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The splendid technological inventions supersede many traditional agricultural monitoring systems. In the last decade, a variety
of new techniques and tools are proposed to monitor storage areas, which provide more safe and secure storage for different
crops. The term storage area monitoring is supposed to check and avoid fire hazards, whereas numerous other hazards also
need attention. One such hazard to cotton storage is spontaneous combustion, a process by which an element having
comparatively low ignition temperature (hay, straw, peat, etc.) starts to relieve heat. In the presence of spontaneous
combustion and lack of oxygen, if cotton catches any sparks from bales or physicochemical heat to ignite, the combustion
can convert in to smoldering, and it can last up to several days without being discovered. Consequently, the actual fire
occurs, cotton silently smoldering which not only affects cotton quality but also became the reason of big fire event. Many
researchers propose valuable tools and techniques based on laboratory methods and modern techniques as well for detection
and prevention of security hazards in storages. However, there is no standalone efficient tool/technique to monitor the storage
area for spontaneous combustion. In current research, we propose an efficient wireless sensor network (WSN) and machine
learning- (ML-) based storage area monitoring system for early prediction of spontaneous combustion in the cotton storage
area. The WSN is used to collect real-time values from storage field by different combinations of sensors and send this over the
network, where data is processed to identify spontaneous combustion and distribute the prediction results to the end user. The
real-time data collection and ML-based analysis make the system efficient and reliable. The efficiency of the current system is
verified by presenting two groups of cotton stored with different conditions. The results showed that the proposed system is able
to detect spontaneous combustion well in time with a 95% accuracy rate.

1. Introduction

Cotton is a widespread commercial nonfood crop in the
world. It provides income to more than 250 million people
worldwide and almost 7% labor employment of all labor in
developing countries [1]. Almost half of all textiles depend
on cotton. In 9 cotton storage areas, bulk of raw cotton is
stored. The security and safety of these storage areas are nec-
essary to improve, as any damage may ultimately result in
the biggest loss of cotton [2, 3]. The cotton storage area faces
two major safety challenges.

(1) Fire hazard

(2) Quality hazard

One major hazard for cotton is fire, although cotton is
considered as an inflammable substance [2]. The 90% of cot-
ton contains natural fiber and gases such as carbon along
with oxygen, which contains 45% of it. This mixture makes
cotton an inflammable substance. However, the cellulose
content composition makes cotton likely to catch fire by
external ignition. This can be avoided by protecting cotton
from sparks, fire, naked lights, and lit cigarettes [3].
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In addition to external ignition, cotton may also be likely
to catch fire by spontaneous combustion. The term sponta-
neous combustion means a process which occurs when an
element having comparatively low ignition temperature
(hay, straw, peat, etc.) starts to relieve heat [4]. In the pres-
ence of spontaneous combustion, if cotton can catch any
sparks from bales or any spark occurs by physicochemical
heat to ignite cotton, the combustion can convert in to smol-
dering due to the lack of oxygen in the cotton, and it can last
up to several days without being discovered. Hence, the
actual fire occurs, cotton silently smoldering, which not only
affects cotton quality but also became the reason of the big
fire event [3–5].

The fire hazard in cotton storage holds significant
importance due to several factors:

(a) Combustibility: Cotton is highly combustible and
can ignite easily under specific conditions such as
high temperatures, exposure to sparks, or friction.
Once ignited, it burns rapidly, leading to severe fires

(b) Self-heating: Under certain circumstances, such as
improper ventilation, high moisture content, or com-
paction, cotton can undergo self-heating. This process
generates heat due to microbial or chemical reactions,
potentially leading to spontaneous combustion and fire

(c) Economic loss: Cotton fires can result in substantial
economic losses, including damage to stored cotton,
infrastructure, and machinery. Moreover, the fire’s
impact often extends beyond the storage area, affect-
ing neighboring properties and businesses as well

(d) Health and safety risks: Fires in cotton storage
release harmful gases, smoke, and particulate matter
that pose health risks to workers, nearby residents,
and emergency responders

(e) Environmental impact: Cotton fires can cause envi-
ronmental damage by releasing pollutants and haz-
ardous substances into the air, soil, and water sources

In cotton, there are three possible types of self-heating by
which spontaneous combustion can occur, as given below.

(1) Thermal

(2) Chemical

(3) Microbial self-heating/spontaneous combustion

The thermal heating arises due to abnormal temperature,
and chemical heating arises due to moisture, fats/oils, and
action of acids, such as nitric or sulfuric acid, or by contact
with oxidizing agents and with goods with a tendency to
self-heating. Microbial heating occurs through the presence
of microbes in wet cotton bales that may produce small
amounts of methane gas.

