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The low-bit quantization can effectively reduce the deep neural network storage as well as the computation costs. Existing
quantization methods have yielded unsatisfactory results when being applied to lightweight networks. Additionally, following
network quantization, the differences in data types between the operators can cause issues when deploying networks on Field
Programmable Gate Arrays (FPGAs). Moreover, some operators cannot be accelerated heterogeneously on FPGAs, resulting in
frequent switching between the Advanced RISC Machine (ARM) and FPGA environments for computation tasks. To address
these problems, this paper proposes a custom network quantization approach. Firstly, an improved PArameterized Clipping
Activation (PACT) method is employed during the quantization aware training to restrict the value range of neural network
parameters and reduce the loss of precision arising from quantization. Secondly, the Consecutive Execution Of Convolution
Operators (CEOCO) strategy is utilized to mitigate the resource consumption caused by the frequent environment switching.
The proposed approach is validated on Xilinx Zynq Ultrascale+MPSoC 3EG and Virtex UltraScale+XCVU13P platforms. The
MobileNetvl, MobileNetv3, PPLCNet, and PPLCNetv2 networks were utilized as testbeds for the validation. Moreover,
experimental results are on the minilmageNet, CIFAR-10, and OxFord 102 Flowers public datasets. In comparison to the
original model, the proposed optimization methods result in an average decrease of 1.2% in accuracy. Compared to
conventional quantization method, the accuracy remains almost unchanged, while the frames per second (FPS) on FPGAs

improves by an average of 2.1 times.

1. Introduction

Convolutional neural networks (CNNs) are among the most
commonly used networks in artificial intelligence (AI) appli-
cations. Moreover, they are widely applied in computer
vision [1], natural language processing [2], and embedded
systems [3, 4]. However, the complex network structures
and continuously stacked convolution layers in such net-
works create a heavy burden regarding the storage and com-
putational resources of resource-limited hardware devices.
Under these circumstances, numerous researchers have put
for compression methods, such as approximation, quantiza-
tion, and pruning, to reduce the size of the networks [5-7].
These compression techniques play a crucial role in decreas-

ing memory bandwidth usage by leveraging redundancy and
irrelevance.

As an essential technique for network compression,
quantization converts the parameters from 32-bit floating-
point precision to 8-bit or lower, therefore, reducing the net-
work’s computational intensity, parameter sizes, and mem-
ory consumption. However, network quantization often
leads to accuracy loss. Therefore, quantizing networks with-
out significantly sacrificing precision has become a hot
research topic within this field. To compensate the quantiza-
tion loss, Jiao et al. [8] utilized DoReFa-Net’s bit-wise convo-
lution kernels for network quantization. Choi et al. [9]
introduced the PACT method, which enhances the quanti-
zation of activations during the training process without
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inducing significant performance degradation. While post-
training quantization (PTQ) [5, 10] compresses the trained
networks by quantizing parameters to lower bitwidth
through partial validation data, the errors introduced by
these approximations accumulate during forward propaga-
tion computations, leading to a significant performance
dropout [11]. Jacob et al. [12] proposed a quantization aware
training (QAT) method that injects quantizers into the net-
work graph, computes network parameters during the train-
ing process, and applies straight-through estimator to
approximate gradients. However, most of these methods
[13, 14] only inject quantizers before the convolution opera-
tors, while many other operators, in more complex network
structures, are left unquantized.

During the training process of CNNss, the support of the
graphics processing unit (GPU) is typically required. How-
ever, using a GPU dedicated for network inference after
the network is trained may increase the system’s overall per-
formance and resource consumption. To efficiently deploy
and execute network simulation, Kotlar et al. [15] explored
several operation locations and suitable underlying hard-
ware architectures, including multicore processors, many-
core processors, FPGAs, and application-specific integrated
circuits (ASICs). As a result and due to their lower power
consumption and flexible configurable hardware resources,
FPGAs are the most suitable for deployment and inference
as they have gradually become a new research hotspot
[16-18]. However, implementing CNNs on FPGAs also
faces several challenges. For instance, the conventional net-
work VGG16 has 138 million parameters, which requires
255MB of storage when applying a 32-bit format [19]. Fur-
thermore, transferring these values to off-chip memory also
incurs performance and energy overheads. In addition, due
to the unique structure and limited resources of the FPGAs,
numerical adjustments are required for inference deploy-
ment of networks.

