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Regarding the issue of information freshness in systems that aid in data collection using unmanned aerial vehicles (UAVs), a data
collection algorithm that is based on freshness and UAV assistance is proposed. Under the limitations of wireless sensor node
communication distance and UAV parameters, the optimization problem of minimizing the average spatial correlation age of
information (SCAoI) of all nodes in the area is set up. This problem is solved by optimizing the number of clusters, UAV
flight trajectories, and the order of data collection from cluster member nodes. The maximum communication distance of the
nodes is used as the cluster formation radius, and the maximum-minimum distance clustering algorithm is used to cluster the
nodes in the region to obtain the minimum number of clusters. After it has been proven that the trajectory optimization
problem in this study is NP-hard, the ant colony algorithm is applied to obtain the minimum flight time and the
corresponding trajectory. By using the greedy algorithm to determine the member nodes in the sequence of data collection for
a cluster, the instantaneous SCAoI of the UAV arriving at the cluster head is solved. Simulation results show that the proposed
algorithm in this paper can effectively improve the freshness of data and reduce the average SCAoI of the system compared
with the algorithm in the comparative literature, reducing the average SCAoI by about 61%.

1. Introduction

The continuous development of wireless communication
technologies and the Internet of Things has given rise to
many systems oriented towards real-time applications, such
as smart homes, smart transportation, and smart health [1].
For such systems, it is essential that the information be cur-
rent. The terminal device (e.g., sensors, surveillance cameras,
smart wearables) needs to sense the data of the surrounding
environment in real-time and monitor the system status to
make accurate and reliable decisions and controls. If the ter-
minal receives old data, it may affect system decisions and
cause significant security risks. For information update
applications, the significance of information freshness is ris-
ing quickly. To accurately describe the freshness of the infor-
mation, academics have proposed the age of information

(AoI), and many scholars use it as a measure of information
freshness. In application scenarios where information fresh-
ness is sensitive, the networking method of the system and
the allocation of wireless communication resources can have
a great impact on the information age of the data. This has
become an open challenge with research implications. In this
paper, the impact on the information age of the system is
studied in the direction of the system networking method
and the allocation of wireless communication resources.

During the update process, the AoI was utilized to record
the freshness of state information in the queueing model [2],
as the time between the generation of data and its reception
at the receiving end. In [3], the age of information (AoI) is
used as a measure of the freshness of information in the infor-
mation update system. The impact of scheduling policies on
the performance of AoI in single-server queues is investigated.
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And the scheduling policy that can effectively improve AoI has
been designed. In [4], they investigate a multisource preemp-
tive queuing model as well as how to regulate the generation
rate of each source under various preemption strategies to
attain the highest level of information freshness overall. In
[5], the AoI of a multisource queueing model with an FCFS
(first-come, first-served) Poisson arrival strategy is examined.
They establish precise formulas for the average AoI of themul-
tisourceM/M/1 andmultisourceM/G/1 queueingmodels. It is
further demonstrated that, in time-sensitive control applica-
tions, reducing the average delay alone does not reduce the
AoI. There is also a large literature on the use of AoI as a per-
formance metric in caching networks. In [6, 7], the relation-
ship between service delay and content freshness (as defined
by AoI) in mobile edge caching networks is examined. The
caches are placed near the users, which can successfully lessen
the service latency of content delivery while reducing the
latency and additional transmission resources required to
update the cached content. To achieve a compromise between
AoI and latency, a freshness-aware cache update strategy is
developed. A cache refresh system is considered in [8]. Both
the age of synchronization (AoS) and the age of information
(AoI) are used to measure how recent the local cache is. The
closed-form expressions for minimizing AoS and AoI are
derived for larger and smaller refresh rates, respectively. In
[9], a cache update algorithm based on content popularity
and information freshness is proposed. The algorithm fully
considers the mobility of users and the dynamics of popular
content in time and space and introduces the age of informa-
tion (AoI) to achieve dynamic updating of content. In addi-
tion, with the wide application of game theory and
reinforcement learning in various fields, they have also been
applied to solving AoI-related problems. A content resale
problem is discussed in [10] which provides a hybrid multi-
cast/unicast/D2D transmission architecture oriented towards
age of information and cache assistance to increase the data
transmission rate, reduce the burden of large data traffic, and
improve system efficiency, where the problem is decomposed
into two subproblems and the subproblems are solved through
the Stackelberg game and auction framework, respectively.
Reinforcement learning is used in the literature [11] to inves-
tigate the best update strategy for the age of information (AoI)
and the urgency of information (UoI) of real-time status infor-
mation based on resource constraints. Urgency of information
(UoI) further includes context-aware weights indicating
whether the monitored process is in an emergency. The simu-
lation results show that the threshold of the optimal policy
increases as the resource constraint is tightened.

UAVs, as a stable, mobile, and flexible flight device with
low cost, can be used for image recognition or vision pro-
cessing [12–14] and as an auxiliary device in wireless com-
munication networks. In [15], a MEC network consisting
of IoT devices, UAV base stations, edge clouds, and data
centers with energy-efficient UAV support services is pro-
posed, and a GreenUAV-CoCaCo algorithm is proposed to
jointly optimize the communication, caching, and computa-
tion energy consumption of UAVs. In [16], cache-enabled
UAVs are used to provide contextual messaging services to
end devices. Unlike traditional network traffic, contextual

information changes over time, thus increasing the demand
for AoI constraints. Cache replacement and content distri-
bution strategies are designed to minimize the traffic on
the ground network according to the requests of users and
the dynamic changes of the content. In [17], maximizing
the quality of service (QoS) based on the freshness of the
data was studied while considering the range of the UAV.
Modeling is used to convert the optimization problem into
a semi-Markov decision process (SMDP), and a hierarchical
deep Q network- (DQN-) based path planning algorithm is
then suggested to learn the best course of action. In [18],
an AI-based end-to-end framework is proposed to resolve
the issue with UAV flight trajectory planning. After simula-
tion, it is proved that the AI-based framework is like a com-
mercial open-source solver in terms of accuracy but can be
twice as efficient for scenarios with a large number of nodes.
In [19], the concept of AoI is enlarged by including a brand-
new metric called correlation-aware AoI (CAAoI) to assess
the timeliness and degree of correlation of the data collected
by UAVs from the ground. In [20], the topic of UAV-
assisted data collection in wireless sensor networks is inves-
tigated, where the AoI of each wireless sensor node is used to
gauge the freshness of information.