The quality hazard is also linked with cotton’s internal
chemical composition and biological processes. These pro-
cesses can interrupt environmental markers necessary to
maintain a healthy storage environment, i.e., ambient tem-

perature, moisture content, and relative humidity, and as a
result, cotton quality detroits. The cotton quality is identified
by its color and spinning quality, cotton grade, staple length,
and micronaire reading. Cotton grade is accessed by color,
preparation (smoothness), and trash content. Staple length
measures fiber length. The long staple length is considered
good for cotton quality as compared to the shorter length.
Micronaire is the measurement of fiber fineness and matu-
rity [6–8]. The color of cotton becomes light gray and dark
gray if cotton’s internal temperature and moisture level dis-
tress, and similarly, moisture level disturbance also becomes
the reason of wet cotton that ultimately damages cotton fine-
ness and maturity of fiber. The internal reactions of cotton
turn its bright white color into yellow, which will be consid-
ered as bad quality which will not be considered good for
fine fiber. The internal dust particles increase the ratio of
trash in cotton and ultimately lower its quality. The presence
of insects and fungus as a result of microbial heating has
become the reason of spotted cotton for which also indicates
its bad quality. The above discussion came up with the given
research challenges.

(1) Prevention and mitigation of fire hazards in cotton
storage are crucial. Implementing proper storage tech-
niques to prevent big fire outbreak cause by internal
self-heating of cotton/spontaneous combustion, main-
taining optimal moisture levels, ensuring adequate ven-
tilation, using fire-resistant materials, and employing
monitoring systems like IoT-enabled circuits can help
minimize the risk of fire incidents in cotton storage

(2) The second challenge is the preservation of cotton
quality during long storages. Spontaneous combus-
tion can not only lead to a big fire outbreak, but it
can also affect cotton quality factors, i.e., it can
change cotton color, damage seeds on raw cotton
and spotted cotton, and damage cotton fineness
and maturity of fiber [6, 7]

We came to know after a detailed literature survey that
many researchers proposed storage monitoring system
based on detection and prevention of fire events cause by
external ignition such as sparks, light, temperature, humid-
ity, and smoking. However, there is a big research gap in
detection and prevention of cotton smoldering, spontaneous
combustion, and cotton quality maintenance during stor-
ages. The major motivations for current research are listed
below, also shown in Table 1.

(1) The previous cotton storage area security systems
focused on external ignition factors

(2) The previous systems for cotton storages used IoT-
based mechanism to detect only external factors,
i.e., spark light, and can send a fire notification once
it occurs

(3) The previous systems did not investigate and inte-
grate the phenomena of spontaneous combustion
in their proposed architecture

2 International Journal of Distributed Sensor Networks



(4) In the past few years, very limited research done in
domain of cotton quality, most authors studied only
factors and risk of combustion in cotton [3, 9, 10],
the igniting behavior of cotton contaminated with
oil [5], comparative studies of cotton and flame com-
bustion [6], the flammability of cotton bales that was
evaluated [7], and research done to investigate IoT
role in the cotton warehousing environment [11].
Some authors also investigate iconic gases produced
during the low-temperature heating process of cot-
ton [12], which helps to identify major gases pro-
duced during cotton heating. Some authors also
proposed solutions to measure and control external
weather conditions in the storage area only, and they
aim to improve safety mechanisms there [3, 8, 11]

The current research provides a wireless sensor network
(WSN) and machine learning- (ML-) based models for cot-
ton storage monitoring which provides

(1) Efficient real-time sensing of major factors contrib-
uting to spontaneous combustion using WSN

(2) ML-based analysis which detects cotton self-heating
for early prediction of spontaneous combustion. A
basic sketch of the proposed self-heat detection for
cotton storage is depicted in Figure 1, which shows
the overall functional part of the proposed system
framework for fire avoidance

The rest of the paper is structured as follows: Section 2
discusses state-of-the-art algorithms and approaches pre-
sented in the agriculture domain, which study combustion
and cotton storage monitoring systems using efficient tech-
niques. Section 3 describes the architecture of the proposed
approach and elaborates the proposed approach component
design. Section 4 describes the experiment design. Section 5
describes results and discussions to show the performance
testing, outcomes, and limitations of the presented approach.

2. Related Work

In the current section, we discussed a literature survey of
cotton storage security domain. There are many systems
proposed for cotton storage area security which only provide
prevention and control of fire events. We discussed the key

features of related work in Table 2, and limitations are dis-
cussed in Table 3.

An investigation was done by Xia in the year 2013 [5].
He did a comparative study on the combustion characteris-
tics between smoldering and burning of cotton. He found
that more carbon monoxide is produced during smoldering
than burning; hence, the CO rate is higher for smoldering.
Therefore, the early fire detection systems could be based
on the detection of CO levels. In the presence of higher
CO levels, one may set an alarm for early fire detection to
avoid loss in cotton storage areas.

Horrocks et al. in 1991 [6] investigated cotton self-
heating. He identifies that bales of raw cotton and piles of
cotton cloth during processing and laundering accumulate
self-heating which instigates spontaneous ignition. This
may occur due to the fact that the internal temperatures of
cotton fall in the 300–350°C which becomes the reason for
self-ignition. Their research showed that contamination of
pure cotton with refined cotton, peanut, and rapeseed oils
can promote ignition. They also did thermal analyses
(DTA and TGA), to highlight the fact that this internal exo-
thermic activity is oxygen-dependent.

