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This paper proposes a hybrid metaheuristic approach to optimize a duty cycle framework based on Seagull and Mayfly
Optimization (HSMO-DC) Algorithm. This approach becomes crucial as current clustering protocols are unable to efficiently
tune the clustering parameters in accordance to the diversification of varying WSNs. The proposed HSMO-DC primarily has
two parts, where the first part takes care of the online cluster head selection and network communication using the seagull
algorithm while the second part performs parameter optimization using the mayfly algorithm. The seagull is aimed at
improving the energy distribution in the network through an effective bandwidth allocation procedure while reducing the total
energy dissipation. Comparatively, with other clustering protocols, our proposed methods reveal an enhanced network lifetime
with an improved network throughput and adaptability based on selected standard metric of performance measurement.

1. Introduction

Wireless sensor networks (WSNs) are formed out of several
sensor nodes. These sensors are widely distributed. Through
the collaboration of sensors, WSN has become an experi-
mental paradigm for collecting information on a large-
scale location [1]. WSN nodes are often battery-powered to
reduce power consumption and outfitted with low-
performance CPUs and tiny memory [2]. Because they are
battery-powered, replacing their batteries is difficult, if not
impossible. Furthermore, reducing the pace at which the
node’s energy is consumed is critical to obtain a more
extended network lifetime [3]. Increasing the network life-
span and reducing packet delivery delays are two complex
challenges for WSNs, which may be accomplished with the
help of an energy harvesting method [4]. Sensor nodes must
decide their sensed data rates to the base station (BS) to
report the complete network information while reducing
data redundancy in their sensed data reports to maximize
the network lifespan [5]. Further, redundant data transfer
is one of the most significant sources of high-energy dissipa-
tion, reducing the network lifespan [6]. In resolving some of

these challenges, clustering has been demonstrated to be an
efficient technique in terms of energy conservation, thereby
boosting network lifetime. Implementing the cluster head
creation and selection has enhanced the dependability and
network life expectancy of WSNs [7]. Furthermore, nodes
within its transmission range can get the code, but in prac-
tice, this approach uses a lot of energy from nodes and even-
tually reducing the network longevity. As a result, most
networks do not always keep nodes active to preserve
energy. Therefore, justifying the need to adopt a duty cycle
based Wireless Senor Neworks [8].

The duty cycle is one of the most extensively employed
energy-saving mechanisms in WSN, particularly at the
medium access control (MAC) layer. Because the active
duration is longer and more energy is spent when the
MAC works at a high duty cycle, the duty cycle must be
adjusted to match the MAC’s strength to ensure appropriate
data transmission while avoiding battery depletion [9]. In
the same way, using the sensor node’s duty cycle mode is
an efficient technique to increase energy efficiency. Here,
the nodes in the duty cycle mode wake up and sleep at reg-
ular intervals. The wireless receiving device is turned off
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while the node is in sleep mode, saving energy [10]. Because
awake-state energy consumption is more than two orders of
magnitude higher than sleep-state energy consumption,
nodes are kept in the sleep state as much as possible to con-
serve energy [11]. Clustering is a hierarchical strategy ini-
tially employed in cellular networks, where mobile phones
interface with fixed infrastructures to facilitate data flow
[12]. The strategy allows bandwidth to be reused to increase
system capacity and makes the network more stable when
nodes move around [13]. The clustering approach in a
WSN environment has the positive potentials to improve
network performance by grouping nodes into clusters and
assigning a leader to each cluster known as a cluster head
(CH) [14]. In this kind of setup, cluster nodes transmit their
data to the CH, aggregating it and sending it to the base sta-
tion (BS) directly or through a multihop routing. Unfortu-
nately, in a multihop routing, CHs closer to the BS are
exposed to a high intercluster relay traffic load which
exhausts their energy faster than other CH nodes [15, 16].