In the data collection scenarios of [18, 20], all use AoI as
a measure of data freshness but ignore the data correlation
due to data coming from the same collection device or mul-
tiple devices. In [19], it states that devices collecting the same
type of information that are in proximity are highly corre-
lated at the same moment, which can affect the diversity of
the data. Therefore, in this paper, SCAoI is a performance
index that is used to measure how recent the information
is, which can balance the diversity and freshness of the data.
The [19] investigates the AoI when the UAV performs data
collection in a region where there are few wireless sensor
nodes, but the number of nodes in real-world application
scenarios will be much larger than the setup in the literature.
The UAV in [19] travels above each node for data collection.
Therefore, as the nodes multiply, the flight time also grows,
which is not conducive to guaranteeing information fresh-
ness. In this paper, a SCAoI-based UAV-assisted data collec-
tion method is proposed. In this scenario, every node is first
clustered, and the cluster head node gathers the information
acquired by the nodes of the cluster. When the UAV flies
over the cluster head node, the cluster head node transfers
the data that it has temporarily stored to the UAV.

The following is a summary of the significant contribu-
tions in this paper.

(1) The spatial correlation age of information is used to
construct a model for UAV data collection that mea-
sures the freshness of information. All nodes are
organized into clusters using the maximum-
minimum distance clustering algorithm, and then,
the member nodes use the time that the UAV spends
moving between hovering positions to gather data in
accordance with TDMA and upload it to the cluster
head node. The UAV then flies over the cluster head
node along the best route to receive the data that has
been uploaded by the cluster head node
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(2) The closed expressions for the instantaneous SCAoI of
data collected at the cluster head and the average
SCAoI of all nodes are derived. Under the constraints
of maximum communication distance between nodes
and UAV flight parameters, the optimization problem
of minimizing the average SCAoI is developed. The
initial problem is divided into three optimization sub-
problems, which must each be solved separately: clus-
ter formation, trajectory, and data collection order of
cluster members

(3) First, the maximum communication distance of
nodes is taken as the radius of cluster formation,
and to produce the smallest possible number of clus-
ters, all nodes are clustered using the maximum-
minimum distance clustering algorithm. Then, it is
shown that the trajectory optimization problem is
NP-hard, and an ant colony algorithm is used to
optimize the UAV’s flight path to achieve the short-
est possible flight time. Finally, the greedy algorithm
is then employed to determine the optimal order for
data collection at cluster nodes

(4) Simulation results show that the proposed method
can successfully reduce the average SCAoI. Compar-
ing this method to how the UAV collects data at
each node, the average SCAoI can be reduced by
almost 61%, and the freshness of the collected data
is effectively guaranteed

The remainder of the paper is structured as follows.
Section 2 gives the data collection model with UAV assis-
tance and the establishment of the optimization problem.
Section 3 details the problem solution, the algorithm frame-
work, and the detailed design process of the algorithm.
Section 4 gives the simulation results. Finally, the entire
study is concluded in Section 5. In addition, to improve
the readability of this paper, the abbreviations and their
meanings covered in this paper are summarized in Table 1.

2. System Model and Problem Building

2.1. System Model. Figure 1 depicts the system model used in
this paper, with a UAV U , a data center DC, and N wireless
sensor nodes, which are distributed at random in a rectangular
area with a side length A. The sensor node ni ∈N = n1, n2,
⋯, nN , with coordinates Li = xi, yi , is used to collect infor-
mation from the surrounding environment. The UAV serves
as a data collection tool from the DC, collecting the data
captured by the nodes in the region and returning it to the
DC for processing. To facilitate the deployment of UAVs, all
the nodes are divided intoM clusters with cluster head nodes
chj ∈ CH = ch1, ch2,⋯, chM and CH ⊆N, and the binary
variable γij = 1 indicates that node ni belongs to the cluster
with chj as the cluster head, otherwise γij = 0. The nodes in
the same cluster as chj are denoted by the set Cj = ni γij = 1,
ni ∈N , 1 ≤ j ≤M, and the number of nodes within Cj is
denoted by Nj. The cluster head node serves two primary
purposes. First, it gathers data from the member nodes, and

second, it establishes the hovering position of UAV. The
UAV is transferred between hovering positions to upload the
collected information to the cluster head node in a certain
order according to TDMA. The UAV is circling close to where
the cluster head node is located. While the UAV is hovering
over the cluster head node, the cluster head node will transmit
to it all the information gathered by the member nodes. Once
the UAV has collected data from one cluster head node, it will
move on to the next after receiving the data. The UAV moves
according to its trajectory V = v0, v1,⋯, vM , vM+1 . Since the
UAV starts from DC and eventually returns to DC, so v0 =
vM+1 =DC. If the velocity v and height h remain unchanged,
then the hovering position of the UAV can be expressed by
the coordinates of the cluster head node. When the UAV
moves from vl−1 to vl, the flight time can be expressed as

f l−1,l =
xl−1 − xl

2 + yl−1 − yl
2

v
, l = 1, 2,⋯,M + 1, 1

where xl−1, yl−1 and xl, yl are the coordinates of the cluster
head node corresponding to vl−1 and vl in the trajectory,
respectively. Later in the paper, f l−1,l is denoted as f l for brevity.