An intelligent inspection system for cotton storage areas
was proposed based on the RFID [8]. It constitutes of two
parts, i.e., system hardware design and software design. The
hardware part applies the sensor in real-time mode with the
help of wireless transmission technology in storage. This hard-
ware canmonitor the circulation temperature and humidity in
the cotton stack storage warehouse. Then, based on real-time
monitoring, the bale information is then uploaded to the plat-
form in real-time. The system is developed by RFID intelligent
inspection terminal, which integrates RFID positioning tech-
nology and wireless temperature and humidity monitoring
technology into the system platform. They used the particle
swarm optimization (PSO) algorithm, optimizing the artificial
neural network (ANN) method for data analysis, based on
Gaussian filter processing. Their experiments and results
showed that the monitoring system could provide efficient
management of the entire cotton bale storage.

Another study on the cotton smoldering process was pro-
posed in 2020, which gives generation laws of the iconic gas
compositions during cotton smoldering Su et al., [12]. They
used a minitube furnace for heating the cotton sample which
was collected from Xinjiang, China. They applied a gas chro-
matography mass spectrometer (GC/MS) for identification

Table 1: Research challenges and motivation.

Challenges Factor detection Related work Current research motivation

Fire events

Smoke ✓ ✗

Humidity ✓ ✓

Temperature ✓ ✓

Light ✓ ✗

Spontaneous combustion

Internal temperature ✗ ✓

Cotton moisture ✗ ✓

Cotton gases ✗ ✓
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and analysis of produced organic and inorganic gas composi-
tion. They did the experiment at different low temperatures
and applied different concentrations of gases. They come
up with a given conclusion. (1) The heating process produces
alkanes, furans, alkenes, aldehydes, hydrazine, and acids. The
methane has the highest proportion, being nearly 99% in the
organic gas composition. Moreover, a little hydrogen and
carbon monoxide were also produced. (2) Methane was pro-
duced continuously during the heating process. Hydrogen is
produced at 95°C, as a midproduct. Along with hydrogen,
acetone is also produced at 125°C, and carbon monoxide is
produced at 145°C, showing that the smoldering was at the
early stage. (3) If smoldering happened, methane and hydro-
gen are both produced, which means that they can be used as
indicators of smoldering. Hence, their research on the iconic
gas compositions will provide a significant basis for the pre-
vention of cotton self-heating.

In another study [9], the authors used a C80 microcal-
orimeter connected with a high-pressure atmosphere con-
trol panel, to investigate the thermal behavior of cotton
and for the calculation of its self-heating oxidation tem-
perature (SHOT). They took three types of cotton samples
and heated them and applied the Semenov model and Frank-
Kamenetskii theory to calculate the oxidation of cotton in air
through thermodynamics and kinetics parameters. Their
study concluded that higher heating a rate results in a larger
heat reaction and lower SHOT.

The cotton storage areas require more efficient moni-
toring, as only such systems can decrease fire and other
damage in cotton storage areas. Early fire detection can
only be provided by investigation of all such factors and
events that contribute to the formation of fire. The research
on the formation mechanism of fire at cotton place is fruit-
ful to designing early fire detection systems. One such
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Figure 1: WSN for cotton storage monitoring.

Table 2: Feature analysis of the proposed approach.

Related work Storage area target Technique IoT based Prediction of combustion

[8], 2021 Temperature Particle swarm optimization (PSO) Yes No

[12], 2020 Detection of gases Gas chromatography mass spectrometer (GC/MS) No No

[11], 2015 Temperature Commercial tools No No

[9], 2013 Oxidation temperature Used C80 microcalorimeter No No

[5], 2013 CO levels Comparative study No No

[10], 2012 Study fire factors Commercial tools No No
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investigation was carried out by Gu [10]. He did a compre-
hensive analysis on the physical and chemical properties
and combustion conditions of cotton and concluded that
smoldering was the main cause of cotton fire and of cotton.
He did experiments to determine the important factors that
may contribute to smoldering; he found two important fac-
tors affecting cotton smoldering, which are temperature

and humidity. Thus, cotton smoldering produces some
smoke.

The smoldering process is influenced by many environ-
mental factors, i.e., temperature, humidity, gases from air,
presence of smoke, etc. [11]. These are not the only factors
that instantiate cotton smoldering in the environment but
also include many other factors which not only contribute

Table 3: Limitations of proposed approach features.

Related
work

Storage area target Key advantage Limitations

[8] Temperature
RFID- and PSO-based wireless temperature

and humidity monitoring technology
Only consider external factors for investigation

[12] Detection of gases
Propose generation laws of the iconic gas
compositions during cotton smoldering.

Study focus did not wait for natural processes that
increase cotton heating level for identification of gases,

but rather, they give heat from external source to
study gases that emerge as a result of heat.

[11] Temperature
They also did thermal analyses to

investigate internal exothermic activity.
Only study temperature and use traditional methods

for investigation

[9]
Oxidation
temperature

Study self-heating oxidation temperature
(SHOT), which, in the current study, is
helpful to identify self-heating markers.

The study used traditional instruments for
investigation rather than modern technology-based

tools/techniques.

[5] CO levels
Compare combustion characteristics

between two processes, i.e., burning and
smoldering

Study only focuses on one gas, and there are many
other gases that emerge during burning and smoldering.

