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Research into natural products from the marine environment, including microorganisms, has rapidly increased over the past
two decades. Despite the enormous difficulty in isolating and harvesting marine bacteria, microbial metabolites are increasingly
attractive to science because of their broad-ranging pharmacological activities, especially those with unique color pigments. This
current review paper gives an overview of the pigmented natural compounds isolated from bacteria of marine origin, based on
accumulated data in the literature. We review the biological activities of marine compounds, including recent advances in the study
of pharmacological effects and other commercial applications, in addition to the biosynthesis and physiological roles of associated
pigments. Chemical structures of the bioactive compounds discussed are also presented.

1. Introduction

1.1. Marine Bacteria and Its Role in Life Sciences. A wide vari-
ety of diseases and medical problems represent a challenging
threat to humans, who since ancient times have searched for
natural compounds from plants, animals, and other sources
to treat them. Although the process of finding effective treat-
ments against fatal diseases is difficult, extensive searches for
natural bioactive compounds have previously yielded some
successful results. The isolation and identification of specific
natural compounds led to the development of folk medicine,
and humans learned to separate the isolates into medicinal
drugs, which could be used to treat different diseases, and
poisonous substances, which could be used for nonmedicinal
purposes (i.e., during tribal wars, hunting, etc.). Statistically,
at least 50% of the existing drugs that are used to treat human
illnesses are derived from natural products, most of which
are obtained from terrestrial organisms [1]. However, due
to continuous and exhaustive research, land-based natural
bioactive compounds have become increasingly difficult to
find. Instead, water-based natural compounds have become
a more promising source, not only from a pharmacological
view, but also for industrial and commercial applications.

Theoretically, life is considered to have originated in the
sea and, as a result of evolutionary changes, developed into

a wide variety of diverse biological systems. The Earth’s
surface consists of 70% water, which is inhabited by 80% of
all life forms [1], and consequently aquatic organisms have
a greater diversity than their terrestrial counterparts. As re-
search into the marine environment is still in its early phases,
many mysteries associated with aquatic fauna and flora have
yet to be discovered. Therefore, the marine environment
has recently become an attractive research subject for many
investigations, because of its rich biodiversity. Despite being
comprised of a diverse ecosystem, the search for marine met-
abolites is difficult because of the inaccessibility and noncul-
turability of the majority of organisms [2]. Nevertheless, the
existing technologies like deep seawater pumping facilities,
scuba diving, and other available equipments, have facilitated
investigation of the sea environment. As a result, scientific
research has increasingly focused on marine biochemistry,
microbiology, and biotechnology.

Microorganisms and their isolates represent a major
source of undiscovered scientific potential. It should be noted
that the number of microbial organisms isolated from the
vast ocean territories continues to increase each year. Con-
sequently, natural products isolated from microorganisms
inhabiting environments other than soil are an attractive
research tool, not only for biochemists and microbiologists,
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but also for pharmacologists and clinicians. Laatsch [3]
described the isolation and description of nearly 250 marine
bacterial metabolites versus 150 isolated from terrestrial
bacteria between 2000 and 2005. Research into marine mi-
croorganisms and their metabolites has therefore become a
major task in the search for novel pharmaceuticals.

Although many compounds show promising biological
activities, it is difficult to point out any particular bioactive
agent that has readily been commercialized as a medicine.
Currently, 13 natural products isolated from marine micro-
organisms are being tested in different phases of clinical
trials, and a large number of others are in preclinical investi-
gations [4], thus highlighting the potential of marine natural
compounds.

Despite thousands of marine bioactive compounds hav-
ing been isolated and identified, in this paper, we will focus
on the pharmacologically active pigmented compounds pro-
duced by marine microorganisms exhibiting in vitro or in
vivo biological activities. Although pigmented compounds
produced by terrestrial bacteria are beyond the scope of this
review, specific examples will still be mentioned for com-
parative purposes, to outline common biological activities or
because identical pigments were isolated from both types of
microorganisms.