The following Figure 1 is an example of the process of col-
lecting node information from DC by a UAV as an assistant
device. Define the UAV trajectory as V, as shown in Figure 1,
with M = 6. The UAV starts from DC and flies first to v1, the
area where the cluster head node ch5 is located, according to
trajectory V. The nodes in C5 use the time f1 when the UAV
flies from DC to v1 for the orderG = g1, g2,⋯, gN5

to upload
the collected data to ch5 by TDMA. After arriving at ch5, to
receive the data sent by the cluster head node, the UAV hovers
for a while and then flies through v2, v3, v4, v5, and v6 one by
one and finally returns to DC, i.e., the final flight path of the
UAV is V = DC, ch5, ch1, ch4, ch6, ch2, ch3, DC .

The UAV is used as an assistant device to collect infor-
mation, and if it flies over each node to collect the informa-
tion that node collects, it will take a long flight time because
it needs to traverse each node, and the freshness of the infor-
mation will be reduced as a result. Reducing the time taken
for data to travel from the source to the destination is vital
to ensuring the accuracy of the information. Three factors
play a role in determining the time in this paper: the number
of clusters M, the UAV flight trajectory V , and the order G
in which the member nodes gather data. The number of
clusters corresponds to the number of hovering locations
along the flight path of the UAV. The amount of time spent
in flight during the data-gathering procedure decreases as
the cluster number decreases, which is better for preserving
the accuracy of the data. The sensor nodes transmit the col-
lected data in the form of time-stamped packets. Assuming
that the maximum communication radius of a node is R,
then the maximum cluster formation radius is R, which is

the distance dij = xj − xi
2 + yj − yi

2 ≤ R between the

cluster member node chj and the cluster head node ni. The
binary variable γij = 1 is used to indicate that node ni
belongs to the cluster with chj as the cluster head, otherwise
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γij = 0. For any node ni, it can be classified into a certain
cluster, and the clustering of all nodes can be represented
as a vector ϒ = γij . When all nodes have completed cluster-
ing, the UAV must hover directly above the cluster head
node to gather data. Therefore, it is important to optimize
the path of UAV travel. A sensible flight path enables it to
finish the data-gathering operation while spending the least
amount of time feasible to make additional contributions
to enhancing the freshness of information. In addition, the
AoI proposed in this paper is aimed at gauging how recent
a piece of information differs from the traditional definition
by considering the effect of spatial correlation between data
collection devices due to their proximity. This effect is more
evident among nodes within the same cluster. Nodes within
the same cluster are close to each other, which can make the
similar data collected at the same moment highly correlated
[21], and the diversity of the data is diminished, which is not
conducive to data analysis. Consequently, we construct a
data-gathering order for member nodes that can take into
consideration the freshness of information and the correla-
tion between collection devices.

2.2. Cluster Member Node and Cluster Head Node
Communication Model. The communication between mem-
ber nodes and cluster head nodes uses a point-to-point com-
munication model on the ground with a transmission rate of

Rch = B log2 1 + gpi
pn

, 2

where B is the bandwidth of system, pi is the transmit power
of node, pn is the noise power, and g = β0d

−α is the channel
gain, where β0 is the reference channel gain of distance, d is
the separation between the cluster head node and the mem-
ber node, and α is a constant coefficient related to the envi-
ronment. A member node must spend tch = L/Rch seconds
before sending a packet with data quantity L to the cluster
head node.

Most of the time, the nodes of the system are in a state of
sleep, and when the UAV follows the established trajectory
V , flying from vl, l ≠M to vl+1, the nodes in the cluster cor-
responding to vl+1 are awakened and start collecting data in
a certain order and sending it using TDMA to the cluster
head node. In this process, ignoring the specific time
required by the nodes to collect information, the time slot
length of TDMA is the length of time used to send informa-
tion to the cluster head node from the member nodes. The
data gathered from each cluster member node must be sent
to the cluster head nodes, so when the member nodes have
not yet all finished uploading and the UAV has arrived
above the cluster head, the UAV is required to extend the
hovering time and wait for all nodes to finish the uploading
task before the process of uploading data from the cluster
head to the UAV.

2.3. Communication Model between Cluster Head Node and
UAV. Data is uploaded to the UAV by the cluster head node
using a probability-based approach for air-to-ground com-
munication [22]. Considering that additive Gaussian white

Table 1: Table of abbreviations and full names.

Abbreviations Full name Abbreviations Full name

UAV Unmanned aerial vehicle SCAoI Special correlation age of information

AoI Age of information FCFS First-come, first-served

AoS Age of synchronization UoI Urgency of information

MEC Mobile edge computing TSP Traveling salesman problem

QoS Quality of service SMDP Semi-Markov decision process

DQN Deep Q network CAAoI Correlation-aware AoI

DC Data center TDMA Time division multiple access

IoT Internet of Things NP-hard Nondeterministic polynomial

DC

ch3

ch2

v5 v6

v2

v3

v1

v4

ch6

ch4

ch1

ch5

Figure 1: Model illustration of data collection with UAV assistance.
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noise is present, the data transmission rate of the cluster
head node to the UAV flying above it can be expressed as

Ru = B log2 1 + pi
φipn

, 3

where φi is the typical route loss for both line-of-sight and
non-line-of-sight transmission, expressed as

φi = Pi LoS φi LoS + 1 − Pi LoS φi NLoS 4

Pi LoS is the line-of-sight transmission likelihood, and
φi LoS and φi NLoS are the non-line-of-sight transmis-
sion and the path loss of line-of-sight, respectively.

Pi LoS = 1
1 + β1 exp −β2 θi − β1

, 5

where β1 and β2 are constant parameters related to environ-
mental factors, and θi is the angle formed between the node
uploading data and the UAV, considering that the UAV flies
exactly above the node to collect data, θi = π/2. The path loss
of line-of-sight and non-line-of-sight transmission is denoted
as φi LoS = PLi + ζLoS and φi NLoS = PLi + ζNLoS, respec-
tively. Where PLi is the free path loss, PLi = 20 log10 4πhf c/c ,
h is the flight altitude of the UAV, f c is the carrier frequency,
c is the speed of light, and ζLoS and ζNLoS are the additional
path loss, which takes a constant value. The cluster head node
needs tu = L/Ru to send a packet with data quantity L to the
UAV.