[10] Study fire factors
Propose early fire detection by investigation
of all such factors and events that contribute

to the formation of fire

Only focus on two factors and not directly linked with
SC, and also, they use traditional tool for identification of

factors.
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to cotton smoldering but also became the reason of cotton
burning. Hence, more investigation and analysis are
required to fill in the research gap in early fire detection of
cotton storage.

3. Proposed Methods

In this section, we provide a comprehensive discussion on
the theoretical background of cotton self-heating, factors
part in self-heating, and SC relation with self-heating. We
also discussed the functionality of the proposed system in
two major parts, as given in Figure 2.

(1) WSN of real-time self-heat monitoring

(2) ML analysis

3.1. Self-Heating Theoretical Model. In this section, the theo-
retical model of cotton self-heating is discussed to highlight
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Table 4: Cotton self-heating type.

Self-heating type Identifiable Self-heating factor Self-heating indication

Thermal ✓ Temperature Temperature value

Chemical ✓ Moisture/acids/oxygen Moisture level

Microbial ✓ Microbes Methane

Table 5: Reference range for three types of self-heating.

Self-heat type Indicator Reference range

Thermal Temperature
120°C (oily cotton)

407°C (normal cotton)

Chemical Moisture 6.5% to 8%

Microbial Methane 50-55MJ/Kg
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major types of self-heating, key elements in self-heating, and
indicators of self-heating, as shown in Figure 3. There are
three essential facts which provide the basis for the proposed
system.

(i) Types of cotton self-heating

(ii) Root causes of self-heating

(iii) Self-heating identification: factors and measurement

The cotton is liable to thermal, chemical, and microbial
self-heating [4, 13, 14], as shown in Table 4.

All three types of cotton self-heating can be identified by
the relevant factor, which emerges as an indicator of each
subsequent self-heat type, as shown in Table 5.

3.2. Proposed WSN Model. The WSN is a collection of sen-
sor nodes installed at various locations of the target site to
sense real-time input, a highly efficient technique to sense
real-time values in efficient system, i.e., IoT-enabled smart
appliances [15] and smart lighting systems for smart cities
were designed using IoT [16], and IoT is also used in smart
farming applications [17]. The whitefly prediction system is
also based on IoT [18], a fire detection system with IoT
[19]. In the current scenario, the proposed system goal is
sensing the self-heating mechanism for which the IoT sens-
ing circuit node is designed by using differently. The details
of the used sensor are given in Table 6, and the functionality
of the sensor module is given below.

(a) Deployment: The proposed IoT systems utilize vari-
ous sensors strategically placed within the storage
facility. These sensors include temperature sensors,
moisture sensors, methane detectors, and Bluetooth
module. These devices continuously collect data
regarding the storage environment

(b) Data transmission: The sensors are connected wire-
lessly to a central hub or gateway within the IoT sys-
tem. This hub collects data from all deployed sensors
and acts as a communication bridge

(c) Data collection and processing: The central hub
receives data streams from the sensors in real time.
Then, this data is passed to GUI app via Bluetooth
for further analysis and prediction of output

(d) Predictive analytics: The system used ANFIS which
is already integrated into the IoT system GUI to
analyze the collected data. The ANFIS is trained
on historical data to forecast the likelihood of
spontaneous combustion based on current envi-
ronmental conditions

(e) Remote monitoring and control: The proposed sys-
tem provides a user interface accessible remotely,
allowing operators or managers to monitor the stor-
age environment in real time. This interface could
display sensor data, predictive results of spontaneous
combustion, and alerts.

Table 6: IoT module components.

Module Hardware name Target factor

Sensing part

Arduino microcontroller Circuit wiring

Soil moisture sensor Moisture

MQ-4 Methane

LM35 Temperature

Notification module

Ky006-Buzzer System Buzzer

Bluetooth module Data passing
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3.3. The ML Analysis Model. The proposed system used the
adaptive neuro fuzzy inference system (ANFIS) for early
prediction of spontaneous combustion. The ANFIS is a
machine learning algorithm that combines the strengths of
neural networks and fuzzy logic to model complex systems,
making it particularly suitable for predicting phenomena
like spontaneous combustion in cotton storage. There are
potentially many reasons to select ANFIS for given system,
i.e., ANFIS is a hybrid model that uses fuzzy rules to create
a structure that mimics human decision-making processes
while leveraging neural networks to learn and adapt from
data.

The system is designed for identification of spontaneous
combustion in cotton storage, which is influenced by various
factors such as temperature, moisture levels, airflow, and
microbial activity. ANFIS excels in modeling complex, non-
linear relationships between these factors, which may not be
easily captured by traditional statistical methods. Moreover,
the “adaptive” nature of ANFIS allows it to continuously
adjust its parameters and fuzzy rules based on incoming
data. This adaptability makes it suitable for dynamic envi-
ronments like storage facilities where conditions can change
over time.

The ANFIS is a combination of fuzzy inference and neu-
ral networks. The development of a fully functional fuzzy
inference system depends upon the rule base, which is not
always convenient to design. Hence, ANFIS adopts the idea
of applying learning algorithms on fuzzy systems which sup-
ports automatic tuning of fuzzy rule sets and data [20–22].
The ANFIS is composed of five layers, as shown in Figure 4.