1.2. Marine Microorganisms and Their Bioactive Isolates.
Marine and terrestrial microfloras differ from each other due
to the influence of their respective environmental conditions.
Microorganisms living in the sea must be able to survive
and grow in the water environment with low nutrition, high
salinity, and high pressure. That is why most bacteria isolated
from seawater are Gram-negative rods, as it is postulated that
their outer membrane structure is evolutionarily adapted to
aquatic environmental factors. Marine microorganisms can
be divided on the basis of habitat into psychrophiles (living
at low temperatures), halophiles (living at high salinity),
and barophiles (living under high pressure). Although these
characteristics highlight the differences between marine and
terrestrial microorganisms, it remains difficult to separate
bacterial genera on the basis of habitat due to the ubiquitous
presence of similar species in both environments. As such,
most bioactive compounds have been isolated from bacteria
in both environments.

Marine bacteria, however, are attractive to researchers
because they can potentially produce compounds with
unique biological properties [5]. Until now, marine Strep-
tomyces, Pseudomonas, Pseudoalteromonas, Bacillus, Vibrio,
and Cytophaga isolated from seawater, sediments, algae, and
marine invertebrates are known to produce bioactive agents.
They are able to produce indole derivatives (quinones
and violacein), alkaloids (prodiginines and tambjamines),
polyenes, macrolides, peptides, and terpenoids. Examples of
bioactive-pigmented compounds isolated from marine (and
some terrestrial) bacteria are discussed below.

2. Pigments from Marine Bacteria

Bioactive pigments from marine bacteria are summarized in
Table 1.

2.1. Prodiginines. Red-pigmented prodigiosin compounds
were first isolated from the ubiquitous bacterium Serratia
marcescens and identified as secondary metabolites. The
common aromatic chemical structure of these pigmented
compounds was first named prodiginine by Gerber [6]
(Figure 1). Prodigiosin was the first prodiginine for which
the chemical structure was determined [7]. The name
“prodigiosin” has been attributed to the isolation of prodi-
giosin from Bacillus prodigiosus bacterium (later renamed
Serratia marcescens) [8], which was historically famed for
the mysterious “bleeding bread” report [9, 10]. Prodiginines
share a common pyrrolyldipyrromethene core structure
and have a wide variety of biological properties, including
antibacterial, antifungal, antimalarial, antibiotic, immuno-
suppressive, and anticancer activities [9, 11]. Such properties
potentially make them one of the most powerful research
tools in the past decade.

There are many research reports and reviews regarding
prodiginines and their biological activity investigations. In
addition to the Serratia, several species of marine bacteria
of the genera Streptomyces [8], Actinomadura [8], Pseu-
domonas [12], Pseudoalteromonas [13–18], and others [19]
have also been reported to produce prodigiosin and related
compounds. In particular, Alteromonas denitrificans, which
was isolated from the fjord systems off the west coast of
Norway [16] and later reclassified as Pseudoalteromonas deni-
trificans [20], has been reported to produce cycloprodigiosin.
This compound has immunosuppressive, antimalarial, and
apoptosis-inducing activities [18, 21, 22]. Pseudoalteromonas
rubra, found in the Mediterranean coastal waters [13],
also produces cycloprodigiosin, in addition to prodigiosins
[14, 15]. α-Proteobacteria isolated from a marine tunicate
collected in Zamboanga, Philippines, was reported to pro-
duce heptyl prodigiosin. In vitro antimalarial activity against
Plasmodium falciparum 3D7 (IC50 = 0.068 mM and SI = 20)
was about 20 times the in vitro cytotoxic activity against
L5178Y mouse lymphocytes [23]. In vivo experiments using
Plasmodium berghei-infected mice, at concentrations of
5 mg/kg and 20 mg/kg, significantly increased their survival,
while also causing sclerotic lesions at the site of injection.

Other bacteria reported to produce red pigments include
Hahella [24], Vibrio [25], Zooshikella [26], and Pseudoal-
teromonas [17], isolated from the coasts of Korea, Tai-
wan, and Japan. Kim et al. [27] identified red-pigmented
prodiginines from Hahella chejuensis. Nakashima et al. also
evaluated the biological activity of similar prodiginines from
a bacterium assumed to belong to the genus Hahella [28].
Red pigment-producing bacterial species have further been
isolated from river water [29, 30] and even from a swimming
pool [31]. The most active prodiginine derivatives have
already entered clinical trials as potential drugs against
different cancer types [9].