2.4. AoI Model. AoI is used to gauge how recent a piece of
information is, which refers of the interval between the
moment at which data is produced at the source and when
it is received at the receiver. The AoI at chj at moment t
can be defined as

Δj t = t − uk t , 6

where uk t is the time at which chj received the most recent
generation of data at point t, i.e., the timestamp.

If the packet carrying the timestamp uk reaches the cluster
head node at time τk, τk = uk + lk can be used to indicate the
time of arrival at the cluster head node, and lk is the time delay
of communications with the cluster head node. When the
cluster head node is receiving new data and its informational
freshness has increased overall, i.e., its AoI decreases, and the
process is shown in Figure 2. As a result, r1 = τ1 − l1 = u1 can
be used to indicate the drop in AoI that occurs when the first
member node uploads data to the cluster head node, and the
decrease in the second arrival can be expressed as r2 = τ2
− l2 = u2 − u1, and similarly r3 = τ3 − l3 − r1 − r2 = u3 − u2,
as shown in Figure 2; the AoI at the moment t can be
stated as

Δj τ = τ − r3 − r2 − r1 = τ − 〠
3

k=1
uk − uk−1 7

Equation (6) can be rewritten as

Δj t = t − 〠
U t

k=1
uk − uk−1 , 8

where U t is the full count of data received by chj at time
t and uk is the timestamp of the kth upload data
generation.

The gathered data shows a substantial association
between the member nodes that are spatially adjacent to
one another, so the effect of spatial correlation on the instan-
taneous AoI of cluster head nodes is considered. The instan-
taneous SCAoI is defined to characterize the instantaneous
freshness of chj at time t [19], and the instantaneous SCAoI
of chj at time t can be defined as

ΔjC t = t − 〠
U t

k=1
1 − βk uk − uk−1 , 9

βk =
1

dk/ρs + 1 , 10

where βk is the correlation coefficient and β1 = 0, the mini-
mum distance dk between the preceding k − 1 member
nodes and the kth member node that uploads data to the
cluster head, and the constant ρs represents the strength of
spatial correlation.

2.5. Problem Formation. The UAV starts at the DC and col-
lects the information collected by all nodes in the area.
Assuming that the UAV trajectory is V , with vj = chj, j ≠ 0,
M + 1, andj ≤M, takingCj as an example, i.e., chj is the cluster
head of this cluster, the detailed analysis of the cluster data
generation process, after transmission, and finally arriving at
DC. The AoI of the process can be considered the result of
summing three parts of time. First, the member nodes in Cj

use the flight time f j of the UAV transfer from chj−1 to chj

to collect information in order G. All member nodes collect
the data and need to transmit it to chj. Assuming that the

UAV arrives at chj at time t ja, the instantaneous SCAoI of

the cluster head node at that time, or ΔjC t ja , can be used to

r2

r3

l3
l2l1

𝜏1 𝜏2 𝜏3 𝜏

r1

45°

0

𝛥j (t)

Figure 2: Illustration of the AoI of the cluster head node.
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represent the current freshness of cluster head nodes. Second,
the temporary storage data of the cluster head node must be
uploaded to the UAV. For the UAV to get the data, it must
hover for a specific time, which is denoted as H and is the
cumulative sum of the hovering times of the jth to Mth
clusters in the trajectory. Denoting the hovering time at the j
th cluster head node by hj, we have H =∑M

l=jhl. The last part
is the flight time, denoted by f j+1 from the jth flight to

the j + 1st cluster, and as with the hover time, F =∑M+1
n=j+1 f n.

For each cluster of data, they undergo the same process as in
Figure 3. The UAV offloads the data collected from c to the
DC at time t; at which point, the instantaneous SCAoI of Cj

is expressed as

ΔjC t = ΔjC t ja +H + F = ΔjC t ja + 〠
M

l=j
hl + 〠

M+1

n=j+1
f n

11

Then, the AoI of all nodes in the system is shown in
Figure 4, and the average SCAoI of all nodes can be
expressed as

ΔC t = 1
M

〠
M

j=1
ΔjC t = 1

M
Δ1C t + Δ2C t +⋯+ΔMC t

= 1
M

Δ1C t1a + 〠
M

l=1
hl + 〠

M+1

n=2
f n + Δ2C t2a + 〠

M

l=2
hl

+ 〠
M+1

n=3
f n+⋯+ΔMC tMa + hM + f M+1

= 1
M

Δ1C t1a + h1 + h2+⋯+hM + f2 + f3+⋯+f M+1

+ Δ2C t2a + h2 + h3+⋯+hM + f3 + f4+⋯+f M+1⋮

+ΔMC tMa + hM + f M+1 = 1
M

〠
M

j=1
ΔjC t ja

+ 〠
M

j=1

j
M

hj + 〠
M

j=1

j
M

f j+1

12

By maximizing the number of clusters formed M, the
flight trajectory V of the UAV, and the information collec-
tion order G of the nodes in the cluster, this research is
aimed at reducing the average SCAoI of all the nodes in
the system. The optimization issue is best described as

Ρ min
M,V ,G

ΔC t

s t   C1 dni ,ch j
≤ R

  C2 hj = tuN j

  C3 f j+1 =
dvj, j+1
v

13

The distance of a member node from the cluster head
node cannot be greater than the maximum communication
distance of nodes, according to constraint (C1). The num-
ber of nodes in the cluster and the rate of data transmission
from the cluster head node to the UAV are both factors in
constrain (C2) at equation (13) that affect the hovering
duration of the UAV. Equation (C3) demonstrates the rela-
tionship between the flight time of the UAV and the sepa-
ration between its two hovering places.