To address the series of issues when using FPGAs
regarding the acceleration of the CNN inference, this paper
primarily implemented the following measures:

(i) A quantization aware training method that com-
bines the improvements related to the PACT
method is proposed, to quantize the networks. Spe-
cifically, during the quantization training process,
an improved PACT method is applied for numerical
preprocessing to compressed the values and facili-
tate quantization mapping

(ii) A quantization strategy, which is called Consecutive
Execution Of Convolution Operators (CEOCO), is
proposed, where the quantizers are added after the
interruption of consecutive convolution operations.
This is followed by retraining to ensure the consis-
tency of input and output numerical types of the
convolution operators, enabling them to be exe-
cuted consecutively on FPGAs

(iii) The effectiveness of the proposed method is verified
by conducting experiments on the Xilinx Zynq
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Ultrascale+MPSoC 3EG and the Virtex UltraScale
+XCVUI3P platforms. Moreover, MobileNetvl,
MobileNetv3, PPLCNet, and PPLCNetv2 networks
are employed as the experimental testbeds

To sum up, the remainder of the paper is organized as
follows: Section 2 provides the background, followed by Sec-
tion 3 that describes the proposed method. Furthermore,
Section 4 presents the experimental process and its results,
and finally, Section 5 concludes the paper and suggests
future ideas to enhance this work.

2. Background

In this section, the background of the research conducted in
this paper will be presented. Therefore, this section will intro-
duce the following three aspects: firstly, the network architec-
ture of the lightweight networks series, which are MobileNets
and PPLCNets, will be presented. Moreover, the different
network parameters as well as the computational require-
ments with the conventional networks will be introduced.
Secondly, the quantization methods used in network com-
pression, specifically the fixed-point scalar quantization and
the PACT methods that reduce the number of bits, will be
provided. Thirdly, the graph optimization, performed by
deep learning (DL) frameworks when deploying networks
to target hardware, such as FPGAs, will be explained.

2.1. Lightweight CNNs. Conventional classification networks,
such as VGG and ResNet, have large network sizes and a
high number of parameters. Without lightweight optimiza-
tion, they are not suitable for deployment on edge devices
[20, 21]. To address this issue, researchers proposed a light-
weight CNN called MobileNetvl. The fundamental compo-
nent of MobileNetvl comprises depthwise separable
convolution followed by pointwise convolution. This archi-
tecture not only maintains high classification accuracy, but
it has also smaller parameters and computational complex-
ity. Additionally, MobileNetv2 introduces an inverted resid-
ual structure featuring a linear bottleneck, which serves to
further enhance the network’s performance. In contrast,
MnasNet introduces a lightweight attention model, based
on the squeeze-and-excitation structure, leveraging strengths
from different networks. Furthermore, MobileNetv3 com-
bines the structures of the aforementioned three networks
to further enhance the network depth and improve the
learning capability. Furthermore, PPLCNet and PPLCNetv2
are two lightweight networks characterized by their simple
structures and high efficiency. They perform exceptionally
well in computer vision tasks although having smaller model
sizes and computational requirements.

Compared to the conventional networks, the selected
network parameters, multiadd, and size are represented in
Table 1. It can be clear that the lightweight networks exhibit
significant reductions at several levels. However, when
deploying these lightweight networks on resource-limited
devices, there are still challenges that need to be solved.

A comparative analysis of the runtime of various layers
is also conducted in the experimental networks. To reach
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TaBLE 1: Details of different networks.

Network Parameters (M) Multiadd (GFLOPs) Size (M)
VGGI16 138.55 15.47 489
ResNet34 21.81 3.68 83.86
ResNet50 25.61 4.11 98.55
MobileNetvl 425 0.58 12.7
MobileNetv3 5.5 0.23 17.1
PPLCNet 2.96 0.16 7.62
PPLCNetv2 6.6 0.6 234

TaBLE 2: The time distribution of each network structure.