Japan is surrounded by sea and has a bordering coastline
of the Pacific Ocean in the South and the Sea of Japan in the
North and West, and is consequently rich in marine re-sour-
ces. Therefore, one of the main tasks of our research group
is to investigate the marine environment and its biodiver-
sity, especially marine microorganisms and their respective
metabolites.



Evidence-Based Complementary and Alternative Medicine 3

Table 1: Biologically active pigmented compounds isolated from marine bacteria.

Pigment Activity Bacterial strains References

(1) Undecylprodigiosin Anticancer Streptomyces rubber [8]

(2) Cycloprodigiosin Immunosuppressant; Anticancer; Antimalarial Pseudoalteromonas denitrificans [18, 21, 22]

(3) Heptyl prodigiosin Antiplasmodial α-Proteobacteria [23]

(4) Prodigiosin Antibacterial; Anticancer; Algicidal
Pseudoalteromonas rubra
Hahella chejuensis

[14]
[27]

(5) Astaxanthin (carotene) Antioxidation Agrobacterium aurantiacum [34]

(6) Violacein
Antibiotic; Antiprotozoan;
Anticancer

Pseudoalteromonas luteoviolacea
Pseudoalteromonas tunicata
Pseudoalteromonas sp. 520P1
Collimonas CT

[48, 52, 53]
[43]
[50]
[51]

(7) Methyl saphenate (phenazine
derivative)

Antibiotic Pseudonocardia sp. B6273 [63]

(8) Phenazine derivatives Cytotoxic Bacillus sp. [64]

(9) Pyocyanin and pyorubrin Antibacterial Pseudomonas aeruginosa [58]

(10) Phenazine-1-carboxylic acid Antibiotic Pseudomonas aeruginosa [59]

(11) 5,10-dihydrophencomycin
methyl ester

Antibiotic Streptomycete sp. [65]

(12) Fridamycin D, Himalomycin
A, Himalomycin B

Antibacterial Streptomycete sp. B6921 [68]

(13) Chinikomycin A and
Chinikomycin B, Manumycin A

Anticancer Streptomycete sp. M045 [71]

(14) Tambjamines (BE-18591,
pyrrole and their synthetic analogs)

Antibiotic, Anticancer Pseudoalteromonas tunicata [76, 80]

(15) Melanins Protection from UV irradiation

Vibrio cholerae
Shewanella colwelliana
Alteromonas nigrifaciens
Cellulophaga tyrosinoxydans

[83, 84]
[83, 86]

[85]
[88]

(16) Scytonemin
Protection from UV irradiation
Anti-inflammatory, Antiproliferative

Cyanobacteria [93]

(17) Tryptanthrin Antibiotic
Cytophaga/Flexibacteria AM13,1
strain

[95]

Previously, a total of 85 strains of bacteria were isolated
by our research group from the Pacific Ocean at a depth
of 320 m off Cape Muroto in the Kochi Prefecture of Ja-
pan. Among them, 13 strains were found to produce a
purple pigment and one a red pigment. The red pigment-
producing bacterium was later named strain 1020R [32].
Detailed investigations have revealed that this strain is closely
related to the prodigiosin-producing bacterium Pseudoal-
teromonas rubra and is Gram-negative with rod-shaped mor-
phology. Physicochemical investigations have revealed that
the pigment produced by this strain contains at least
seven structurally similar prodiginine compounds. Chemical
structures for four of these were successfully determined, and
each only differed by the length of the alkyl chain attached
to the C-3 position of the C-ring. These compounds were
further identified as prodigiosin and its analogues 2-
methyl-3-butyl-prodiginine, 2-methyl-3-pentyl-prodiginine
(prodigiosin), 2-methyl-3-hexyl-prodiginine, and 2-methyl-
3-heptyl-prodiginine. Compound cytotoxicity to U937
leukemia cells was strongly dependent on the length of these
alkyl side chains, which decreased with an increase in chain
length. 2-methyl-3-butyl-prodiginine was the most potent

cytotoxic pigment among them. