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This study presents frequency-based substructuring (FBS) techniques and an identification method for predicting joint
parameters. Two FBS techniques, FBS-1 and FBS-2, were derived by assuming pseudomasses at the joint nodes between
adjacent substructures. It is estimated that the main reason for the discrepancy with the analytical FRFs is the difficulty in
describing the low-frequency responses owing to the assumed pseudomasses of the substructures. Although the FRF curve
based on the FBS-2 technique is very close to the analytical FRF curve up to the first resonance frequency, some
inconsistencies occur thereafter. It is analyzed that the FRFs up to the first resonance frequency can be utilized for data
expansion methods and system identification techniques. Paying attention to this result, this study also provides an
identification method to estimate the joint parameters based on the FRF variation. Its validity is illustrated using a numerical
example.

1. Introduction

Employing dynamic substructuring techniques in the analysis
of large structures can save time and cost by disassembling and
synthesizing them into multiple substructures. The decoupled
substructures are synthesized by applying deformation com-
patibility conditions to the common nodes between adjacent
substructures. The substructures are brought into equilibrium
by the generated interface forces to satisfy the constraint con-
ditions. Existing structural synthesis techniques are divided
into three types: component mode synthesis (CMS),
frequency-based substructuring (FBS), and impulse-based
substructuring (IBS) techniques. The CMS method simplifies
complicated finite element models to reduced-order models,
the FBS method assembles the frequency response functions
(FRFs) of individual substructures, and the IBS method allows
high-frequency dynamics.

FBS techniques obtain the FRFs of the entire system by
assembling the numerical or experimental FRFs [1] of multi-
ple substructures. There has been some difficulty in obtaining
complete response datasets, including rotational responses,
from experimental data. Silva and Maia [2, 3] estimated rota-

tional FRFs by expanding measured FRFs based on modified
Kidder’s method and the principle of reciprocity. Batista and
Maia [4] proposed a method to estimate rotational FRFs that
cannot be measured. Wan Iskandar Mirza et al. [5] derived
the translational and rotational FRFs from the experimental
modal model using the finite element model reduction and
expansion method. Hosoya and Yoshimura [6] estimated
rotational FRFs by the inner force and the response of the
connection point including rotational DOFs. Many updating
techniques based on the measured FRFs have been proposed
[7–12]. Patil [13] determined the joint parameters of the
rotational and translational stiffness for connected systems
using the modal coupling method of sensitivity modes. Drozg
et al. [14] expanded the rotational degrees of freedom
(DOFs) of an FRF matrix based on a modal model by intro-
ducing a Lagrange multiplier frequency-based substructuring
(LM-FBS) technique. De Klerk et al. [15] introduced the LM-
FBS method to improve the classical FBS method for assem-
bling the dynamic admittance of substructures. Mahmoudi
et al. [16] used the LM-FBS algorithm to treat flexible joints
as substructures, presenting three approaches for avoiding
the singularity problem in coupling substructures. Bouslema
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et al. [17] investigated the global dynamic behavior of a
coupled transmission system based on a double-reducer
stage. By combining the position-invariant component-level
receptances at the joint nodes between substructures, Law
and Ihlenfeldt [18] introduced an FBS approach.

Estimating the stiffness and damping of joints between
structural members, or between members and boundary
points, is a topic of interest. Considering the continuity of
load transfer, the stiffness of joints is an important factor
in structural design and analysis. This can be estimated
using the FRFs, including the dynamic characteristics of
the structure. Jalali [19] proposed an identification method
for predicting the stiffness of contact interfaces using linear
interface parameters. Yang et al. [20] proposed multiobjec-
tive optimization algorithms to identify joint parameters
from the relationship between joint parameter perturbation
and structural dynamics. Sanati et al. [21] provided two
identification approaches for the inverse receptance coupling
method and an analytical joint identification approach to
obtain the linear stiffness and damping of a joint. Yang
et al. [22] identified joint parameters using the substructure
synthesis approach, FRFs, and only two measurement points
in the experiment. Lee and Hwang [23] derived an FBS tech-
nique by minimizing the difference between the reference
and calculated responses and identified the joint parameters.
By estimating the unmeasured FRFs from the measured
FRFs, Yang and Park [24] identified the joint parameters
using subset FRFs. Hwang [25] proposed an identification
method for connections using FRFs by calculating and aver-
aging the connection properties for each frequency. Li [26]
presented a model-updating method for identifying joint
stiffness using a reduced-order characteristic polynomial.
The FBS techniques presented above introduced numerical
schemes rather than explicit mathematical forms. The FBS
techniques and identification approaches introduced above
have limitations in research based on numerical analysis
schemes.