In an attempt to contribute to this domain of knowledge,
a Hybrid Seagull Mayfly Optimization for Duty Cycle
(HSMO-DC) was proposed for improved clustering. The
first section of the proposed method focuses on selecting a
cluster head and coordinating network interactions using
the Seagull Optimization Algorithm (SOA). Next is the May-
fly Optimization Algorithm (MOA) used in the second
phase to optimize critical parameters in SOA. The findings
indicate that the hybridization of SOA with MOA into
HSMO can enhance network performance and extend net-
work lifespan in practically all network circumstances. In
addition, our simulation shows that the proposed HSMO-
DC is adaptable and works well over various network life-
span specifications. The main contribution of this study is
the ability to hybridize SOA and MOA into unified novel
algorithm to improve the energy lifespan of a network.

Finally, the organizations of this study are discussed in
detail in subsequent parts. Section 2 discusses the findings
and analysis of relevant existing work of the suggested
model, outlined below. The recommended technique of the
work is given in Section 3, and the work is experimented
with and analyzed. The result analysis and comparative dis-
cussion of the study are covered in Section 4. The work’s
conclusion is shown in Section 5.

2. Literature Review

In this section, the existing method of the related work and
their analysis is evaluated and described as follows. Now,
in domain of wireless technologies, sensors and actuator
nodes are installed to increase their battery lifetime. How-
ever, to achieve this objective, many recent methods have
been developed to reduce battery consumption [17]. For
instance, in the study of Draz et al., a Data Packet Forward-
ing Algorithm (DFPA) and Watchman Layer Update Mech-
anism (WLUM) were implemented [18] in WSNs to
maintain energy efficiently. Also, Ramadan et al. presented
a method of placing multisink nodes close to fog nodes that
can save energy and facilitate coherent data transfer between
WSNs and fog networks [19]. However, the crucial concerns

of WSNs face are lowering energy usage and increasing net-
work longevity. To support with this concern, High-Quality
Clustering Algorithm (HQCA) is found as one of the most
effective techniques for reducing energy consumption in
WSNs. In the study of Baradaran and Navi, an HQCA was
used to construct high-quality clusters. The HQCA
approach employs a criterion for assessing cluster quality,
which can enhance intercluster and intracluster distances
while also lowering clustering error rates. The best cluster
head (CH) is chosen using fuzzy logic and a variety of fac-
tors, including residual energy, minimum and maximum
energy in each cluster, and minimum and maximum dis-
tances between cluster nodes and the base station [20]. The
primary advantages of this approach are the high depend-
ability, low error rate during the clustering process, indepen-
dence of critical CHs, greater scalability, and exemplary
performance in large-scale networks with a large number
of nodes. Gaber et al. also introduced the external and inter-
nal criterion used to assess the validity of the clustering qual-
ity [21]. Another existing methodology to reduce energy
consumption and increase the lifetime is the study of Han
et al. which used the metaheuristic technique to create a
clustering protocol (CPMA). The network lifespan is the pri-
mary factor in CPMA, which is divided into two compo-
nents. The first section focuses on selecting a cluster head
online and coordinating network interactions. The Har-
mony Search (HS) Algorithm was used to make the decision
to decrease overall energy dissipation and smooth energy
distribution across the network [22].

Several contradictory variables influence clustering effi-
ciency, and to rectify this, Prince and Pragya presented a
method that enables the nodes to work together to self-
select the best CHs. To identify the optimal set of CHs from
the various options that may efficiently meet the coordina-
tion criterion, several attribute decision-making approaches
are applied [23]. However, to solve the drawbacks of some
existing method of clustering, Kotary and Nanda used a
moth flame optimization approach that minimizes the
intracluster distance. The optimal moth position and accom-
panying fitness value (intracluster distance) are shared with
surrounding nodes using a diffusion technique of coopera-
tion [24]. Moreover, in solving the energy lifetime problems,
Xu et al. presented a distributed energy region algorithm ER-
SR to dynamically pick nodes in the network with the high-
est residual energy as source routing nodes [25]. As from
early methods to reduce energy consumption through select-
ing the best CH, Dattatraya and Rao also presented Glow-
worm swarm with Fruit Fly Algorithm (FGF), which is the
hybridization of Glowworm Swarm Optimization (GSO)
and Fruit Fly Optimization Algorithm (FFOA) that helps
to choose the best CH in WSNs [26].