Network Conv Depthwise Conv BN Other
(%) (%) (%) (%)
MobileNetv1 49.3 9.7 24.9 16.1
MobileNetv3 62.3 3.6 15.6 18.5
PPLCNet 54.16 7.4 19.4 19.04
PPLCNetv2 60.89 4.4 11.5 23.21

this objective, four networks are deployed where the images
are resized to 3 x 224 x 224 pixels. They are then inserted
into networks for inference. The runtime simulation is
shown in Table 2. It is important to mention that the main
time consumption is concentrated on the calculations of
the convolution layers and batch normalization layers.

2.2. Quantization Methods. The fixed-point scalar quantiza-
tion is a common technique used for quantization CNNs as
it converts floating-point representations into fixed-point
representations through the reduction of the number of bits
for weights and activations. Moreover, fixed-point represen-
tations can significantly reduce the storage space required
for the network and improve the inference speed. This is
mainly due to fixed-point arithmetic that can be more effi-
ciently executed on hardware as the use of fewer bits can
save memory bandwidth and accelerate computation.
Furthermore, in convolution calculations, the dot product
operation is performed on matrices, and the matrix W e
R™" is assumed to be split into m x n blocks ¢, as repre-
sented here below:

w=| L (1)

Moreover, fixed-point scalar quantization is applied on
W, transforming this matrix from a floating-point domain
to a fixed-point domain using scale and bias. In addition,
the fixed-point domain can be also converted back to the
floating-point domain. The conversion formulas are as fol-
lows:

w
Wi = clamp (—Zb, 2b, round (? + Z> ) R

W=8x (W

(2)
int — Z )’
where W represents the original floating-point matrix,
W, represents the quantized fixed-point matrix, W repre-
sents the dequantized floating-point matrix from W,
round represents the round-to-nearest function, and clamp
represents the truncation function. We compute the scale
and bias as S=(max W — min W)/(2” - 1) and Z = round
(max W,,, — (max W/S)), and max and min represent
maximum and minimum functions. Note that the round
function is used in the conversion process to approximate
the quantized fixed-point numbers to the nearest integer,
in order to minimize the error during the conversion
between the floating-point and fixed-point values.
Furthermore, the PACT quantization stands out as the
most effective fixed-point quantization technique, achieving
simultaneous quantization of both weights and activations.
This method utilizes a trainable parameter, denoted as « as
a truncation threshold. The computation formula for PACT
is represented as follows:

0, x¢€(-00,0)
y=PACT(x)={ x, x€[0,a) , (3)

®, X €[, +00)

where x represents the input data and y is the truncated
result. The core principle of the PACT technique is to
dynamically control the precision of quantization and trun-
cation through the parameter «. The value of this parameter
is adaptively adjusted based on the statistical characteristics
of the data, aiming to achieve better quantization results.
This approach enables a reduction in computational and
storage requirements while maintaining network perfor-
mance, thereby enhancing the efficiency and precision of
quantized networks.

2.3. Computational Graph Optimization. A computational
graph is used to depict the computation logic and the state
of a deep neural network during the training and inference
processes. It comprises fundamental unit data structures,
known as tensors, along with operation units referred to as
operators. In a computational graph, operators are denoted
as nodes, and the directed edge-connected nodes represent
the propagation of tensor states [22, 23]. Moreover, DL
frameworks accurately dispatch operators to available com-
putational resources, such as GPUs, NPUs, or FPGAs, to
be ready for execution. During the network inference, each
operator in the network reads/writes data from/to the regis-
ters, which can be time-consuming and computationally
demanding. Therefore, the concept of operator fusion has
been introduced to address this issue [24].

In fact, the operator fusion involves merging multiple
consecutive operators into a more complex one to reduce
data reads and writes in registers. For instance, within the



batch normalization folding, batch normalization is defined
as a map of the output x:

KM | B, (4)

\/O5+e

where y is a coefficient for BatchNorm, f represents the bias,

BatchNorm(x) =y

B is the minimum batch data, y; and &} indicate the mean
and variance of the B in the current layer, and ¢ is a small
positive number greater than zero. During network infer-
ence, the parameters of BN are fixed. Thus, we can rewrite
the terms such that BN operation is fused with the linear
layer y = Wx:

Y

Using ' to represent y/1/8% + &, Eq. (5) can be simpli-

(W —pp) + . ()

fied as follows:

y=y' Wx—y'u,+ . (6)

By integrating the BN operator into the linear operator,
the overhead of data transfer and register access can be min-
imized, resulting in enhancing the network inference
efficiency.

