional.

Du = i1u, b1 , i2u, b2 ,⋯, itu, bt 13

The sorting function is defined as follows.

ru k =
∑ i,b ∈Du ,i<k b

∑ i,b ∈Du
b

14

This function represents the proportion of the sample
distribution whose eigenvalue is less than k. The second
derivative b can be interpreted as a measure of the sample’s
weight. Under the sorting function, find a group of points
Su = su1, su2,⋯,sul that satisfy

rn sn,y − rn sn,y+1 < ε, 15

where ε is the sampling rate, which is the proportional size
of each bucket. Eventually, a cut-off point of 1/ε will be
obtained. In this paper, we set the parameter μn, μn = Cn /
D to denote the size of the data volume Cn of client n rel-
ative to the data volume D of the server. μn is used to adjust
the sampling rate or bucket size of different clients, and the
sampling rate of the client εn = εsμn, where εs represents
the server’s sampling rate, enabling the approximation algo-
rithm to dynamically adapt to imbalanced data. These
parameters are passed and interacted in the joint learning
framework to improve the overall model detection.

4. Result Analysis and Discussion

4.1. Experimental Environment. In the intrusion detection
experiment, the coverage area of the perception layer net-
work is 100m × 100m, with 100 perception nodes. A laptop
computer is used as the gateway node, with 10 detection
nodes and 90 normal nodes. The duration of each simula-
tion is set to 200 s, and the average value of 20 simulations
is used for the experimental results.

In this paper, NS-2 is used for simulation experiments to
verify the effectiveness of the algorithm. The experimental
platform is a desktop computer equipped with Core i9
9900k and GTX1060, using Anaconda 3.7 software and the
federated learning framework Pysyft 0.3 for simulation
experiments. In order to verify the effectiveness of the pro-
posed method for intrusion detection in the perception layer
network environment, the dataset WSN-DS is used in this
paper. The WSN-DS dataset is specifically designed for
intrusion detection in WSNs. The WSN-DS dataset contains
374,661 records, and each sample of the dataset contains 23
attributes. Sixty percent and 40% of the WSN-DS dataset
were used as the training set and test set, respectively.

4.2. Evaluation Indicators. The detection results of the intru-
sion detection system include the following four types: (1)
True positive (TP) indicates the proportion of abnormal
behaviors correctly identified as abnormal behaviors. (2)
False positive (FP) indicates the proportion of normal
behaviors incorrectly identified as abnormal behaviors. (3)
True negative (TN) indicates the proportion of normal
behaviors correctly identified as normal behaviors. (4) False
negative (FN) indicates the proportion of abnormal behav-
iors incorrectly identified as normal behaviors.

Based on the above four detection results, the accuracy
rate, false negative rate, missing rate, and area under the sub-
ject’s working characteristic curve are further evolved as the
evaluation indexes adopted for the intrusion detection tech-
nique in this paper.

(1) Accuracy precision indicates the proportion of cor-
rectly identified abnormal lines and normal behav-
iors as occupied and is calculated as

P =
TP

TP + FP
16

(2) False positive rate (FPR) indicates the percentage of
normal behavior identified as abnormal behavior

FPR =
FP

FP + TN
17

(3) False negative rate (FNR) indicates the percentage of
abnormal behaviors identified as normal behaviors

FNR =
FN

TP + FN
18

Overall, the proposed scheme in this paper is divided
into 3 main parts: the first part is a specific introduction to
the Fed-XGB algorithm; the second part is the improvement
of the XGBoost algorithm; the third part is the improvement
of the approximation algorithm. The detailed flow is shown
in Figure 6.

4.3. Experimental Result Analysis

4.3.1. Parameter Tuning Experiments. Firstly, in order to
gain a more comprehensive understanding of the impact of
the learning rate on algorithm performance, we conducted
a series of experiments systematically adjusting the learning
rate and observing its effects on the convergence time and
overall accuracy of the model. Through these experiments,
our aim was to provide a clear understanding of why specific
learning rates were chosen and how such choices influenced
the performance of the algorithm.
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The experimental results of Table 1 offer valuable insights
into the impact of different learning rates on the convergence
time and overall accuracy of the model. In the initial setting
with a learning rate of 0.001, the model swiftly reached con-
vergence in 40 epochs, but the accuracy was relatively lower
at 88.7%. As we increased the learning rate to 0.01, the model
exhibited faster convergence in 25 epochs and achieved a
higher accuracy of 95.2%. A moderate learning rate of 0.1
led to even quicker convergence in 18 epochs, coupled with
an improved accuracy of 97.1%. However, a higher learning
rate of 0.5 resulted in a slightly longer convergence time of
15 epochs but significantly enhanced the model’s accuracy
to 93.3%. Notably, a learning rate of 1.0 demonstrated the
fastest convergence in 12 epochs but at the cost of reduced
accuracy, achieving 85.5%. These quantitative observations
underscore the necessity for careful experimentation to strike
the right balance between convergence time and model accu-
racy. In this context, a learning rate of 0.1 stands out as an
optimal choice, demonstrating swift convergence and high
accuracy. This emphasizes the critical importance of fine-
tuning the learning rate parameter during the training pro-
cess to achieve optimal algorithm performance.