This paper presents FBS techniques using compatibility
conditions based on the FRF in the frequency domain and
discusses their limitations. Assuming pseudomasses at the
joint nodes between independent substructures, two FBS
techniques are presented depending on the performance
indices using the least-squares method. The first approach
is the FBS-1 approach, which minimizes the dynamic
responses to satisfy the compatibility conditions and trans-
forms them into the frequency domain. The second approach
is the FBS-2 approach, which minimizes the FRF matrix to
satisfy the compatibility conditions. Because the FRF is
closely related to the dynamic characteristics of a structure,
it is a crucial factor in establishing the numerical pseudo-
masses in this study. Numerical examples demonstrate that
the FBS-2 approach is a more applicable synthesis technique
than the FBS-1 approach. However, an inconsistency in the
FRFs between the FBS approaches and analytical analysis
was observed. This discrepancy mainly arises from the
assumed nonspecifiable pseudomasses and the challenges in
describing the low-frequency responses of substructures.
Although the FRF curve based on the FBS-2 technique is very
close to the analytical FRF curve up to the first resonance fre-

quency, some inconsistencies occur thereafter. Using the
FRFs up to the first resonance frequency, this study provides
an identification method for estimating the joint parameters
based on the FRF variation required to satisfy the compatibil-
ity conditions. The validity of the proposed identification
method is illustrated using a numerical example.

2. FBS Techniques

Dynamic substructuring for describing the dynamic response
of a large structure is derived in the frequency domain. The
synthesis was based on the deformation compatibility condi-
tions between adjacent substructures. The compatibility con-
ditions restrict the dynamic responses as constraints, and the
synthesis technique modifies the generalized inverse method
proposed by Udwadia and Kalaba [27].

2.1. Constrained Dynamic Equation and Dynamic
Substructuring. The dynamic equation of motion for a
dynamic structure with n DOFs in the time domain can be
written as

Mu +Cu +Ku = f t , 1

where M, C, and K represent the n × n mass, damping, and
stiffness matrices, respectively, whereas u and f are the n × 1
displacement and external excitation force vectors, respectively.

Assume that the dynamic behavior of the system is
restricted by m linearity and equality conditions, written as

ϕ u, u, t = 0 2

Equation (2), when expressed in acceleration compo-
nents through its time derivative, can be written as

Au = v 3

If the dynamic synthesis of substructures is considered,
the coefficient matrix A denotes the Boolean matrix corre-
sponding to the joint nodes between substructures, and vec-
tor v should be a zero vector.

Using Gauss’s principle, the constrained acceleration
vector was determined by minimizing the performance
index of

P =M1/2 q − a M1/2, 4

where q and a are constrained and unconstrained acceler-
ation vectors, respectively. The equations of motion for
constrained dynamic systems provided by Udwadia and
Kalaba that were used to combine Eqs. (1) and (3) can be
expressed as

q = a +M−1/2 AM−1/2 + v −Aa , 5

where a = −M−1 Cu +Ku − f t . The FRF matrix was
derived by transforming the dynamic equations of the syn-
thesized substructures into the frequency domain.
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Consider the synthesis of substructures 1 and 2 as shown
in Figure 1. The dynamic equation of motion for the two
substructures is expressed as follows:

Msynusyn +Csynusyn +Ksynusyn = fsyn 6

where Msyn =
M1 0
0 M2

, Csyn =
C1 0
0 C2

, Ksyn =
K1 0
0 K2

, usyn =
u1

u2
,

and fsyn =
f1
f2
. The subscripts 1 and 2 denote substructures 1

and 2, respectively. The displacement vectors ui i = 1, 2
were divided into displacements at the boundary nodes uib
and displacements at the internal nodes uir . The subscript
“syn” indicates the synthesized substructures containing
the full sets of DOFs of the substructures.