The PaddleLite deployment tool performs regular opera-
tor fusion operations [25], such as convolution, BN, and
ReLU operators. Except for the ReLU activation function,
other activation functions, such as the Swish and HardSwish
functions, are determined based on the operators’ hardware
support. In the computation graph, a subset of operators
that possess data dependencies and are compatible with the
target hardware is denoted as a subgraph. Moreover, Paddle-
Lite not only fuses operators but also performs subgraph
fusion by merging adjacent subgraphs into one to accelerate
inference on heterogeneous chips. This merging process
reduces the resource overhead of the platform switching.

3. The Proposed Method

In this section, the custom network quantization method is
presented in detail. Firstly, the floating-point (FP) network
is quantized using the QAT along with the improved PACT
method. Secondly, the CEOCO method is applied to retrain
the networks, and then, the subgraph fusion technique is uti-
lized. The pipeline of the overview framework is illustrated
in Figure 1.

In more detail, the blue boxes represent the steps, the
orange circles indicate the convolution operators, and the
green circles show other nonparameterized operators. As
for the gray/dark gray circles, they represent the quan-
tizers, commonly referred to as fake nodes in engineering.
Finally, Q(-) represents the quantization and dequantiza-
tion function.
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3.1. QAT with Improved PACT Method. The quantization
method used in the QAT is called fixed-point scalar quanti-
zation. It converts the floating-point representation into a
fixed-point representation. The QAT is a simulation-based
quantization technique, it updates parameters by simulating
the errors introduced by quantization. Moreover, all vari-
ables used for forward and backward propagation are repre-
sented as floating-point. Therefore, the weight quantization
and activation quantization nodes are injected into the com-
putation graph to simulate the effects of quantization on the
variables.

To facilitate hardware implementation, the symmetric
quantization is adopted for both weights and activations.
This approach uniformly maps values, within the positive
and negative range, to a fixed range of the fixed-point inte-
gers, where the zero-point is a constant equal to 0. Moreover,
weights undergo channel-wise symmetric quantization,
allowing more precise quantization accuracy at the channel
level. In addition, activations are subjected to layer-wise sym-
metric quantization. We denote certain convolution layer
weights in the pretrained model by W = {W*!, W2, ... W"};
there are a total of n convolution kernels. Finally, the weights
quantization and dequantization are performed according to
the following equation:

i ; wi
W =Q(W',Sy) = clamp <—127,127, round <8_>) X Syis
Wi
(7)
where the scale is

_ max (abs(W')) o
wE ] (8)
In this case, the round represents the round-to-nearest
function, clamp represents the truncation function, and
max and abs represent absolute value and average value func-
tions, respectively. The channel-wise quantization is not
determined by the number of channels in the convolutional
kernel, but through the total number of output channels in
the convolutional layer. This is done to reduce computational
complexity and speed up the inference process. In this
approach, quantization is performed based on the number
of output channels, and each output channel is assigned a
separate scaling factor Sy, for data type mapping. To intro-
duce the quantization error during the forward propagation,

W' is deployed for calculations. This facilitates gradient
updates for weight adjustment during backward propagation.
In situations involving round-to-nearest operation, the gra-
dient is either zero or undefined everywhere. To address this
problem, the straight-through estimator is employed.

The PACT method involves preprocesses weights and
activations through quantization. Although weights typically
lie in the range of -1 to 1, the activations can span an unlim-
ited range. Thus, in this study, preprocessing is exclusively
applied to activations. The original PACT method truncates
positive activations during quantization; however, it ignores
negative activations, leading to an error in calculating the
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scaling factor for quantization. Based on the activation prop-
erties of ReLU and HardSwish functions used in the experi-
mental network, the minimum activations are either 0 or -3
whereas the maximum value can tend toward infinity. The
improved PACT method in this paper is defined as follows:

B, x€(-00,—f)
y= PACT'(x) = x,  x€[-fa) , ©)

®, X E€[a+00)

where the PACT’ presents the improved PACT method. It
introduces truncation limits not only for values greater
than zero but also uses a trainable parameter 8 as a trun-
cation to constrain values within the range of [-f5,0]. This
approach enhances the quantization and simplifies the cal-
culation of scaling factors. In this paper, the initial thresh-
old value « is set as 20, and value f is set as 3 arising
from the HardSwish function. During the training process,

both thresholds are adjusted through gradient propagation
and eventually converge to suitable truncation thresholds,
respectively.