(1) The first layer maps the input variables to the mem-
bership function

(2) In the second layer, the antecedent of the rule is cal-
culated by the operator t-norm

(3) The third layer normalized rule strength

(4) The fourth layer calculates the consequent of the rule

(5) The fifth layer is the output layer which calculates
the summation of all inputs to compute the output

One big novelty of ANFIS is that it does not require
expert knowledge to assign parameters of a fuzzy inference
system, rather it tunes parameters by utilization of neural
network learning algorithms (as shown in Figure 5). The
basic architecture of a five-layer ANFIS is architecture with
two inputs (x and y) and one output (f ) discussed below
(shown in Figure 6), also described by [23]. On each layer,
there are two kinds of nodes, namely, adaptive (represented
by squares) and fixed nodes (represented by circles). The
adaptive node parameters are adjustable, whereas fixed
nodes contain fixed parameters. To present the ANFIS
architecture, two fuzzy IF-THEN rules based on the first-
order Sugeno fuzzy inference system are considered:

(a) Rule 1: if a is x1 and b is y1, then f 1 = y1a + q1b + r1

(b) Rule 2: if a is x2 and b is y2, then f 2 = y2a + q2b + r2

Input variable Membership
function

Rule antecedent

Normalize rule
strength

Rule consequent

Compute output by
summation of all input

Layer1

Layer2

Layer3

Layer4

Layer5

Figure 4: Adaptive neuro fuzzy inference (ANFIS) layers.
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Ai and Bi are inputs for fuzzy set, and fi is the output for
fuzzy rules and is an index for fuzzy rules, and it ranges from
(i = 1, 2,⋯, n); the variables pi, qi, and ri are adaptive
parameters. These parameters will be tuned by the training
process. The first layer of the ANFIS node is of adaptive
type. This layer is known as the fuzzification layer [24]. In
this layer, the output is calculated by a fuzzy membership
grade of input. This output is represented by the given

Ө1
j = μAj x  where j = 1, 2,

Өj1 = μBj−2 y  where j = 1, 2
1

The second layer of ANFIS comes from the first layer
using AND. This layer contains fixed nodes which are used
to compute rule strengths. The output of this layer is repre-
sented by wj given in

Ө2
j =wj = μAj x μBj y , where j = 1, 2 2

The third layer performs the task of normalization by
using fixed nodes. The output is represented by wj given in

Ө3
j =wj =

wj

∑2
k=1wk

,

j = 1, 2

3

The fourth layer computes the product of the normalized
output wj and the first-order polynomial of inputs. This
layer contains adaptive nodes like layer 1. The output of this
layer is shown in

Ө4
j =wj f j =wj pjx + qjy + r j ,

j = 1, 2
4

The fifth layer sums up all incoming signals by using one
fixed node [20]. The output of this layer is represented by

Ө5
j = y = 〠

2

k=1
wjf k,

j = 1, 2

5

3.4. Implementing Propose System. In the initial step, the
proposed system collects real-time input from the cotton
storage area using an IoT-enabled circuit. The cotton self-

N

𝛴

Layer4 Layer5

A1

B2

B1

A2

x

Y

𝜋

𝜋 N

Layer1 Layer2 Layer3

W1

W2
f

x

x

y

y

w1

w

w

w2

2
f2

1f 1

Figure 5: Architecture of adaptive neuro fuzzy inference system.

Figure 6: Proposed experiment.

Figure 7: Arduino routine for data sensing.
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heat theoretical model highlighted major self-heat factors.
Keeping in that view, we design an appropriate circuit to
sense them (sketch is shown in Figure 6). Every sensor is
quality with proper calibration code to work with an Ardu-
ino, and the complete code of all sensors is also shown in
Figure 7.

This code execution showed real-time values of self-
heat-causing factors which need to be placed on the file for

analysis. Different options are available to store the output
of Arduino code. In our current system, we store CSV files
of this real-time data. Then, we provide this input ANFIS
designer in .DAT format.

The analysis part of the proposed system used ANFIS,
which is implemented with the MATLAB designer app [25,
26]. The implementation steps of ANFIS are described in
Figure 8. It shows a training dataset first loaded on the
MATLAB workspace, and a dataset variable is available to
upload from the designer view of ANFIS as training input,
after which FIS is generated automatically through a
designer’s view as shown in Figure 9, and the neural layered
structure of the proposed ANFIS is also shown in Figure 10.

The rule view of the proposed ANFIS is shown in
Figure 11, in which the computed output (self-heating) for
two different combinations of input variables (temperature,
moisture, and methane) is shown. In the first combination,
the output value is zero, showing that no self-heating is
detected, whereas in the second combination of input values,
the computed output of ANFIS is greater than one, i.e., self-
heating detected for this combination.

4. Experiments and Results

To evaluate the performance of the proposed system, first,
we design a basic experiment setup in which we prepare

Training dataset
DAT file

Adaptive neuro fuzzy inference designer view

Testing dataset DAT
file

MATLAB workspace
3. Training and testing variable

uploading

2. Upload DAT files on workspace

Generation of FIS membership + rules

4. Command generate FIS

Train FIS

5. Train FIS with raining dataset DAT file

Test FIS

6. Test FIS with testing dataset DAT file

Sensor readingsSensor nodes
1. Dataset preparation

Figure 8: ANFIS implementation flow chart.