More recently, there has been some good contribution to
knowledge with the inclusion of additional power mode:
thus deep sleep and hibernation mode. In the study of
[27], a WSN for monitoring environment was implemented
using the Selective Surface Activation Induced by Laser
(SSAIL) technology. The study reveals distinct features and
power capabilities of active mode, modem sleep mode, light
sleep mode, deep sleep mode, and hibernation mode. In
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their observation, it was concluded that the deep sleep mode
uses the least amount of energy making it the most preferred
for Wi-Fi modules. Finally, the field of knowledge is the
consideration of deep learning approaches to improve duty
cycles as demonstrated in the study of [28]. In their study, a
bidirectional long short-term memory model was proposed
to predict future expected events while allocating the pre-
dictive sensors to the predicted event. However, to optimize
the performance of the scheme to track missed and unde-
tected events, the Q-learning algorithm was employed with
promising results compared to conventional ML algorithms.

3. Research Methodology

3.1. Hybrid Seagull Mayfly Optimization for Duty Cycle
(HSMO-DC) Protocol. A major complication in wireless sen-
sor networks (WSNs) is congestion-free routing to minimize
latency. Here, duty cycle management is becoming an essen-
tial process, where all the nodes are active, sleep, and preac-
tive. In WSN, the member nodes only receive data when in
the active state. The proposed HSMO-DC algorithm is
developed to deal with duty cycle management for effective
scheduling in terms of coverage and power. The HSMO-
DC helps to form dynamic clustering in a WSN environ-
ment where all the sensors are deployed randomly. After
the random deployment of nodes, the cluster head (CH)
selection is determined to transfer data to the base station
[16]. The HSMO-DC optimization algorithm is executed to
select the active nodes in the network, and the rest of the
nodes go to the sleep state. Moreover, the active and sleep
nodes are determined by measuring the QoS value, such as
node ID, bandwidth, and residual energy. In cases where
the minimum energy of the active node is about to deplete
completely, the sleep node gets awake ahead of time to
ensure connectivity. Figure 1 shows the overview of the pro-
posed model.

From Figure 1, the HSMO-DC algorithm forms a cluster
with a corresponding cluster head by analyzing the QoS
parameters of each node. The proposed model mainly relies
on effectively managing the sensor network’s lifespan by
controlling energy consumption. The proposed model com-
prises four scenarios, i.e., base station at the top, bottom, left,
and right. Figure 2 shows the left side scenario with left side
cluster formation.

3.1.1. Information Exchange. In WSN, the entire nodes
broadcast a QOS message, which is maintained in the Q
-table. The Ni indicates each node, and its neighbor node
is denoted as NE Ni , and this relative information is stored
in the Q-table. The capability of the node (CoN) is deter-
mined using the following equation:

F0 = CoNi = 〠
N j∈NE Ni

j 1

Each node’s CoN is analyzed with the delay time (DT)
which is evaluated with Eq. (2), where C and e are constant
and exponential values, respectively.

DT = Ce1/ND 2

DT is the shortest node with the highest node degree
[29]. In this study, the degree refers to the node with the
maximum number of edges on the network. When the delay
timer runs out, the node will send a message announcing
itself as the cluster head, but if two nodes have the same
latency, the node with the highest residual energy and sens-
ing range is assumed to be the cluster head. The node’s
residual energy RE can be formulated as

F2 = RE = In − Et + Er , 3

where In, Et , and Er represents the node’s initial energy, the
energy used for transmission, and the energy used for recep-
tion, respectively. Apart from the initial energy, the trans-
mission and reception energy are computed heuristically in
the network. In subsequent sections of this study, CoN, DT
, and RE will denote the bandwidth, delay, and residual
energy, respectively.