3. Problem Solving and Algorithm Design

3.1. Problem-Solving Framework. It is clear from equation
(12) that the average SCAoI is the weighted sum of the instan-
taneous SCAoI, hover time, and flight time when the UAV
reaches the head of each cluster, and the weighting factor is
related to the number of clusters and trajectories. Due to the
tight coupling between variables, the trajectory of the UAV
and the clustering outcomes of nodes are tightly tied to the
order in which they collected their data and cannot be solved
directly, so the problem P is decomposed into three subprob-
lems. Subproblem 1 is about the cluster formation optimiza-
tion problem, subproblem 2 is the trajectory optimization
problem, and subproblem 3 is the optimization problem of
the order of data collection of the nodes within the cluster.

First, following grouping each node, it is possible to
determine the set CH of cluster head nodes, the number M
of cluster head nodes, the nodes C contained in each cluster,
and the size C size of each cluster. The best flying trajectory
V for the UAV is then determined by using the coordinates
of the cluster head node and the data center DC as inputs to
the trajectory problem. Finally, based on the known situa-
tion of each cluster node C, the order of data collection from
the cluster nodes G is determined. Algorithm 1 provides a
full description of the process.

3.2. Distance-Based Clustering Method. Based on the above
analysis, all nodes should be fairly divided into clusters,
and the appropriate cluster head node should be chosen as
the area where the UAV will hover to collect the data gath-
ered by the member nodes. With an increase in hovering
position, the flight time of the UAV rises, which is not good
for keeping the information fresh and thus limits the num-
ber of clusters when the nodes are clustered. The more clus-
ters there are, the longer the UAV must fly, and the fewer
clusters there are, the better. Wireless sensor nodes have a
finite communication range. They are unable to communi-
cate with one another beyond this range. Therefore, when
constructing the cluster, the distance between the cluster
head node and member nodes must satisfy the requirement
of the maximum communication radius of nodes. Subprob-
lem 1 can be expressed as

P1 min
M

Cj

 s t C1 dni ,ch j
≤ R, j = 1, 2,⋯,M

14

In this paper, a combination of maximum-minimum
distance clustering and nearest-neighbor clustering is used
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to solve P1. This algorithm uses the Euclidean distance
between nodes as the main reference data to decide which
cluster head nodes to choose. First, the initial cluster head
node might be any node, and then, the next cluster head
node is chosen from among the nodes with the greatest dis-
tance (which must be greater than the maximum communi-
cation radius) from the first cluster head node. Each
remaining node’s distance from the node that has emerged
as the cluster head is determined. The present cluster head

node cannot divide all the nodes into clusters as needed if
the maximum value of the minimum distance is greater than
the cluster radius. A new cluster head node must be added,
and the node corresponding to this maximum value is cho-
sen as the new cluster head node. The cluster head nodes can
then all be identified by calculating the greatest value of the
minimum separation between the remaining nodes and the
cluster head node until it is less than or equal to the cluster-
forming radius. Finally, all nodes are clustered according to
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Figure 3: Illustration of the age composition of the instantaneous SCAoI of the data in Cj.
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Figure 4: Illustration of the time spent collecting all data by UAV.

Input: coordinates L of N nodes in the region, cluster radius R, UAV flight
height h, UAV flight speed v and other system parameters;

Output: Minimum value of the average SCAoI;
1: Initialization related parameters;
2: for i=1: N do
3: temp C i = cluster f ormation results ;
4: temp CH i = cluster head collection ;
5: temp C size i = cluster size ;
6: end for
7: M⟵min size CH , C⟵ temp C M , CH⟵ temp CH M ,

C size⟵ temp C size M , obtain the result of subproblem 1;
8: Using the coordinates of CH and DC, optimize the UAV trajectory V ,
and obtain the optimal solution of subproblem 2;
9: for j=1: C do
10: for k=1: C size j
11: Optimize the order of data collection from member nodes within a cluster
G, obtain the optimal solution of subproblem 3;
12: end for
13: end for
14: Solve the problem P.

Algorithm 1: Framework for solving problem P.
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the idea of nearest-neighbor clustering, which is the principle
of proximity. The specific algorithm steps are shown in
Algorithm 2.

3.3. Ant Colony Algorithm-Based Trajectory Optimization.
Based on the clustering results, the UAV trajectory problem
consisting of M cluster head nodes and a data center DC is
solved. Since the flight trajectory of the UAV affects the cal-
culation of the hovering time and flying time in equation
(13), subproblem 2 can be written as

P2 min
V

〠
M

i=1

i
M

hi + 〠
M

i=1

i
M

f j+1

s t C2 hj = tuN j

C3 f j+1 =
dvj, j+1
v

15

First of all, prove that P2 is an NP-hard problem.

Proof. According to Algorithm 2, the number of clusters
formed, the size of each cluster, the distance between cluster
head nodes, and the hovering duration h of the UAV over
each cluster head node can both be determined using the
coordinates of cluster head nodes. P2 can be viewed as the
shortest flight time that solves for DC as the starting point
and travels through each cluster head node before arriving
back at DC. The shortest time problem is equivalent to the
shortest path problem during this operation because the
flight speed of the UAV is constant. As in [23], if a certain
typical NP-hard problem can be reduced to P2, then it is
possible to show that P2 is identical to the NP-hard problem.
The description of P2 is basically similar to the typical trav-
eling salesman problem (TSP), which is to find a path that
allows a traveler to visit each city once with the shortest total
path length, provided that the city coordinates are known.
After sorting, simplifying, and mapping each city into cluster
head nodes with hover time h and flight time f , then P2 can
be basically equivalent to a TSP problem, so P2 is also an
NP-hard problem.

In this study, the NP-hard problem is solved by the ant
colony algorithm because it is typically impossible to tackle
NP-hard problems by addressing convex optimization prob-
lems. Since ants do not have vision, they cannot intuitively
feel the distribution of food and can only rely on the phero-
mones left by their peers along the foraging process to iden-
tify the location of food. Pheromone is a biological hormone
that will be volatilized over time after being excreted by ants.
Therefore, when more pheromone is accumulated in a cer-
tain path, it means that there is more food in that path com-
pared with other paths, which will attract more ants to go to
that path to get food.