Figure 9: ANFIS view.
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two groups of cotton storage with different experimental set-
tings, as described in Table 7.

Both the controlled and experimental groups were
exposed to weather conditions detailed in Table 7 for a dura-
tion of 60 days. Within the storage environment, an IoT cir-
cuit was integrated, and three IoT circuit nodes were
strategically positioned around the storage area to observe
and track self-heating indicators. After the 60-day period,
the proposed IoT-enabled circuit was used to examine indi-
cators related to self-heating. The sensor nodes specifically
monitored internal moisture levels, the presence of methane,
and temperature variations in the cotton to identify different
forms of self-heating—thermal, chemical, and microbial.
Elevated temperature beyond the cotton’s ignition point,
increased moisture percentage encouraging chemical reac-
tions, and heightened methane levels indicated the potential
for self-heating, respectively, caused by temperature, mois-
ture, and microbial presence within the cotton (see Table 5
for reference range).

We perform sensing on both controlled and experimen-
tal groups and repeat the experiment after every 20 days’
gap, initially started after 90 days of consecutive cotton
storage. The obtained values from the IoT-enabled circuit
were then passed to ANFIS for detection of cotton self-
heating. A total of 100 experiments were done for each
group with 20 days’ gap, collected 50 data values, and pre-
pared the dataset separately for each group with 500
instances. The detailed description of the experiment data
is shown in Table 8.

4.1. Experiment Analysis. We observed that cotton stored
under extreme weather conditions and compressed format
showed more instances with high values of methane, mois-
ture level, and temperature as compared to the controlled
group which showed fewer instances with high temperature,
high moisture, and methane presence, as shown in Table 8.
The comparison graphs for both group instances are shown
in Figures 12–17. Figure 12 shows methane levels of the
experimental group, and Figure 13 shows methane levels of
the controlled group. The x-axis of both graphs showed no
instances with high methane levels, and the y-axis showed
experiment day. Figure 12 shows that on experiment day
110, only 2 instances had high methane value and it
increased gradually, i.e., 6 instances with high methane levels
on day 290, whereas in the controlled group, as Figure 13
shows only 1 instance with high methane level at experiment
day 230, a maximum of 3 instances with high methane level
was recorded on day 290. This clearly depicted that the
experimental group showed more instances of self-heat-
causing factors, i.e., methane.

Figure 14 shows temperature levels of the experimental
group, and Figure 15 shows temperature levels of the con-
trolled group. The x-axis of both graphs showed no
instances with high-temperature levels, and the y-axis
showed experiment day. Figure 14 shows that it is clearly
observed that on experiment day 110, the 2 instances have
high-temperature value, and they are increasing gradually,
i.e., 8 instances with high-temperature level on day 290,
whereas this count is less in the controlled group as

Figure 10: Propose ANFIS model.
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Figure 15 shows 1 instance with high-temperature level at
experiment day 150, with maximum 3 instances with high-
temperature level that were recorded at day 290. This clearly
depicted that the experimental group showed more instances
with self-heat-causing factors, i.e., ignition temperature.

Figure 16 shows moisture levels of the experimental
group, and Figure 17 shows moisture levels of the controlled
group. The x-axis of both graphs showed no instances with
high moisture levels, and the y-axis showed experiment
day. Figure 16 shows that it is clearly observed that on

No heat detected
Normal class

Self-Heated

Figure 11: ANFIS rule view.

Table 7: Experimental setup.

Group type Weather conditions Placement

Controlled

Normal

Normal big-size boxSuitable temperature

Moderate humidity

Experimental

Extreme

Combusted placement in a small box
High temperature

High humidity

Bad air quality
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experiment day 110, it shows that 1 instance had a high mois-
ture value, and it is increasing gradually, i.e., 7 instances with
high moisture level on day 290, whereas this count is less in
the controlled group as Figure 17 shows 1 instance with high
moisture level at experiment day 210, with maximum 3
instances with high moisture level that were recorded at
day 290. This clearly depicted that that experimental group
showed more instances with self-heat-causing factors, i.e.,
moisture.

5. Discussion and Limitations

The proposed ANFIS is applied to the datasets gathered
from the controlled and experimental groups. The obtained
predictions are then evaluated by using efficient statistics of
precision, recall, and accuracy mostly used to check the cor-
rectness and completeness of efficient systems [27, 28];
hence, we also used this on the proposed ANFIS. The for-
mula for precision, recall, and accuracy is given in equations
(6)–(8), respectively, and obtained results of precision and
recall are shown in Table 9.

Precision =
TSH

TSH + FSH
∗ 100, 6

Recall =
TSH

TSH + FN
∗ 100, 7

Accuracy =
TSH + TN

Total
∗ 100, 8

where

(i) True self-heated TSH: ANF predicted real self-
heated class as self-heated

(ii) False self-heated FSH: ANF predicted real normal
class as self-heated
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Figure 12: Experimental group methane level.