(1) Formation of Cluster Head. CoN, ID, DT , and RE are the
major parameters of the cluster activation message (CAM)
to build the cluster. The node with maximum bandwidth,
max residual energy, and minimum delay (QoS) is consid-
ered as the metric for the development of CH. The CAM will
be transferred to all the neighbor nodes or cluster members
(CM) to join the cluster. The CAM mainly helps to make the
CM join into the specific cluster. As discussed earlier, the
residual energy RE, which always maintains a higher value
for reliable nodes, will reduced to a certain level if the
dynamic cluster formation (DCF) is executed. The DCF
helps to appoint new cluster heads and clusters dynamically.
Moreover, because the cluster head must span the whole net-
work, DCF seeks to select the smallest number of nodes with
the most neighbors. This contributes to the network’s lon-
gevity as shown in Figure 3 with the left scenario data trans-
mission in the CH (in yellow color) formation.

3.1.2. Convergence-Based Minimal Active Node Selection.
The HSMO-DC approach is to find the most miniature set
of active nodes in the clusters. Initially, the fitness feature
Fit f = CoNi,DT , andRE for every node’s Ni is resilient
and satisfying the neighboring node NE Ni and the conver-
gence condition defined in

NE Ni = Nj Ri + d i, j ≤ Rj, d i, j
≤ Rj AND Ri − Rj ≤ d i, j ,

4

where Ni represents the source node, the Nj represents the
destination node, the sensing range of Ni can be defined as
Ri, and then Nj’s sensing range is denoted as Rj. Specifically,
the sensing range of Ri and Rj must be less than or equal to
the distance between Ni and Nj. Considering this condition,
the possibility of awake node redundancy can be reduced,
and the prolonged sensor node’s lifetime can be increased.
Moreover, the weighted probability is a significant parameter

3International Journal of Distributed Sensor Networks



Random sensor
deployment

Optimal

Optimal power

Clustering

S S S S S S

HSMO-DC

Active
node

SLEEP

Figure 1: The proposed model.

Figure 2: Illustration of the left scenario-based prestage cluster formation.

Figure 3: Data transmission with cluster head formation.
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for selecting an environment’s active node. The weighted
probability in Eq. (5) can be represented as wp, which is to
be considered in selecting a number of active nodes.

wp =
fitf
∑f itf

5

The active nodes are selected using the HSMO-DC algo-
rithm for duty cycle management, initially based on the MF’s
gravity coefficient-based SOA. The exploration or migration
strategy is considered when assigning the nodes, and this
comes in three steps: collision avoidance, use of neighbor
information, and best position. The collision avoidance strat-
egy is incorporated for the optimal placement of nodes into a
network environment which is achieved with the seagull-
based optimal node deployment in

Co Node = Ad × PosNode i , 6

where the Co Node denotes the collision-free node allocation

based on the node’s current position and PosNode i is deter-
mined by incorporating the additional variable of the seagull
“Ad” defined in Eq. (7). Moreover, “Ad” represents the
movements of the nodes in the WSN environment or prob-
lem space. In addition, the “i” denotes the iteration in 0 to
Max i range.

Ad = f c − i ×
f c

Max i
, 7

where f c is the variable to control the frequency of the Ad in
the interval [0, f c]. Figure 4 shows the minimal active node
selection.

3.1.3. Collect Neighbor’s Data with Gravity Coefficient. This
strategy helps to move the node towards the best neighbor
as shown in

de = gc × Posbnode i − PosNode i , 8

where d e determines the current position of the PosNode i

towards the current best node Posbnode i . The strategy of
seagull is improved by incorporating the mayfly, specifically
the gravity coefficient in range (0,1). Therefore, the balance
between exploration and exploitation can be assured. Math-
ematically, the determination of the gravity coefficient is
defined as

gc = gmax −
gmax − gmin
Max i

× i, 9

where the gmax and gmin denote the maximum and mini-
mum values, respectively. Likewise, the i and Max i repre-
sent the current and maximum iterations, respectively.