The deformation compatibility conditions were used as
constraint conditions in the same form as in Eq. (3). The
equations of motion for the synthesized structures were
obtained by substituting Eqs. (1) and (3) into Eq. (5).

qsyn = asyn +M−1/2
syn AM−1/2

syn
+
v −Aasyn , 7

where asyn = −M−1
syn Csynusyn +Ksynusyn − fsyn and v = 0 in

coupling the substructures.
The acceleration vector in Eq. (7) consists of the acceler-

ation components of the boundary and internal nodes. The
acceleration components at the joint nodes qsyn,b can be
obtained by multiplying the Boolean matrix B, to define
the joint nodes.

qsyn,b = B asyn +M−1/2
syn AM−1/2

syn
+
v −Aasyn 8

The interface forces act on the joint nodes to maintain
equilibrium. The forces were obtained by premultiplying
the second term on the right-hand side of Eq. (7) using the
mass matrix Msyn as follows:

Fc = −M1/2
syn AM−1/2

syn
+
v −Aa 9

Because the forces act only on the boundary nodes, they
are calculated by premultiplying with the Boolean matrix B.
The compatibility conditions are maintained by the action of
these forces Fcb.

Fcb = −BM−1/2
syn AM−1/2

syn
+
v −Aa 10

Equations (7)–(10) express the acceleration components
and forces in the time domain. The constrained equations of
motion were applied as the basic form of the FBS technique.

2.2. FBS Techniques. Two FBS techniques that depend on the
performance index of the least-squares method are derived
in this section: (1) synthesizing the dynamic equation in
the time domain and then transforming it to the frequency
domain and (2) synthesizing the FRFs of each substructure.
The synthesis process utilizes the constraints of the compat-

ibility conditions at the interface nodes. The FBS-1 tech-
nique in Figure 2 applies the least-squares method to
minimize the acceleration variation owing to constraints
and utilizes the mass matrix as a weighting matrix. The
FBS-2 technique, shown in Figure 3, synthesizes the FRFs
of disassembled substructures using compatibility condi-
tions. This technique applies the least-squares method to
minimize the variation in the FRF matrices due to con-
straints with the weighting matrix of the analytical FRF
matrix.

The s − l l = 1, 2,⋯,N represents the lth substructure.

2.2.1. FBS-1 Technique. This technique is expressed mathe-
matically to transform the entire synthesized constrained
dynamic equation of Eq. (7) in the frequency domain. This
method was derived by assuming harmonic excitation.
Substituting usyn =UeiΩt , fsyn = FeiΩt , and v =WHFeiΩt into
Eq. (7) and arranging the result yields

−Ω2U = −M−1
syn iΩCsynU +KsynU − F +M−1/2

syn AM−1/2
syn

+

WHF+AM−1
syn iΩCsynU +KsynU − F ,

11

where W is the coefficient matrix of the FRF at the nodes
related to the harmonic responses and becomes a zero
matrix in synthesizing the substructures. The second term
on the right side of Eq. (11) indicates the response variations
in the frequency domain due to the existence of constraints.

Arranging Eq. (11), it can be expressed by

X + Y U = I + R1WH − R F, 12

where I denotes the identity matrix, X = −Ω2Msyn + iΩCsyn +
Ksyn, Y = −iΩRCsyn − RKsyn, R1 =M1/2

syn AM−1/2
syn

+, and R =
M1/2

syn AM−1/2
syn

+AM−1
syn. The FRF for the dynamic system syn-

thesized from Eq. (12) can be expressed as

Hcons =
I + R1WH − R

X + Y 13

Equation (13) represents the FRF of the entire coupled
structure, including the duplicated FRFs at the interface nodes.

By utilizing the inverse matrix solution for the sum of
the two matrices ( A + B −1 =A−1 −A−1 B−1 +A−1 A−1) to
simplify Eq. (13), it can be written as

Hcons =H I − Y−1 +H H I + R1WH − R , 14

Substructure 1 Substructure 2

Joint nodes

j k

Figure 1: Synthesis of two substructures.
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where H denotes the analytical FRF matrix and H =X−1.
Equation (14) is expressed as the sum of the analytical FRFs
of the unconstrained finite element model and the FRF var-
iations owing to the compatibility conditions. The FRF var-
iations are expressed as

δH =HRB −HR − H Y−1 +H−1 H I + R1WH − R
15

By premultiplying and postmultiplying both sides of Eq.
(14) with the Boolean matrix (to define the interface nodes)
and their transpose, respectively, we can write the FRF
matrix corresponding to joint nodes j and k in Figure 1 as

Hjk
cons = BH I − Y−1 +H−1 H I + R1WH − R BT 16

Equation (16) expresses the FRF matrix derived from the
constraints of the matching responses at the joint nodes.

2.2.2. FBS-2 Technique. This section derives the FBS-2 tech-
nique for constructing the FRFs of s substructures and synthe-
sizing them. The equation of motion for the jth substructure is
expressed as

Mjuj + Cjuj +Kjuj = f j t , j = 1, 2,⋯, s 17

We considered the synthesis of the two substructures
shown in Figure 3 to simplify the derivation process. The
expressions for dividing the two substructures into boundary
and internal nodes and transforming the generalized coordi-
nates into modal coordinates are written as

uij
ubj

=
ϕi
j

ϕb
j

y j, j = 1, 2, 18

where ϕi
j and ϕb

j represent the mode-shaped vectors corre-
sponding to the internal and boundary nodes of the jth sub-
structure, respectively. Only a few sets of modes that neglect
the higher modes were considered to reduce the DOFs of the
synthesized structure, where uij and ubj represent the displace-
ment vectors at the internal and boundary nodes of the jth
substructure, respectively. By substituting Eq. (18) into Eq.
(17) and premultiplying with the transpose of the first few
mode shape matrices ϕT

j j = 1, 2 , we obtain the mass-
normalized dynamic equations of motion for both substruc-
tures as

y + C∗y +K∗y = f∗, 19

where

C∗ =
C∗
1 0
0 C∗

2
,

K∗ =
K∗
1 0
0 K∗

2

20

represent the damping and stiffness matrices of the modal
reduced-order model

y =
y1
y2

,

C∗
j = ϕT

j Cjϕj,

K∗
j = ϕT

j Kjϕj,

f∗ =
ϕT
1 f1

ϕT
2 f2

,

ϕj =
ϕi
j

ϕb
j

21

Time domain

Transform

S - 1

S - 2
S - N

Frequency domain

S - 1

S - 2
S - N

Figure 2: Schematic summary of FBS-1 technique.

Frequency domain

S - 1

S - 2
S - N

Figure 3: Schematic summary of FBS-2 technique.
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The compatibility conditions between two substructures
can be written by

ub1 = ub2 or 22

ϕb
1y1 = ϕb

2y2 23

The compatibility conditions in Eq. (22) can be written in
matrix form using the generalized and modal coordinates, as
follows:

A1u = 0 or 24

Ay = 0 25

Inserting y = YeiΩt and f∗ = F∗eiΩt into Eqs. (19) and (24)
can be expressed as follows:

KdY = F∗, 26a

AY = 0, 26b

where

Kd =H−1
d =

−Ω2I + iΩC∗
1 +ΩK∗

1 0

0 −Ω2I + iΩC∗
2 +ΩK∗

2

,

Y =
Y1

Y2

,

F∗ =
F∗1
F∗2

27

Kd is the dynamic stiffness matrix in the frequency domain
and its inverse is the FRF matrix.