In this paper, each cluster head node is mapped to a city
with hover time h and flight time f , which is the location
where the ants need to find food in the ant colony algorithm.
First, we initialize the parameters of the system, such as the
number of ants, pheromone concentration, pheromone vol-
atility factor, and the maximum number of iterations, so that
all ants start to find the path from the coordinates where DC
is located. By calculating the probability as part of a path
search, we can choose which cluster head node the ants will
visit next after they have visited all of the cluster head nodes.
Each cluster head node has a corresponding hover time and
flight time, so the value of equation (15) is calculated for the
path of each ant, and the trajectory that minimizes the value
of equation (15) in this iteration is recorded. Then, the pher-
omone concentration on the path in the system is updated,
and the next path finding is performed. Once the maximum
number of iterations has been reached, the trajectory with
the smallest value of token (15) in all iterations is output.
The following is a summary of the precise steps of the
algorithm.

Step 1. Initialize the relevant parameters and place Na
ants in the system to make them all start their path explora-
tion from the coordinates of the DC. Use the table allowed to
record the nodes that have not been visited and the tube
table to record the nodes that have been visited.

Step 2. Determine the next node to be visited and express
the probability of the mth ant moving from chi to chj in
round t with probability Pm

ij t .

Input: Coordinates L of N nodes in the region, cluster radius R;
Output: The number of clusters M, the set of cluster heads CH, the number

of nodes within each cluster C, the size of each cluster C size;
1: for i=1: N do
2: ch1 = n1 ∈N, records CH = ch1 ;
3: ch2 = nj, nj ∈N and nj ∉ CH, nj is the node with the largest distance

from ch1 among the remaining nodes, record CH = ch1, ch2 ;
4: if max min dnj ,CH > R, nj ∈N and nj ∉ CH do

5: ch3⟵Nodes with maximum and minimum distance >R;
6: else Output CH;
7: end if
8: end for
9: Complete clustering of the remaining nodes using the information from the

cluster head with the fewest number.

Algorithm 2: Cluster formation algorithm based on maximum-minimum distance.
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Pm
ij t =

τij t
α × ηij t

β

∑m∈allowedm τim t α × ηim t β
if j ∈ allowedm

0 other

,

16

where the concentration of pheromones along the route
between chi and chj is τij t . The length of the path connect-
ing chi and chj is reciprocal to a heuristic function called
ηij t . The pheromone factor α indicates the extent to which

the pheromone concentration has an impact on the path
when determining the next node to be visited. The β is the
heuristic function factor, and both α and β are constants.
The table of allowed is used to record the nodes that have
been visited by the mth ant, which can be regarded as a set
consisting of a sequence of nodes that have been visited,
complementary to the tube table, where the entire set is
the collection of all data center and cluster head nodes.
The next node to be visited is the one with the highest
Pm
ij t value.
Step 3. When all ants have finished visiting all nodes and

return to DC, one round of trajectory planning is completed,
and then, the value corresponding to the trajectory explored
by each ant is calculated according to equation (15).

Step 4. Pheromone update. After a round of trajectory
planning is finished, ants will have left behind pheromones
along the route. The pheromones on the path between chi
and chj are represented as follows:

τij t + 1 = 1 − ρ τij t + 〠
Ma

m=1
Δτmij t , 17

Δτmij =
Lm

−1 if themth ant traverses i, j
0 other

, 18

where ρ is the pheromone volatilization coefficient. Equation
(17) can be interpreted as the pheromone after the t + 1st
round on the path being equal to the pheromone left on the
path in the tth cycle plus the added pheromone. The added
pheromone is the sum of the pheromones left on the path by
all ants, and the size of the pheromone left by each ant is the
reciprocal of its path length, as in equation (18).

Step 5. Algorithm iteration and end. When there have
been fewer iterations than the maximum amount, the algo-
rithm cycles back to Step 2 and increments the parameter
that counts the iterations by 1; when the total number of
iterations equals the number allowed, the algorithm iterates
to the end and outputs the shortest trajectory.

The algorithmic procedure is described in Algorithm 3.

3.4. Greedy Algorithm-Based Data Collection Sequence. The
clustering of system nodes and the flight path of the UAV
can be calculated using the answers to P2 and P3 problems.
Assuming that the UAV trajectory is V with vj = ch j, j ≠ 0,
M + 1 , and j ≤M, for cluster head chj, the moment when

the member nodes start data collection is the moment when
ch j−1 finishes data transmission to the UAV and flies to chj,
which can be regarded as the initial moment for collecting
information in cluster Cj. As shown in Figure 3, the nodes
in cluster Cj use the flight time f j for data collection, and
the moment when the UAV arrives at chj is denoted as f j.
According to equation (9), the instantaneous SCAoI of the
data collected when the UAV arrives at chj as

ΔjC t = ΔjC t ja = ΔjC f j = f j − 〠
U f j

k=1
1 − βk uk − uk−1

= f j − 〠
N j

k=1
1 − βk tk−1ch = f j − 〠

N j

k=1
tk−1ch + 〠

N j

k=1
βkt

k−1
ch ,

19

where tk−1ch is the time taken by the k -1st node to send
the information to the cluster head node when k = 1 and
tk−1ch = 0.