Next, activations are quantized and dequantized: X = Q
(PACT'(X), Sy), where Sy is calculated using the strategy
of sampling the moving average absolute maximum value.
This strategy can reduce the network’s sensitivity to noise
and redundant information, thereby improving the net-
work’s generalization ability.

3.2. CEOCO in Retraining and Subgraph Fusion. The DL
framework accurately allocates operators to the target hard-
ware for execution and carries out heterogeneous scheduling
of network operations, as shown in Figure 2.

Figure 2(a) represents the network structure composed
of operators, and the red arrow in Figure 2(b) illustrates
the diagram of frequent platform switching during heteroge-
neous scheduling. Considering the limited resources of
FPGAs, the input and output data types of the operators,
executed on the target FPGA hardware, are restricted to
the int8 fixed-point integer. Hence, some convolution oper-
ators can be executed on FPGAs whereas the remaining
should be executed on ARM. To achieve consecutive execu-
tion of the convolution operators on FPGAs and reduce the
interaction cost between ARM and FPGAs, several convolu-
tion operators must be added to the subgraph, making the
convolution operators conform to the hardware execution
conditions as much as possible.

In the conventional quantization method, only the con-
volution operator is quantized whereas the other operators
are not quantized. For example, in Figure 2, the convolution
operators that are not marked as available will result in acti-
vation outputs with floating-point values, which can lead to
several problems. Therefore, the network structure must be
identified by adding fake nodes before these unquantized
operators, as shown in Figure 3.

Figures 3(a)-3(c) represent network architectures, while
Figures 3(d)-3(f) show the subgraph fused network archi-
tectures of the corresponding DL frameworks. In more
detail, Figure 3(a) undergoes a transformation by adding
fake nodes to become Figure 3(b). If the target hardware
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Output: The quantized network inference model
: Add quantizers before convolution operators;
:fori=1;i<N;i—i+1do

: Add quantizers before non-convolution operators;
: Re-train the network and subgraph fusion;

1
2
3
4
5: end for
6
7
8:return quantized network inference model;

Input: Data, quantizers, pre-trained FP network with N convolutional layers

Forward propagation by Q(-) to weights of the network W and by Q(PACT (-)) to activations of the network X;
Backward propagation by STE to update network parameters;

ArLgoriTHM 1: Framework of custom network quantization.

supports the execution of other nonconvolution operators,
Figure 3(b) can be further transformed into Figure 3(c).

During the retraining process, the fake nodes will record
the data flowing through them and calculate the scaling fac-
tor. Subsequently, the activations at this stage will be quan-
tized. When performing quantization training, the neural
network not only obtains weights but also determines scaling
factors for each layer’s weights and activations, denoted as
Sy, Sy, and Sy, respectively. During network inference in
the convolution layer, all variables are represented as 8-bit
integer. From this, the formula for quantized inference can
be expressed as follows:

N
SYYint = Z SWi W;nt x SXXint’

i=1

(10)

organized as

v = Swx N Wi x
int SY = int

(11)

int>

where N presents the number of convolution kernels. More-
over, we assume that M =S,iSy/Sy, M =27"M,, where M
represents the floating-point and M, is a fixed-point. In the
quantization inference, M can be replaced by M, using the
bit-shifting technique, so that all the data types in Eq. (11)
become fixed-points.

The fake nodes are added to the successors of the convo-
lution operators, and the deployment tool will incorporate
the preceding convolution operators into the subgraph
according to specific rules. Then, all convolution operators
will be implemented on FPGAs using 8-bit integer arith-
metic. Thus, this will enable the consecutive execution of
the convolution operations. Therefore, the above procedure
is summarized as Algorithm 1.
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TasLE 3: Configuration of experimental environment.