The dynamic equation owing to the constraints, such as
Eq. (24), is determined by minimizing the performance
index of

PΩ =H−1/2
d Hd con −Hd H−1/2

d 28

By using H−1/2
d H1/2

d = I in Eq. (26b) and replacing Msyn
in Eq. (7) by H−1

d , the dynamic equation in the frequency
domain can be written as

Y = Ŷ −H1/2
d AH1/2

d
+AŶ or 29

Y = I −H1/2
d AH1/2

d
+A HdF∗, 30

where Ŷ =HdF∗. Thus, the FRF matrix of the synthesized
structure, Hd con, can be expressed as

Hd con = I −H1/2
d AH1/2

d
+A Hd 31

Equation (31) represents the FRF matrix of the entire
coupled structure used to synthesize the FRFs of the sub-
structures, unlike Eq. (14). If the constraints are given in
the form of Eq. (3), the FRF matrix was modified as follows:

Hd con =Hd −H1/2
d AH1/2

d
+ W −A Hd 32

Equation (32) expresses the FRF matrix synthesized
using the FRFs of the substructures as constraints. It can
be observed that Eqs. (14) and (32) take different forms of
the FRF matrices depending on the constraints.

2.3. Estimation of Connector Parameters. The physical
parameters of the connectors linking the substructures can
be predicted through the interface forces, as these forces
describe the additional requirements to satisfy the con-
straints. They are derived using the inverse relationship
between the dynamic stiffness matrix and FRF matrix. The
physical parameters of the connectors were estimated using
the FRFs at the joint nodes of each substructure before and
after synthesis.

By considering the interfacial forces in Eq. (9) to act
on the substructure, and excluding external harmonic exci-
tations in the frequency domain, we can write the equa-
tion as

−Ω2Msyn + iΩCsyn +Ksyn U =M1/2
syn AM−1/2

syn
+
AM−1

syn iΩCsynU

+KsynU − F
33

Equation (33) is related to the forces that represent the
variations in the responses before and after the constraints
are imposed. By substituting R =M1/2

syn AM−1/2
syn

+AM−1
syn into

Eq. (33) and arranging the result yields

U =HconF, 34

ua ub uc ud

ma

ka

ca cb cc cd ce

mb

kb

mc

kc

md

kd ke

Figure 4: A four-DOF system.
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where Hcon = −R/ −Ω2Msyn + iΩCsyn +Ksyn − R iΩCsynU
+KsynU . Hcon on the left-hand side of Eq. (34) repre-
sents the FRFs measured numerically or experimentally
at the joint nodes of a coupled structure.

Letting Q = −Ω2Msyn + iΩCsyn +Ksyn and E = −R iΩ
Csyn +Ksyn in the denominator in the right-hand side of
Eq. (34), utilizing the inverse matrix solution for the sum
of the two matrices, and arranging the result yields

Hcon = Q−1 −Q−1 E−1 +Q−1 −1Q−1 R, 35

where the right side of Eq. (35) only represents the FRFs
corresponding to the joint nodes. Inserting H =Q−1 into
Eq. (35) and solving the result with respect to the parame-
ters, we obtain

R iΩC +K = H −H I +H−1HconR−1 −1 −1
, 36

where the parameter matrices and the FRF matrix include
the effect of rotational DOFs and they should be considered.

It was assumed that the mass at the interface nodes was
not a parameter to be estimated. The values on the right side
of Eq. (36) from Ω1 to Ωh are divided into real and imagi-
nary parts, and the equations for the parameter matrices
are written by

R Ω1 0
0 Ω1R Ω1

R Ω2

0
⋮

R Ωh

0

0
Ω2R Ω2

⋮

0
ΩhR Ωh

K
C

=

real FRF Ω1

imag FRF Ω1

real FRF Ω2

imag FRF Ω2

⋮

real FRF Ωh

real FRF Ωh

37
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Figure 5: Comparison of FRF receptance curves of constrained and unconstrained systems: (a) SRSS of the first row of FRF matrix
corresponding to Ua, (b) SRSS of the third row of FRF matrix corresponding to Uc, (c) receptance curve of H1,3, and (d) receptance
curves of H1,3 and H3,1.
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Solving Eq. (37), using the pseudoinverse with respect to
the parameter matrices, yields

K
C

=

R Ω1 0
0 Ω1R Ω1

R Ω2

0
⋮

R Ωh

0

0
Ω2R Ω2

⋮

0
ΩhR Ωh

+ real FRF Ω1

imag FRF Ω1

real FRF Ω2

imag FRF Ω2

⋮

real FRF Ωh

real FRF Ωh

38

The solution of Eq. (38) yields the stiffness and damping
parameters of the connectors. The results can be expanded
to techniques for predicting the joint parameter matrices to
connect three or more substructures.