Table 8: Experiment results.

Group Experiment count Experiment day High methane High temp. High moisture

Experimental (500)

50 Day 110 2/50 2/50 1/50

50 Day 130 4/50 2/50 1/50

50 Day 150 4/50 2/50 1/50

50 Day 170 4/50 5/50 4/50

50 Day 190 4/50 5/50 5/50

50 Day 210 6/50 5/50 5/50

50 Day 230 6/50 6/50 6/50

50 Day 250 6/50 7/50 6/50

50 Day 270 6/50 7/50 7/50

50 Day 290 6/50 8/50 7/50

Total 500 270-day span 48/500 49/500 43/500

Controlled (500)

50 Day 110 0/50 0/50 0/50

50 Day 130 0/50 0/50 0/50

50 Day 150 0/50 1/50 0/50

50 Day 170 0/50 1/50 0/50

50 Day 190 0/50 1/50 0/50

50 Day 210 0/50 2/50 1/50

50 Day 230 1/50 2/50 1/50

50 Day 250 3/50 2/50 2/50

50 Day 270 3/50 3/50 2/50

50 Day 290 3/50 3/50 3/50

Total 500 270-day span 10/500 14/500 9/500
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(iii) True normal TN: ANF predicted real normal class
as normal one

(iv) False normal FN: ANF predicted real self-heated
class as normal

The instances of experimental and controlled groups
were either predicted as self-heated or normal by ANFIS.
We checked the performance of ANFIS by applying preci-
sion, recall, and accuracy formulas on the obtained predicted
classes. The obtained results given in Table 9 are also
depicted in the statistical graph and confusion matrix as
shown in Figures 18 and 19.

It is shown in Figure 20 that the proposed ANFIS pre-
dicted more of self-heated class in the experimental group,
whereas fewer instances showed normal class prediction
with ANFIS. However, the ANFIS predicted more normal
class instances in the controlled group with fewer instances
of self-heat class. These results support the research assump-
tion that extreme weather conditions provoke more self-
heating factors to rise above their normal range, which
results in the accumulation of self-heating in cotton. The
normal weather, apart from any external interference factor,
kept self-heat-causing factors under their normal ranges and
ultimately prevented overheat accumulation in cotton bales.

The performance of ANFIS is depicted in Figure 21, in
which the precision, recall, and accuracy of proposed
ANFFIS are shown graphically. The experiment and the
controlled group both showed a 95% accuracy rate for pre-
dictions done by ANFIS, showing that the proposed ANFIS
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has satisfactory performance. The precision and recall of
both groups range between 95% and 99%, showing that the
proposed ANFIS has a good correctness and completeness
rate.

5.1. Limitations of Proposed System. The proposed early pre-
diction of spontaneous combustion is based on the IoT
approach for prediction of self-heating/spontaneous com-
bustion in cotton. The limitations of the proposed solution
are described in Table 10. Table 11 presents a comparative
analysis with similar research studies to underscore the
applicability and relevance of our proposed research within
the context of related studies.

6. Conclusion and Future Work

In cotton storage area, the bulk of raw cotton is stored. The
one major hazard for cotton is fire [2]. 90% of cotton con-
tains natural fiber and gases such as carbon along with oxy-
gen, which contains 45% of it. This mixture makes cotton an

inflammable substance. However, the cellulose content com-
position makes cotton likely to catch fire by external igni-
tion. This can be avoided by protecting cotton from sparks,
fire, naked lights, and lit cigarettes [3]. In addition to exter-
nal ignition, cotton may also likely to catch fire and compro-
mise its quality due to spontaneous combustion, a process by
which the internal temperature of an element (hay, straw,
cotton, etc.) crosses its limit of the ignition point due to
accumulation of heat produced by oxidation or bacterial fer-
mentation in it. This internal heat can remain in cotton for
months unnoticed, which, upon external instigation by
sparks or any other source, may cause an outbreak. Hence,
there must be some mechanism or technique to predict this
process before it may occur and cause damage. In current
research, we have focused on an early prevention of fire by
presenting an intelligent and early prediction system to
detect self-heating of cotton and ultimately contribute to
an early prediction of spontaneous combustion in the cotton
storage area. The process of spontaneous combustion is
aided by many factors such as gases (methane, oxygen, phos-
phine, and diphosphine), the internal temperature of cotton,
its moisture levels, environmental temperature, and humid-
ity levels. The IoT-based hardware is used to detect self-
heating factors and machine learning algorithms for early
prediction of spontaneous combustion. The proposed sys-
tem can sense self-heat-causing factors using an IoT-
enabled circuit, which then passes real-time sensed values
to an efficient adaptive neuro fuzzy system to predict spon-
taneous combustion/cotton self-heating from heat-causing
indicator values. The performance of the proposed system
is evaluated by experiments performed on two different

Table 9: Proposed system precision and recall.