Detail

Program
CPU
Hardware environment GPU
Memory

Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz
Tesla V100 (graphics memory 16 GB)
100 GB

Operating system
Deep learning framework
Acceleration library
Python
Datasets

Software environment

Linux Ubuntu 16.04
PaddlePaddle 2.3.0
CUDA 12.0
Python 3.7.8
minilmageNet, CIFAR-10, OxFord 102 Flowers

Inference platform

Xilinx Zynq Ultrascale+MPSoC 3EG (XCZU3EG)
Virtex UltraScale+XCVU13P (XCVU13P)

FIGURE 4: Inference platform: (a) XCZU3EG and (b) XCVU13P.

TABLE 4: The comparison between the FP networks and the optimized networks.

Network Size (M) Top-1 accuracy (%) Accuracy loss (%) Compression ratio (%)
MobileNetvl-F 12.7 90.72 — —
MobileNetv3-F 17.1 94.75 — —
PPLCNet-F 7.62 91.51 — —
PPLCNetv2-F 234 94.42 — —
MobileNetv1-O 3.5 89.77 0.95 72.44
MobileNetv3-O 4.7 93.84 091 72.51
PPLCNet-O 2 89.68 1.83 73.75
PPLCNetv2-O 5.7 93.46 0.96 75.64

4. Experimental Evaluation

This section outlines the comprehensive experimental design
employed in this work. Table 3 presents the relevant con-
figuration of software, hardware, and inference hardware
platform used in this study, as well as the exhibited exper-
imental datasets.

The program was deployed on specialized hardware
platforms called Xilinx Zynq Ultrascale+MPSoC 3EG and
Virtex UltraScale+XCVU13P, as presented in Figure 4.

4.1. Experimental Setting. This experiment uses the publicly
available minilmageNet dataset [26]. It consists of 100 cate-
gories with a total of 60,000 color images. Each category
has 600 sample images. Moreover, the dataset is divided into
a training set and a validation set using an 8:2 ratio. The

proposed method was deployed for training, and the follow-
ing models have been deployed: MobileNetvl, MobileNetv3,
PPLCNet, and PPLCNetv2. Furthermore, the Momentum
optimizer was used with momentum set to 0.9 and fixing
the batch size to 64. As for the learning rate, it was adjusted
according to a cosine schedule during the 30 epoch training
period. Moreover, the initial learning rate was set to
0.00375. In the training phase, each image was randomly
cropped to 224 x 224 and randomly flipped horizontally. In
the evaluation phase, the image was firstly resized to 256
along the short edge; then, a center crop of size 224 x 224
was applied.

4.2. Experimental Recognition Results and Analysis. The
experimental comparison of network size, compression
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TaBLE 5: The comparison between the conventional quantized networks and the optimized networks.
Top-1 accurac XCZU3EG XCVU13P Compression ratio
Network P (%) Y Inference time Time reduction Inference time Time reduction Size M) P (%)
’ (ms) (%) (ms) (%) ’
MobileNetvl-C 89.98 29.44 — 8.04 — 3.7 70.86
MobileNetv3-C 93.90 53.97 — 14.92 — 5.1 70.17
PPLCNet-C 89.56 16.35 — 4.30 — 2.2 71.12
PPLCNetv2-C 93.61 47.81 — 13.79 — 6.0 74.35
MobileNetvl-O 89.77 16.44 44.16 432 46.27 3.5 72.44
MobileNetv3-O 93.84 18.89 64.99 5.01 66.42 4.7 72.51
PPLCNet-O 89.68 9.88 39.57 2.69 37.44 2.0 73.75
PPLCNetv2-O 93.46 23.01 51.87 6.10 55.76 5.7 75.64
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FIGURE 5: The comparison diagram of the validation Top-1 accuracy.

effect, and recognition accuracy of the four FP networks and
the optimized networks in this paper was conducted on
minilmageNet. The results are shown in Table 4.

#-F is the FP network, and #-O is the optimized network
in this paper. It is evident that the sizes of all four networks
before quantization are 12.7M, 17.1 M, 7.62M, and 23.4 M,
respectively. However, after quantization, their sizes are
reduced to 3.5M, 4.7 M, 2 M, and 5.7 M achieving compres-
sion rates of 72.44%, 72.51%, 73.75%, and 75.64%, respec-
tively. A major contributing factor to this compression is
the quantization of weights in the convolution layers. By
converting them from float32 to int8, the network size is
reduced by approximately 73.58% in average. This remark-
able compression effect is particularly noticeable in the con-
volution layers, which contain a significant part of the
computed parameters. Furthermore, the optimized networks
demonstrate a marginal decrease in accuracy on the valida-

tion set. Specifically, the Top-1 accuracy drops by 0.95%,
0.91%, 1.83%, and 0.96%, respectively. However, they are
still meeting the precision requirements for image recogni-
tion tasks.

Furthermore, the deployment and inference of both the
conventional quantized network and the optimized network
are performed using XCZU3EG and XCVU13P chips.
Therefore, the effects on the Top-1 accuracy and inference
speed on the validation set are displayed in Table 5.

#-C represents the conventional quantized network,
which used QAT with the PACT method for training. The
FPS on XCZU3EG increased to 1.79x, 2.86x, 1.65x, and
2.08x, respectively. On XCVU13P, the FPS increased to
1.86x, 2.98x, 1.60x, and 2.26x, respectively. The optimization
methods achieve an improvement in the compression ratio
of 1.58%, 2.34%, 2.63%, and 1.29%, respectively, compared
to conventional quantization.



International Journal of Distributed Sensor Networks

TaBLE 6: The comparison among the FP network, conventional
quantized network, and the optimized network.

TaBLE 7: Object detection network YOLOv3 model size, mAP@0.5,
and FPS.

Network CIFAR-10/Flowers XCZU3EG
Top-1 accuracy(%) FPS
MobileNetv3-F 87.11/90.79 —
MobileNetv3-C 85.97/89.84 18.53
MobileNetv3-O 86.02/89.71 52.94

The variation in acceleration effects across different net-
works arose from the differences in inference performance
lies in the situation where convolutional operators are exe-
cuted consecutive in the original network. However, in gen-
eral, the use of the method described in this paper has led to
enhance the speed while maintaining accuracy. Therefore,
Figure 5 presents the convergence of the validation set dur-
ing the training of the four networks.

The diagrams of Figure 5 illustrate the comparison of
accuracy between the validation sets during the training pro-
cess. Moreover, Figures 5(a)-5(d) show, respectively, the
comparison of the validation performance among Mobile-
Netvl, MobileNetv3, PPLCNet, and PPLCNetv2 using the
conventional quantization and the custom network quanti-
zation. Moreover, it can be observed that the accuracy does
not show any noticeable loss, while there is a significant
enhancement in inference speed.

To validate the universality of the optimization method
proposed in this paper, we conducted experiments on
CIFAR-10 [27] and OxFord 102 Flowers [28]. The CIFAR-
10 dataset contains ten categories, each consisting of 6,000
images. It is composed of 50,000 training images and
10,000 validation images. The Flowers dataset encompasses
a diverse collection of 102 different floral species. It consists
of a total of 8,189 images, with 2,040 images used for train-
ing and the remaining images used for validation.

We adopted the same training settings as mentioned
above for the minilmageNet dataset, with the only difference
being that for the CIFAR-10 dataset; the input image size is
32 x 32 pixels. Table 6 presents the accuracy of the original
MobileNetv3, as well as the accuracy of the network after
conventional quantization methods and the proposed opti-
mization methods in this paper.

According to the observation results in Table 6, it can be
concluded that both methods used to process the quantized
model resulted in accuracy that was relatively close to the
original accuracy. The accuracy only decreased by less than
1.1%. This finding serves as evidence for the effectiveness
of the optimization method proposed in this paper on differ-
ent datasets.

The optimization methods mentioned in this paper are
also applicable to accelerating the inference of object detec-
tion networks in the field of object detection. For the one-
stage object detection model YOLOV3, we replace its original
backbone network with the lightweight network Mobile-
Netv3. The experiments were conducted using the PASCAL
VOC [29] dataset and validated the inference on the
XCZU3EG platform. The input image size is 608 x 608

Network Size (M) mAP@0.5 (%) FPS
YOLOV3-F 89.12 79.64 —

YOLOvV3-C 24.45 78.77 3.79
YOLOvV3-O 22.01 78.69 8.58

pixels. Table 7 presents the comparison of model size, aver-
age precision (mAP), and FPS.