3. Numerical Examples

3.1. FBS Approaches of Four DOF Systems. Consider the
finite element model with four DOFs shown in Figure 4.
This example estimates the updated FRFs of the system
because of a constraint that restricts the relative responses
in the frequency domain. The physical properties used in
this example, neglecting the units, are assumed to be as
follows: ma = 4, mb = 2, mc = 3, md = 5, ka = 220, kb = 450,
kc = 880, kd = 480, ke = 270, ca = 4 4, cb = 8, cc = 9, cd = 7,
and ce = 10.

This example describes the FRFs of a dynamic system
constrained by the displacement relationship, AU =WHF.
It is written by Ua − 0 8Uc = 0 0 0 7 0 HF, where A = 1 0 −
0 8 0 and W = 0 0 0 7 0 .

By substituting the constraint and dynamic equation of
the system in the frequency domain into Eq. (32), the con-
strained FRFs were explicitly obtained.

The FRFs were numerically calculated using the FRF-2
technique from 0.01Hz to 20Hz in 0.02Hz increments.
Figures 5(a) and 5(b) show the square root of the sum of
squares (SRSS) of the entire FRFs of nodal displacements
Ua and Uc within the corresponding frequency range before
and after applying the constraint, respectively. The difference
between the two curves indicates that the FRF variations
deviate from the initial responses to satisfy the constraint. It
was evaluated that the displacements Ua and Uc satisfy the
constraint. The constrained FRF curves deviate from the
unconstrained curves owing to these constraints.

Figure 5(c) compares the FRF receptances of H1,3 in the
constrained and unconstrained states where Hx,y represents
the response at node x to the excitation at node y. A differ-
ence in the FRFs between the constrained and unconstrained
states is observed, and it increases with an increase in fre-
quency. The symmetry of the FRF receptance matrix due
to this constraint was investigated. It can be observed from
Figure 5(d) that the two curves of H1,3 and H3,1 are inconsis-
tent and therefore do not maintain symmetry. The FRF
curves can be obtained explicitly using the proposed FBS
approach without any numerical scheme.

The next example considers the synthesis of the three
substructures, as shown in Figure 6. The synthesis was per-
formed using the two techniques presented in this study.
Substructure 1 is depicted by the displacement DOFs of ua

ua ub uc ud

ma

ka

ca cb cc cd ce

mb

kb

mc

kc

md

kd ke
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u2
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m2

Substructure 1 Substructure 2

u3 u4 u4’
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(c)

Figure 6: Decoupled substructures of a four-DOF structure: (a) entire structure, (b) substructures 1 and 2, and (c) substructure 3.
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and ub, substructure 2 by uc and ud , and substructure 3 by
ub′ and uc′, respectively. Substructures 1 and 2 are supported
by fixed ends, whereas substructure 3 is a floating structure

without support ends. The FBS techniques presented in this
study require pseudomasses at the joint nodes for a full-rank
mass matrix. The FBS approaches were developed by
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Figure 7: Comparison of numerical results of FBS-1, FBS-2, and intact FRFs: (a) H2,3, (b) H3,4, (c) H3,3, (d) H2,1, (e) FRF receptance at joint
nodes, and (f) FRF receptance of pseudomass 0.5.
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assuming the values of the pseudomasses at the joint nodes.
The pseudomasses affect the dynamic characteristics of each
substructure. Thus, the influences of the pseudomasses were
numerically compared in this example.

Assuming very small pseudomasses of magnitude 0.0001
at both ends of substructure 3, Figures 7(a)–7(c) compare
the FRF receptance curves determined using the FBS-1 and
FBS-2 approaches and the analytical FRF receptance curve
of the entire structure. Subscripts 1, 2, 3, 4, 5, and 6 corre-
spond to the displacement DOFs ua, ub, uc, ud , ub′, and uc′,
respectively. The numerical results obtained using the pro-
posed FBS techniques were inconsistent with the frequency
analysis results for the entire structure. It was confirmed that
the discrepancy was reduced in the frequency region greater
than 10Hz but was maintained at a certain value. This
inconsistency is likely caused by the different constraint
forms of displacement, FRF, and assumed pseudomasses
and is attributed to the unclear modal characteristics of
floating substructure 3, owing to the unknown pseudo-
masses. The FBS-2 technique exhibits a smaller discrepancy
than the FBS-1 approach. The FBS-2 technique was almost
identical to the precise solution up to the first resonance fre-
quency. The discrepancy in higher frequency regions is
likely due to the unclear modal characteristics of substruc-
ture 3. Figure 7(d) shows the FRF H2,3 curve related to nodal
displacement ub of substructure 1 owing to the input at
nodal displacement uc of substructure 2. The FBS-1 tech-
nique exhibits a large discrepancy because the input and out-
put nodes are located in different substructures. It is
predicted that the FBS-1 technique can only be utilized for
local synthesis with the input and output nodes in the same
substructure.

Figure 7(e) compares the FRFs ofH2,2 andH5,5,H3,3, and
H6,6 of the joint nodes determined using the FBS-2 tech-
nique. The compatibility conditions do not restrict each ele-
ment of the FRF matrix but only constrain the displacements
at interface nodes. Thus, even if the nodal displacements are
identical, the elements of the FRF matrix rarely appear to be
identical. The FRF curves exhibit very similar forms or con-
tain small errors up to the first resonance frequency; how-
ever, after that, the forms and errors are significantly
different. The difference in the FRF curves according to the
change in the pseudomasses is compared in Figure 7(b) for
a pseudomass of 0.0001 and Figure 7(f) for a pseudomass
of 0.5. Despite the increase in pseudomasses to 0.5, the
FRF curves showed no significant changes. More in-depth
research is required to improve the method for describing
the behavior in the low-frequency range of substructure 2,
which is a floating structure.

3.2. FBS Approaches of Substructure with Several Interface
Nodes. Figure 8(a) exhibits a structure that is a composite
of two substructures in Figure 8(b). This example considers
the synthesis of two substructures using the FBS-2 tech-
nique, as shown in Figure 8(a). Substructure 1 consisted of
six displacement DOFs of u1, u2, u3, u4, u5, and u6 set to 1,
2, 3, 4, 5, and 6, respectively. Substructure 2 consisted of five
displacement DOFs of u4′, u5′, u6′, u7, and u8 set to 7, 8, 9,
10, and 11, respectively. The compatibility conditions of
the two substructures can be written as u4 = u4′, u5 = u5′,
and u6 = u6′.

The FBS-2 technique was applied, assuming a pseudo-
mass of 0.001 at the joint nodes of substructure 2. The
parameter values of the structure are assumed to be m1 = 3,
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Figure 8: Model of example 2: (a) entire structure and (b) two substructures.
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m2 = 4, m3 = 3, m4 = 4, m5 = 4, m6 = 5, m7 = 5, m8 = 5, k1 =
880, k2 = 830, k3 = 690, k4 = 1020, k5 = 360, k6 = 730, k7 =
920, k8 = 550, k9 = 940, k10 = 570, and k11 = 720.