3.1.4. Nodes Move towards the Best Solution. The nodes in
the network update their position by determining the best
solution based on the QoS value. At last, by analyzing

collision-free node, the Co Node and de are considered in

updating the best position of the nodes. The De to determine
the best new position is shown in

De = Co Node + de 10

(1) Exploitation. In the exploitation phase, three parameters
are considered, thus x, y, and z planes. Mathematically, these
parameters are formulated in

x = r × cos t , 11

y = r × sin t , 12

z = r × t 13

The independent variable “t” is a random value defined
between 0 and 2π while r denotes the spiral turn radius
defined by

r = a × eβt , 14

where again the e represents the natural logarithm and a and
β denote the shape of the spiral. Using Eqs. (10)–(13), the
new position is updated with

PosNode i = De × x × y × z + Posbnode i 15

At last, active nodes are determined, and data transmis-
sion is processed. Therefore, the active node will transmit
the beacon message to all active neighbors and the cluster
head. Most other nodes, except the active ones, are put to
sleep. This is frequently used to minimize energy consump-
tion. However, to prevent node failure, the sleep node must
be set to wake up at a specific time.

3.1.5. Time Aware Sleep Node Scheduling. By tracking
charge-discharge value with residual energy, node schedul-
ing and putting extra sensor nodes to sleep are possible. If
the battery is discharged, the neighboring sleep node wakes
up before the active node sleeps. This results in lower energy
consumption and a longer lifespan. Sleep, preactive, and
active states exist in each node. In the sleep state, the node
sleeps and uses very little energy. A node in the preactive
state to the nearest active nodes will broadcast a beacon mes-
sage while the active nodes continue to monitor their sur-
roundings. The node enters the preactive state after waking
up from its sleep state. The node will broadcast a hello mes-
sage with a timer while in the preactive state. Active nodes
within the sensing range send the reply message. Suppose
the node receives the reply message with a sleep timer Stime
before the timer expires, the node returns to sleep from pre-
active. The node enters the preactive state after Stime expires
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again and sends the hello message to the nearest active
nodes. If the preactive node does not receive a response mes-
sage before the timer expires, it becomes active and senses
the physical environment. Stime is calculated by mapping
residual energy to the active node’s battery discharge value
[30]. In this study, Eq. (16) is used to calculate the battery
voltage VOLr with reference to residual energy:

VOLr = VOLmax −VOLmin ×
h%
100

VOLmin, 16

where VOLmin is the minimum operating voltage (0.9V),
VOLmax is the maximum operating voltage (1.4V), and h%
is the percentage of node’s residual energy.

In applying the polynomial regression to the battery dis-
charge value, Stime can be calculated from VOLr using

Stime = a1 + a2VOLr + a3VOL2r + a4VOL3r
+ a5VOL4r + a6VOL5r ,

17

where a1, a2, a3, a4, a5, and a6 are the polynomial
coefficients.

After Stime, the sleeping node should wake up earlier,
before the active neighbor node’s energy is completely
depleted. The sleep node will awake within a certain period
to reduce unnecessary wake ups. As a result, less energy is
consumed, and the network’s life expectancy is increased.

3.1.6. Optimal Connectivity Management. The goal of con-
nectivity is to connect the nodes to meet the BS. To avoid
data transfer disconnection, the nodes must be attached.
To ensure connectivity, each active node (ANi) sends a bea-
con message to all active nodes with three different transmis-
sion power levels (TPL). The TPL is maintained in the Q
-table by all active nodes. The HSMO-DC algorithm evalu-

ates each node based on the beacon message by extracting
and verifying the node ID from the Q-table. In effect, the
Q-table maintains in addition to the node ID, transmission
power level (TPL), and RE . If a receiver sends all three con-
nection reply messages (CREP) of the same active node, it
sends a CREP with the lowest TPL possible. If the sender
has not received any CREP for a given time, it modifies the
TPL value following Eq. (18) with TPL3′ being the older value
of TPL1.

TPL1 = TPL3′ + 1, 18

where TPL3 = TPL2 + 1 and TPL2 = TPL1 + 1.
The CREP is again broadcast with a modified TPL by the

requesting node. The HSMO-DC algorithm evaluates all the
nodes. The discussed steps are reiterated until all nodes are
linked with the lowest possible TPL. As a result, connectivity
is guaranteed with minimal transmission power and secured
with a low TPL while extending the network’s lifetime. The
coverage and connectivity are both of excellent quality.
However, the lack of high-level coverage and connectivity
is a serious problem. In this study, coverage with connectiv-
ity is supplied by optimal connectivity management, which
spreads the network lifetime while using the least amount
of transmission power possible. The overall flow of the pro-
posed model is shown in Figure 5.