Decision tree’s maximum depth, as a critical hyperpara-
meter, directly influences the model’s structure and perfor-
mance. Through quantitatively evaluating the model’s
performance at different maximum depths, we aim to find
an optimal depth that achieves superior fitting on the train-
ing data while ensuring robust generalization on unseen
data. The specific experimental results are presented in
Table 2.

Observing Table 2, the significant impact of the maxi-
mum depth on model performance is evident. Firstly, as
the maximum depth gradually increases, the overall accu-
racy of the model shows a clear upward trend. Particularly
noteworthy is the peak accuracy achieved when the maxi-
mum depth reaches 7, indicating that a relatively larger max-
imum depth has a positive effect on improving the model’s
fit to the training data. Next, focusing on the influence of
the maximum depth on false positive rate (FPR) and false
negative rate (FNR), it is observed that at a maximum depth
of 7, FPR is relatively low, and FNR is maintained at a rela-
tively low level. This suggests that the model performs well
in classifying positive and negative categories, especially

Step 1: Introduce the fow of Fed-XGB algorithm

Task initialization Local model training and
updating

Global model aggregation
and update

Initially, the cut points of all
features are binned according

to quantiles.

Subsequently, the values of the
sample features are assigned to

respective bins based on this
set. 

Step 3: Improve approximation algorithm

Step 2: Improve XGBoost algorithm

Finally, the optimization
process incorporates the cost-

sensitive function.

Ultimately, the optimal
splitting point is determined

through an analysis of
cumulative statistics derived

from these bins.

Firstly, the input sample
features are allocated to each

leaf node.

Secondly, a cost-sensitivity
function is formulated for each

fog node.

Figure 6: Fed-XGB algorithm design flow.

Table 1: Learning rate experiment results.

Learning rate Convergence time Accuracy

0.001 40 88.7%

0.01 25 95.2%

0.1 18 97.1%

0.5 15 93.3%

1 12 85.5%

Table 2: Impact of decision tree maximum depth on model
performance.

Learning rate Accuracy FPR FNR

3 91.20% 0.91% 0.92%

5 94.40% 0.83% 0.84%

7 97 90% 0.62% 0.71%

9 97.60% 0.74% 0.78%

11 92.50% 0.81% 0.82%
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concerning misclassifications. Overall, at a maximum depth
of 7, the model reaches a balance point. Through this exper-
iment, we conclusively deduce that the decision tree’s maxi-

mum depth significantly affects the model’s complexity and
generalization ability. When choosing the maximum depth,
a careful balance between model accuracy and generalization
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capability on unseen data is necessary. The scenario with a
maximum depth of 7 appears to strike an ideal balance,
demonstrating superior performance in both aspects.

4.3.2. Algorithm Validation and Comparative Analysis. In
order to verify the algorithm validation of the proposed
method, the algorithms of literatures [42–46] are selected
as the comparison algorithms in this section. Literature
[42] is a novel intrusion detection system that combines
the fuzzy C-mean clustering (FCM) algorithm with the sup-
port vector machine (SVM). It is able to detect anomalies in
cloud environment with higher detection accuracy and
lower false alarm rate. Literature [43] is an intrusion detec-
tion prediction model that uses the latest, publicly available
intrusion detection datasets covering a wide range of attack
types as training. Literature [44] provides an in-depth study
and analysis of real intrusion detection cases by combining
the current popular blockchain technology with federated
learning. Literature [45] proposed a method based on long
short-term memory (LSTM) to detect network attacks in
Internet of Things (IoT) networks supported by software-
defined networking (SDN) for intrusion detection systems.
They introduced an LSTM-based architecture for effective
multiclass classification of network attacks in IoT networks.
Literature [46] presented a novel architecture for an unsu-
pervised intrusion detection algorithm using a layered
approach to enhance the security of integrated software-
defined wireless sensor networks. In the proposed architec-
ture, sensors analyze data from different regions clustered
based on criteria such as entropy and cumulative point sim-
ilarity. The analysis results are then sent to the software-
defined wireless sensor network controller, which makes
decisions after the final inspection of data as either normal
or anomalous. These five comparative approaches cover
the latest intrusion detection datasets as well as the latest

research techniques and can represent the current state-of-
the-art technology.

The proposed algorithm and the control algorithm were
trained on the training set, and then, the algorithm was val-
idated on the test set. The 10-fold cross-validation method
was used to take the average of the experimental results for
comparison.