According to the definition of equation (9), the data-
gathering process of cluster nodes in different orders affects
the instantaneous SCAoI of the collected data when the
UAV reaches chj. Therefore, it is necessary to optimize the
nodes of cluster data collecting order, and subproblem 3
can be written as

Ρ3 min
G

1
M

〠
M

j=1
f j − 〠

N j

k=1
tk−1ch + 〠

N j

k=1
βkt

k−1
ch

s t C3 f j+1 =
dvj, j+1
v
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The correlation coefficient βk of the kth uploaded node is
related to the shortest distance between the previous k − 1
already uploaded nodes. An exhaustive method is utilized
to enumerate every collection order to arrive at the best
value if we want to acquire the best instantaneous SCAoI.
However, when the number of member nodes is large, this
approach can obtain the exact optimal value, but it will con-
sume a lot of computational resources and increase the com-
plexity of the algorithm. Therefore, in this paper, we use a
greedy algorithm to select the node that can ensure the smal-
lest value of the objective function in the current state from
the nodes that have not yet collected data and repeat the cycle
until all nodes have finished uploading, so that we can obtain
the data collection order that makes the instantaneous SCAoI
at the cluster head node suboptimal. Algorithm 4 provides a
description of the steps of the algorithm.

4. Simulation Results and Analysis

The proposed algorithm is simulated using MATLAB, and
the computer processor used is a dual-core quad thread pro-
cessor of Intel Core 8th generation. The simulation scenario
is shown in Figure 1. The sensor nodes N are randomly
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distributed in a rectangular area with coordinates (0, 0),
(0, 300), (300, 0), and (300, 300) as vertices, and the data
center DC has coordinates (350, 150). The relevant param-
eters used for the simulation were set with reference to the
literature [19, 20], and the specific values are shown in
Table 2.

The algorithm in this study is compared to the algo-
rithms in [19, 20] to evaluate the effectiveness of the algo-
rithm presented in this research. Wireless sensor nodes are
distributed in a rectangular area of 300m × 300m, and a
UAV is used to collect the data collected by the sensor
nodes. The UAV always maintains a constant flight height
and speed, and the simulation parameters are set as shown
in Table 1 if no special instructions are given. In contrast
to this paper, [19] aims to minimize the average information
age of the nodes by optimizing the UAV trajectory, which
requires the UAV for information collection to fly over each
node and communicate directly with each node in the
region. To further illustrate the superiority of the proposed
algorithm in this paper, a comparison with the algorithm
in [20] is also made. In [20], the same method of cluster
formation is used to reduce the UAV hovering position to
optimize the trajectory to further improve the freshness of
the collected data, but it does not consider the influence of

Input: M cluster head coordinates, coordinates of data center DC, maximum
iteration Imax and other related parameters;

Output: Shortest path trajectory V , the optimal value of P2;
1: Initialization related parameters;
2: for i=1: Imax do
3: for j=1:Na do
4: Update tube, allowed
5: Determine the next visited cluster head node according to equation (16);
6: end for
7: Calculate the value corresponding to the path found by each ant according

to equation (15);
8: Update the pheromone according to equation (17) (18);
9: end for
10: Choose the trajectory that minimizes equation (15), denoted as V , the
corresponding value is the optimal value of P2.

Algorithm 3: Trajectory optimization algorithm based on ant colony algorithm.

Input: Node coordinates L in each cluster, the set of cluster heads CH, the
node situation C in each cluster;

Output: The order of node uploads in each cluster, the value of the suboptimal
function of P3;

1: for i=1:M do
2: for j=1:Ni do
3: table⟵Record the nodes that have been uploaded;
4: list⟵Record nodes that have not been uploaded yet;
5: According to equation (20), the next node that can lower the objective

value of the function is found from the list.
6: end for
7: end for

Algorithm 4: Greedy algorithm based on data collection order optimization.

Table 2: Simulation parameter table.

Parameter Value

Maximum cluster formation ratio R (m) 50

System bandwidth B (KHz) 20

Transmit power of the node pi (w) 0.1

Noise power pn (dBm) -110

Channel power gain at a reference distance
of 1m β0 (dB)

-60

Path loss factor α 3.5

Constant parameters influenced by the
environment β1, β2

10, 0.03

Carrier frequency f c (GHz) 2

Extra path loss ζLoS, ζNLoS (dB) 0, 20

UAV flight height h (m) 50

UAV flight speed v (m/s) 15

Data package size L (byte) 2560
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the correlation between the nodes within the cluster on the
collected data due to the location factor. The results of the
simulation are shown in Figure 5.

Figure 5 gives the average SCAoI versus the number of
nodes in the region, where the cluster formation radius
R = 50m, flight height h = 50m, flight speed v = 15m/s, packet
size L = 2560 byte, and degree of correlation ρ = 102. As nodes
becomemore numerous, the average SCAoI of both this paper
and [19] as well as [20] increases accordingly due to the
increased time consumption of each process of information
collection by the UAV. For the algorithm described in this
work and [20], the increase in the number of nodes means that
the UAV needs to collect more data, and therefore, the hover-
ing time of the UAV increases. Additionally, there will be
more clusters, which will lengthen the flight time of the
UAV. In [19], when the number of nodes rises, the UAVmust
fly to every node to gather data, which takes up a lot of flight
time. Therefore, both in this paper and in [19], the average
SCAoI shows a rising trend as the number of nodes increases.
When the number of nodes is the same, the average SCAoI in
[19] is significantly larger than the algorithm in this paper and
[20], which is in the middle. The primary reason is that,
according to [19], the UAV visits each node to gather data,
and the number of hovering positions is equal to the number
of nodes. As a result, the average SCAoI and flight time of the
UAV increase as the number of nodes increases, lowering the
freshness of the data. In this paper, we effectively reduce the
number of locations where UAVs need to hover by clustering,
thus shortening the flight time of UAVs. Although [20] also
uses clustering to reduce the hovering position of the UAV,
the number of clusters cannot be effectively reduced, which
also affects the optimization of the UAV trajectory and thus

the freshness of the data collected by the UAV. And as can
be seen from the remaining three curves, the optimization of
UAV trajectories contributes greatly to the improvement of
information freshness compared to the clustering and data
upload order. The reason is that with the same parameter set-
tings, the cluster member nodes take tens of milliseconds to
transmit a packet to the cluster head node, the cluster head
node takes a few milliseconds to transmit a packet of the same
size to the UAV, and the UAV takes a few seconds to fly to the
next cluster head node. Such an order-of-magnitude relation-
ship makes the optimization process far more effective for
trajectories than for the other two variables. Overall, the algo-
rithm proposed in this paper can improve the average SCAoI
of the system by about 61%. From the point of view of the time
complexity of the algorithm, the time complexity OAP of the
proposed algorithm in this paper and the time complexity
OCL of the algorithm in [19] can be denoted as Oϖ ImaxNa