4. Result and Discussion

This section contains the results and discussions of the pro-
posed and implemented methods for a hybrid metaheuristic
approach to manage the network lifetime by providing an
effective duty cycle-based method. The performance of the
proposed HSMO-DC is evaluated and compared to current
methods (in this study, it is CCBS). In addition, the

Figure 4: Minimal active node selection.
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implementation is done through NS2 stimulation. Standard
metrics such Delay, Delratio, Energy, NLT, and Throughput
values are computed and compared to CCBS method. These
metrics are computed with Eqs. (19)–(23).

Delay. This is a dimensionlessmetric in a time-constrained
WSN environment, and it is a crucial parameter for data
forwarding.

Delay = total produced time gap
simulation time

19

Delratio. It is the ratio of total packets delivered to total
packets sent from the source node to the destination base
station. This is also dimensionless.

DR =
PReceived ∗ 100
∑n

i=1Pgenerated i
20

Energy. WSN nodes are small devices that run on batte-
ries. As a result, an energy-efficient data aggregation strategy
that maximizes network lifetime is critically defined in Eq.
(21) with no dimension.

e =
∑m

i E
i
consumed

mEinitial
21

NLT. A key performance parameter in WSNs is network
lifetime and is defined as the amount of time until the first
sensor’s energy runs out. This is measured in seconds.

NLT =
E

1 − nf r1 R 1 − nf + r2
22

Throughput. The number of packets per second received
at the destination is measured by end-to-end network
throughput. This is measured as bit/sec in this study.

Throughput =
total transferred bits
simulation time

23

The proposed and existing performance measures are
captured in Figures 6–10.

Table 1 shows Delay, Delratio, Energy, NLT, and
Throughput generated from nodes 20, 40, 60, and 80,
respectively. It is observed from the table that, the proposed
HSMO-DC, in terms of all the metric, however the proposed
method is only efficient for larger sensor node. This, in
essence, is not a drawback of the proposed method, as net-
works of this kind are deployed in quantity, rendering the
proposed approach well-suited for practical applications.
To give a better context to the values in Table 1, we have
Figures 6–10.

In Figure 6, we have a graph of the delay metric compar-
ing the proposed approach with the existing scheme based
on the number of nodes. From the graph, our proposed
method remains competitive to the existing system except
for node 20 with a slight cooperation with the excising sys-
tem. From this observation, one can conclude that the pro-
posed method achieved lesser delay compared to the
existing approach. In both cases, as the number of nodes
increases, the delay is also increased.

A similar observation is noted for Figure 7 displaying the
Delratio performance comparison of the proposed approach
with the existing scheme based on the number of nodes.
Again, the proposed method recorded a poor performance
of 0.964434 at 20 nodes while the existing approach achieves
0.926988. However, after 25 nodes, the proposed method

Stop YES CoN < 0.5

NO

Start

Dynamic node
deployments

Node’s
(distance, time

and bandwidth)
Initialization

CH selection

HSMO-DC
active node

Q-Table (N (j)
justifies Ne (j))

Stop

YES

NO

Sleep nodes

(remaining node)

HSMO-DC moves
neighbour nodes

Bandwidth based
fitness (CoN and RE)

Convergence based
TPL, Time, and RE

Active node

Bandwidth
allocation

Figure 5: Flow chart of the proposed model.

7International Journal of Distributed Sensor Networks



25

20

15

D
el

ay

A graph of delay against nodes

10

5

0
20 30 40 50

Nodes
60 70

HSMO-DC
CCBS

80

Figure 6: Delay plot for proposed and existing method.

1

0.9

0.8

0.7

0.6

D
el

ra
tio

A graph of delratio against nodes

0.5

0.4

0.3

0.2

0.1
20 30 40 50

Nodes
60 70

HSMO-DC
CCBS

80

Figure 7: Delratio plot for proposed and existing method.