Figure 7 shows the accuracy of the proposed algorithm
and the comparison algorithm. Compared with the compar-
ison algorithm, the average accuracy of proposed algorithm
in detecting five behaviors is 95.69%, 99.49%, 90.92%,
98.56%, and 99.48%, respectively, and the accuracy of this
algorithm is optimal in detecting different behaviors. The
algorithm of literature [42] is time-consuming and has the
worst detection rate, followed by the algorithm of literature
[43], which is better than that of literature [42]. The detec-
tion rates of literatures [43, 44] are similar, and this algo-
rithm is slightly better. Literature [45] presents competitive
results, particularly noteworthy in scheduling attacks and
black hole detection, where it outperforms literature [42]
and literature [44]. The proposed algorithm still maintains
higher accuracy across different behaviors. Literature [46]
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Figure 9: Comparison results of FNR.

Table 3: Comparison of the overall detection accuracy of the 4
algorithms.

Algorithm Overall detection accuracy %

Literature [42] 83.20%

Literature [43] 87.08%

Literature [44] 93.48%

Literature [45] 97.13%

Literature [46] 97.89%

Proposed 97.93%
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showcases commendable performance, with accuracy rates
comparable to or exceeding literature [43] and literature
[44]. However, the proposed algorithm consistently achieves
the highest accuracy in all evaluated behaviors.

Figure 8 provides a comprehensive overview of the false
alarm rate comparison between our proposed algorithm and
the reference algorithms (literature [42–46]). In our evalua-
tion, the proposed algorithm consistently outperforms the
comparison algorithms across all five behaviors. Specifically,
it attains the lowest false alarm rate for detecting normal
behavior at 0.62%, showcasing its precision in distinguishing
regular network activity. Furthermore, for the identification
of gray holes, our algorithm achieves a remarkable false
alarm rate of 0.23%, again surpassing the comparison algo-
rithms. In the detection of scheduling attacks, the proposed
algorithm maintains a low false alarm rate of 1.1%, indicat-
ing its effectiveness in discerning this particular threat. For
flooding attacks and black holes, our algorithm achieves
impressive false alarm rates of 0.38% and 0.37%, respec-
tively, further underscoring its robust performance across a
spectrum of network security challenges. These results col-
lectively highlight the superiority of our proposed algorithm
in minimizing false alarms compared to the selected refer-
ence algorithms.

In Figure 9, the false negative rate (FNR) comparison
across literature [42], literature [43], literature [44], litera-
ture [45], literature [46], and the proposed algorithm pro-
vides valuable insights. The proposed algorithm
consistently exhibits superior performance, achieving the
lowest average FNR across all five behaviors. Specifically, it
excels in detecting normal behavior with an FNR of 0.48%,
showcasing its efficacy in minimizing instances of failing to
detect genuine network activities. Literature [45] demon-
strates competitive results, particularly in detecting gray
holes and scheduling attacks with FNRs of 0.85% and
0.72%, respectively. Meanwhile, literature [46] stands out
in handling flooding scenarios, achieving a low FNR of
0.74%. However, when considering the average FNR across

diverse behaviors, the proposed algorithm outperforms all
comparison algorithms, underscoring its robustness in
ensuring a low rate of false negatives in intrusion detection
scenarios.

Table 3 gives the results of the comparison between the
algorithm of this paper and the comparison algorithm in
terms of the overall detection accuracy.

Finally, the impact of using this paper’s algorithm with
or without it for different types of attacks on the network
energy consumption is examined, as shown in Figure 10.
This energy is generated by the cluster head node sending
a control packet to the aggregation node at the beginning
of each communication process. In addition, some energy
is consumed when the network node receives a warning
message from the intruder node. From Figure 10, the energy
consumption of this algorithm is 0.04 J, which is equivalent
to 0.02% of the energy consumption of the whole network
without this algorithm. When all 10 intrusion nodes are
detected by the network, the other nodes in the network
consume about 0.06 J of energy to receive the warning mes-
sage, which is 0.03% of the energy of the network. Compared
to a network without an intrusion detection system, the
increased energy consumption of the algorithm in this paper
is almost negligible.

5. Conclusion

Intrusion detection algorithms for WSNs have been pro-
posed one after another, but there are still problems such
as no practical consideration of network energy consump-
tion and low detection accuracy and efficiency of detection
algorithms. To address these problems, this paper proposes
an intrusion detection algorithm based on FedAvg and
XGBoost algorithms using fog computing architecture. It
combines the advantages of the FedAvg algorithm on non-
IID data processing. The algorithm can better utilize the
devices located at the edge of the wireless sensor network
to provide services to the nearest users, thus reducing the
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computational pressure on the cloud center. At the same
time, it provides low-latency network services to improve
real-time intrusion detection. The simulation experimental
results prove that the intrusion detection method proposed
in this paper has higher accuracy and more stable detection
performance. Compared with other comparative models,
this model has a higher detection rate, lower false alarm rate,
and leakage rate. And this paper model of lower energy con-
sumption can be applied to the actual WSNs scenario,
enhancing the WSN resistance to internal network attacks
while extending the life of the network. However, there are
still some differences between the settings of some parame-
ters in the experimental simulation process and the applica-
tion in the real environment, and there are privacy issues.
The next step will be to conduct deeper research on the con-
fidentiality and compression of model parameters to
improve the privacy and efficiency of joint learning.
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