By inserting the FRFs of the two substructures and the
compatibility conditions in the frequency domain into Eq.
(31), the FRFs of the synthesized structures were deter-
mined. As shown in Figures 9(a)–9(c), the results synthe-
sized using the FBS-2 algorithm rarely match the analytical
FRFs of the entire structure. They almost match the first res-
onance frequency region, but an inconsistency occurs in the
subsequent frequency. The errors are likely caused by the
unclear modal characteristics of the substructure, resulting
from the assumed pseudomasses. This suggests that the sys-
tem identification or substructure synthesis can effectively
utilize FRF data up to the first resonance frequency region.
Compatibility conditions at the joint nodes must be satisfied.
The FRFs at the joint nodes are compared in Figure 9(d). An
inconsistency between the two curves was observed. Equa-
tion (31) is derived under the precondition that the displace-
ment constraints rather than the FRFs must be satisfied.

Thus, it is concluded that the discrepancy is caused by the
FRFs, which is consistent with the influence of the modal
characteristics owing to the pseudomasses.

3.3. Identification of Joint Parameters. This example con-
siders the estimation of the joint parameters of the system,
as shown in Figure 6. The measurement data used are the
FRFs collected from numerical experiments, ranging from
0.01Hz to 2Hz at 0.02Hz intervals, including the first reso-
nance frequency. The parameter values of the connector
were estimated using the measured FRFs at the joint nodes
of the two independent substructures, the coupled entire
structure, and the compatibility conditions. The parameters
can be calculated from the interface forces between the two
substructures and the connector because they are related to
the variation in the FRF during synthesis. These parameters
were estimated using Eq. (38).

The FRFs of the two independent substructures, 1 and 2,
and the FRFs of the entire structure in Figure 6 were
extracted at the same joint nodes. The measured FRFs
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Figure 9: Comparison of FRF receptance curves of FBS and entire structure: (a) H4,4, (b) H5,5, (c) H2,3, (d) H4,4, and H7,7.
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contain external noise. The measured FRFs containing noise
effects were numerically simulated as

D =Do I + ασ , 39

where α denotes the relative magnitude of the error and σ
is a random number variant in the range −1, 1 . This exam-
ple considers the relative magnitude of the error as 0.1.

The parameter values of the connector using Eq. (38)
were predicted by dividing them into noise-free and 10%
noise-free cases. The resulting values were obtained as
follows:

(1) Noise-free

Ks−2 =
1588 2 −880

−880 2665 4
,

Cs−2 =
54 2 −9 0

−9 0 92 5

40

(2) 10% noise magnitude

Ks−2 =
1588 4 −884 4

−876 3 2659 6
,

Cs−2 =
53 6 −9 05

−8 97 92 0

41

Despite the presence of external noise, it was confirmed
that the proposed identification technique could appropri-
ately estimate the physical properties of the connector. The
proposed method can explicitly predict the joint parameters
based on variations in the FRFs.

4. Conclusions

In this study, the synthesis of substructures in the frequency
domain was considered. The synthesis utilized deformation
compatibility conditions at the interface nodes between
adjacent substructures. Using modal coordinates, such as
in the CMS technique, reduces the number of DOFs of the
structure and allows for the synthesis of explicit expressions
without the need for a Lagrange multiplier. An identification
approach for joint parameters to join substructures was pro-
vided. The results of this study are summarized as follows.

(1) Two FBS techniques, FBS-1 and FBS-2, were used for
dynamic substructuring according to the perfor-
mance indices. The FBS techniques are presented
in an explicit form without any numerical schemes

(2) Inconsistencies between the analytical FRFs and
FRFs determined using the proposed methods were
observed. It was found that the main cause of the
discrepancy was the difficulty in describing the low-
frequency responses owing to the nonspecifiable
pseudomasses of the substructures. It was deter-
mined that it is necessary to model the joints and
analyze the joint nodes to describe their behavior
in the low-frequency range of the substructure

(3) When the input and output nodes exist within the
same substructure, FBS-1 exhibits larger errors than
FBS-2. The analysis results using the FBS-2 tech-
nique were almost identical up to the first resonance
frequency, but the errors increased slightly in subse-
quent regions. FBS-1 exhibits significantly different
results when the input and output nodes are located
at the nodes of different substructures

(4) This study provides an identification method for
estimating joint parameters based on the FRF varia-
tion. The joint parameters were explicitly estimated
using the FRF variations owing to the compatibility
conditions
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