Mϖ
ch and ϖ = AP, CL , where MAP

ch is the number of clusters
of the proposed algorithm in this paper and the number of
clusters in [19] is denoted as MCL

ch . From the above analysis,
it can be concluded that when the number of nodes N is the
same, since the algorithm in [19] does not have a clustering
step, each node can be considered a cluster head, i.e., MCL

ch =
N . And in this paper MAP

ch < <N , so it can be obtained as
MAP

ch < <MCL
ch , i.e., OAP < <OCL. The time complexity of the

proposed algorithm in this paper is also lower than in [19].
Figure 6 gives the variation of the average SCAoI as the

number of nodes increases for different cluster formation
radius, where the flight height h = 50m, flight speed v = 15
m/s, packet size L = 2560 byte, and degree of correlation
ρ = 102. As the cluster radius rises, it is evident from the
graphic that the average SCAoI drops. This is because
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Figure 5: The variation of average SCAoI with the number of nodes in this paper and [19, 20].
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when the number of nodes and node distribution are the
same, the larger the cluster radius, the fewer clusters there
will be. As a result, the hovering position of the UAV,
flight time, and average SCAoI will all be reduced, while
the freshness of information will also be increased.

The average SCAoI changes when there are more nodes
under various UAV flight heights, as seen in Figure 7, where

the cluster formation radius R = 50m, flight speed v = 15m/s,
packet size L = 2560 byte, and degree of correlation ρ = 102.
When there are the same number of nodes, the varying
UAV flight altitudes mostly influence how quickly data is
transmitted from the cluster head node to the UAV. The
transmitting power of the cluster head node is fixed, so as
the flight altitude of the UAV rises, the data transmission
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rate between the cluster head node and the UAV declines.
This is because from Eqs. (3)–(5) and the free path loss
PLi = 20 log10 4πhf c/c in Section 2.3, it is known that the
free path loss increases as the flight altitude h increases,
causing the denominator part of the log function in Eq. (3)
to increase, resulting in a decrease in Ru. As a result, more
time must be spent transmitting the same number of data

packets, which lengthens the hovering time of the UAV.
As a result, the average SCAoI will rise as the flight of
UAV altitude rises, provided that there are the same number
of nodes.

The average SCAoI changes when there are more nodes
under different flight speeds, as seen in Figure 8, where the
cluster formation radius R = 50m, flight height h = 50m,
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packet size L = 2560 byte, and degree of correlation ρ = 102.
The shortest path length and flight trajectory of the UAV
will be the same under the assumption that the number of
nodes, distribution of nodes, and cluster formation are all
constant. Accordingly, the shorter the flight time, the smaller
the flight speed of the UAV will be, and the average SCAoI
will decrease as flight speed increases.

The average SCAoI changes when there are more nodes
under different data volumes, as seen in Figure 9, where the
cluster formation radius R = 50m, flight height h = 50m,
flight speed v = 15m/s, and degree of correlation ρ = 102.
The effect of various data quantities on the average SCAoI
is mostly apparent in two aspects when there are the same
number of nodes. On the one hand, due to Ru > Rch, the
amount of data is the same when tu < tch. When the amount
of data increases, the increment of tu is smaller than the
increment of tch, and the hovering time of the UAV will
increase as a result. On the other hand, the instantaneous
SCAoI when the UAV reaches the cluster head node
decreases as stated by equation (19); then, the average SCAoI
also decreases, but its decrease is small. The cluster member
nodes use TDMA to transmit data to the cluster head node,
and the transmission time from the member nodes to the
cluster head node is equal to the time slot length. The incre-
ment in UAV hovering time due to the increase in data vol-
ume is greater than the decrease in instantaneous SCAoI, so
the average SCAoI increases with the growth in data volume.

The average SCAoI changes when there are more nodes
under various correlation levels, as seen in Figure 10, where
the cluster formation radius R = 50m, flight height h = 50m,
flight speed v = 15m/s, packet size L = 2560 byte. When the
number of nodes is the same, it is known from equation

(10) that when the correlation degree of the space is larger,
its correlation coefficient β is also larger, the nodes’ data col-
lection has a higher correlation, and the corresponding aver-
age SCAoI will be larger, so the average SCAoI increases
with the increase of the correlation degree.

5. Summary

In this paper, we study the problem of age-based optimiza-
tion in information collection systems with a UAV. An opti-
mization problem for the number of joint clusters, UAV
flight trajectories, and data collection order of nodes within
clusters is proposed. Minimize the average SCAoI of all
nodes while ensuring the sensor node communication dis-
tance and UAV parameters. In order to solve the proposed
problem, we decompose it into three subproblems. First,
the maximum-minimum distance algorithm based on clus-
tering is used to obtain the number of clusters and deter-
mine the cluster head node coordinates. Then, it is proved
that the UAV trajectory problem in this paper is a typical
NP-hard problem that can be solved by using the ant colony
algorithm. The data collection order of the nodes in the clus-
ter is solved by the greedy algorithm. The suboptimal solu-
tion of the proposed problem is obtained by solving the
three optimization problems separately. Simulation results
show that the algorithm proposed in this paper outperforms
comparative literature algorithms in reducing the average
SCAoI of nodes and improving the freshness of information.
In the future, UAV caching will be the main research direc-
tion to consider the problem of freshness of user-requested
content or the problem of joint caching optimization for
multiple UAVs and users.
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Figure 10: Variation of average SCAoI with increasing number of nodes for different degrees of correlation.
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