8 International Journal of Distributed Sensor Networks



100

90

80

70

60

En
er

gy

A graph of energy against nodes

50

40

30

20

10
20 30 40 50

Nodes
60 70

HSMO-DC
CCBS

80

Figure 8: Energy plot for a proposed and existing method.

500

450

400

350

300N
LT

A graph of NLT against nodes

250

200

150

100
20 30 40 50

Nodes
60 70

HSMO-DC
CCBS

80

Figure 9: NLT plot for proposed and existing methods.

9International Journal of Distributed Sensor Networks



regains its capability, demonstrating good performance over
the existing method and affirming the robustness of the pro-
posed approach. Despite this observation, one cannot be
fully convinced of the performance of the proposed model
without observing the other metrics in Figures 8–10.

Without the deliberate effort in repeating the same
observation of Figure 7 into Figure 8, discussion on
Figure 8 is skipped while focusing on an interesting observa-
tion noted in Figure 9.

Surprisingly, from Figure 9 showing the NLT perfor-
mance comparison of the proposed approach with the exist-
ing scheme based on the number of nodes, an inverse

observation was noted. From the graph, our proposed
method rather did very well at node 20 to a little above node
50 with a close linear competing performance from node 60
and above. Despite the appreciable marginal performance of
the existing system, it will be wrong for one to quickly con-
clude on a single metric with no prejudice to other relevant
metrics. This slight difference is largely compensated for by
the other four metrics which is mostly ignored in most stud-
ies that only reports on duty cycle longevity.

Finally, we have Figure 10 showing the throughput per-
formance of the proposed approach based on the number
of nodes. As has been the trend of observation, the proposed
methodology in this case remains adept right from the min-
imum node of 20 and widening performance range till the
maximum node of 80.

5. Conclusion

In this study, we proposed a Hybrid Seagull Mayfly Optimi-
zation for Duty Cycle (HSMO-DC) to reduce the total
energy dissipation and improve smooth energy distribution
across a wireless senor network. The incorporation of the
Mayfly Optimization Algorithm (MOA) played the role of
parameter optimization. The results show that the hybridi-
zation of SOA with MOA can improve network throughput
and network lifetime under almost all network conditions
over the benchmark algorithm thus CCBS with a good mar-
gin in most cases. All the results show that HSMO-DC is
suitable and efficient for a wide range of WSN applications
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Figure 10: Throughput plot for proposed and existing method.

Table 1: Comparison of experimental results of proposed method
with existing method (CCBS).

Node Delay Delratio Energy NLT Throughput

The proposed method (HSMO-DC)

20 1.543259 0.964434 96 452 777.650000

40 9.614474 0.494258 49 276 573.475000

60 16.197291 0.269553 26 147 373.116667

80 19.236650 0.171237 17 106 273.775000

Existing method (CCBS)

20 1.444667 0.926988 92 311 753.850000

40 17.539263 0.630955 63 229 461.575000

60 20.612230 0.390439 39 149 245.500000

80 22.859480 0.278740 27 109 177.637500
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despite the competitive tire with the NLT metric as the node
grows larger. In future studies, this study seeks to explore
how to hybridize other swarm intelligence algorithms to fur-
ther improve performance and also review their theoretical
benefit in this domain of research.
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CM: Cluster members
CoN: Capability of the node
CPU: Central processing unit
CREP: Connection reply messages
DCF: Dynamic cluster formation
DFPA: Data Packet Forwarding Algorithm
FFOA: Fruit Fly Optimization Algorithm
FGF: Fruit Fly Algorithm
GSO: Glowworm Swarm Optimization
HQCA: High-Quality Clustering Algorithm
HS: Harmony Search
HSMO: Hybrid Seagull Mayfly Optimization
HSMO-DC: Hybrid Seagull Mayfly Optimization for Duty

Cycle
MAC: Medium access control
MOA: Mayfly Optimization Algorithm
NLT: Network lifetime
QoS: Quality of service
SOA: Seagull Optimization Algorithm
TPL: Transmission power levels
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WSNs: Wireless sensor networks.
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