Experiment group Count TSH FSH TN FN
Precision

TSH/TSH + FSH
Recall

TSH/TSH + FN
Accuracy

TSH + TN/Total
Experiment 500 475 17 04 04 96% 99% 95%

Controlled 500 470 22 05 03 95% 99% 95%

475 470

17 22 4 5 4 3
0

50
100
150
200
250
300
350
400
450
500

True self heated False self heated True normal False normal

Statistical graph for experimental data

Experimental

Controlled

Figure 18: Statistical graph of experiments.

n = 500 Self heated Normal

Self heated TSH = 475 FN = 4

Normal FSH = 17 TN = 4

Predicted

A
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l

Figure 19: Confusion matrix of experimental data.
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cotton groups, i.e., controlled and experimental, groups
stored with different environmental setups, and then, the
proposed IoT circuit used to collect self-heat-causing factor
values is then used as input for analysis module ANFIS.
The detection results of the proposed ANFIS showed that
more instances from experimental group showed self-heat
indication as compared to controlled group; moreover, sta-
tistics applied on ANFIS showed an 85% accuracy rate. In
our proposed approach, data analysis is performed with

ANFIS. The proposed system showed satisfactory perfor-
mance levels to provide security in cotton areas. There are
many future perspectives of research which could be consid-
ered for enhancements to the proposed system, as discussed
below.

(1) In the future, cotton color might be regarded as a sig-
nificant feature for exploring the impact of sponta-
neous combustion on the quality of cotton

0 10 20 30 40 50 60

Presence of high methane

Ignition temp

High moisture level

Controlled
Experimental

Experiments result

Figure 20: Result graph.

ANFIS performance graph
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Experimental

Controlled

(%
)

Figure 21: ANFIS performance graph.

Table 10: Proposed system limitations.

Factor Limitation

Technique
Proposed system used adaptive neuro fuzzy inference system for decision-making, as it is based on decision
rules; however, other analysis techniques may perform better, and no comparison is done in this regard.

Real-time sensing
Proposed system based on real-time sensing by data collection circuit, which may show inconsistency

due to hardware miss or error in values.

Spontaneous combustion
factors

Proposed system focused on three factors for spontaneous combustion early detection whereas other
factors are also involved in the process that may help in the identification of the process as well.
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(2) In the future, the current system could be enhanced
by considering more heat-causing factors for detec-
tion of self-heat

(3) The proposed approach could also use camera
images of cotton areas for prevention of fire if fire
occurs as a result of self-heat

Table 11: Comparison with related research.

Research Study goal Technique used Findings

Proposed
Detection of SC

Help owner to preserve cotton
quality during lengthy storage

IoT for data input ANN for data
analysis

(1) Smart sensing of three types of self-heating
caused by temperature, methane, and moisture
in order to detect SC.
(2) ANN can predict SC with 99.8% accuracy.

[5]
Identify combustion characteristics of
smoldering and burning of cotton

Comparative study

(1) Compare combustion characteristics
between two processes, i.e., burning and
smoldering.
(2) He found that more carbon monoxide
produces during smoldering than burning;
hence, the CO rate is higher for smoldering.

[6]
Investigation of thermal self-heating in

raw cotton
Thermal analysis

(1) Bales of raw cotton and piles of cotton cloth
during processing and laundering accumulate
self-heating which instigate spontaneous
ignition due to the fact that the internal
temperatures of cotton fall in the 300–350°C
range which becomes the reason of self-
ignition.

[8]
RFID- and PSO-based wireless

temperature and humidity monitoring
technology

Particle swarm optimization (PSO)

(1) The system monitors the circulation
temperature and humidity in the cotton stack
storage warehouse using real-time monitoring,
i.e., RFID intelligent inspection terminal, which
integrates RFID positioning technology and
wireless temperature and humidity monitoring
technology into the system platform. The bale
information is then uploaded to the platform in
real time.

[12] Detection of gases
Gas chromatography mass
spectrometer (GC/MS)

(1) Propose generation laws of the iconic gas
compositions during cotton smoldering.
(2) The heating process produces alkanes,
furans, alkenes, aldehydes, hydrazine, and
acids.
(3) The methane has the highest proportion
being nearly 99% in the organic gas
composition. Moreover, a little hydrogen and
carbon monoxide were also produced.
(4) Methane was produced continuously during
the heating process. Hydrogen produced at
95°C, as a midproduct. Along with hydrogen,
acetone is also produced at 125°C, and carbon
monoxide is produced at 145°C, showing that
the smoldering was at the early stage.
(5) If smoldering happened, methane and
hydrogen are both produced, which means that
they can be used as indicators of smoldering.

[9]
Finding self-heating oxidation
temperature (SHOT) of cotton

C80 microcalorimeter
(1) Their study concluded that a higher heating
rate results in larger reaction heat and lower
SHOT.

[10]

Propose early fire detection by
investigation of all such factors and

events that contribute to the formation
of fire

Did a comprehensive analysis on the
physical and chemical properties and
combustion conditions of cotton

(1) He did a comprehensive analysis on the
physical and chemical properties and
combustion conditions of cotton and
concluded that smoldering was the main cause
of cotton fire and of cotton.
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(4) In the future, the proposed system could also be
implemented by other machine learning and deep
learning techniques to achieve more accuracy and
better performance

(5) In the future, more reliable hardware devices can be
used to design real-time data collection circuit to get
more reliable values
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