We have observed from Table 7 that the original
mAP®@0.5 achieved by YOLOV3 is 79.64%. By employing
both conventional quantization techniques and the opti-
mized quantization method proposed in this paper, we have
managed to reduce the model size from 89 M to 24.45M and
22.01 M, respectively, while maintaining the accuracy drop
within 1%. Furthermore, our proposed optimization method
has demonstrated 2.26 times faster inference acceleration
than the conventional quantization method on hardware
platforms.

4.3. Ablation. The optimization methods, employed in this
study, were subjected to ablation experiments, using the
MobileNetv3-C network as the baseline. Moreover, the
experimental results with the inclusion of the improved
PACT and CEOCO methods on top of the baseline are
shown in Table 8.

It can be observed that the improved PACT method,
proposed in this paper, has achieved a 0.59% improvement
in the original accuracy. Additionally, the adoption of the
CEOCO strategy resulted in a significant boost at the level
of the inference speed. These experimental results validate
the effectiveness of all the optimization strategies described
in the paper.

The CEOCO strategy focuses on adding fake nodes based
on the model structure, enabling consecutive scheduled exe-
cution of convolutional operators on FPGAs. We conducted
ablation experiments by inserting fake nodes before different
nonconvolution operator structures in MobileNetv3 and per-
forming inference on XCZU3EG, as shown in Table 9. We
used “baseline+PACT”” from Table 8 as the baseline for this
ablation experiment. Due to the negligible impact of individ-
ual operators on accuracy and FPS, we uniformly add fake
nodes based on operator types.

According to Table 9, it can be observed that in the Mobi-
leNetv3 network structure, the number of preceding convo-
lution operators for pool, elementwise-add, elementwise-
mul, and dropout operators is 9, 16, 20, and 1, respectively.
Fake nodes were uniformly added based on operator types.
It was found that as the number of preceding convolution
operators increases, the precision degradation becomes more
significant, but the improvement in FPS becomes more pro-
nounced. Additionally, the preceding nodes of pooling oper-
ators in the MobileNetv3 network are all in the form of
residual structures. Therefore, if fake nodes are inserted
solely in front of pooling operators, their preceding nodes
will also not be included in the subgraph.
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TaBLE 8: The ablation experiment 1.
Network PACT’ CEOCO Top-1 accuracy (%) FPS
Baseline 93.90 18.53
Baseline + PACT' v 94.49 18.50
Baseline + PACT' + CEOCO v v 93.84 52.94
TABLE 9: The ablation experiment 2.
Network Number of preceding convolution op Top-1 accuracy (%) FPS
Baseline 0 94.49 18.50
Baseline + pool 9 94.36 17.06
Baseline + elementwise_mul 16 94.21 31.51
Baseline + elementwise_add 20 94.10 36.29
Baseline + dropout 1 94.49 19.28
Baseline + all 46 93.84 52.94
5. Conclusion Acknowledgments

This paper analyzes the structure of CNNs and addresses the
challenges of deploying on ARM+FPGA heterogeneous
chips. Therefore, a method, called custom network quantiza-
tion, is proposed in this work. It involves the improved
PACT method and the CEOCO strategy. The experiment
involves training MobileNetvl, MobileNetv3, PPLCNet,
and PPLCNetv2 networks using the minilmageNet, CIFAR-
10, and OxFord 102 Flowers datasets and deploying them
on XCZU3EG and XCVU13P chips to test the performance
of the different methods. The results demonstrate that the
Top-1 accuracy of these optimized networks decreases by
1.2% in average, while compressing four networks to
approximately fourth of their original sizes. Moreover, infer-
ence on the chip exhibits a significant improvement at the
speed level.

As for the future works, we will proceed with exploring
other methods for model compression, aiming to further
reduce the size of the model while ensuring that the loss in
network recognition accuracy maintains an acceptable
range.
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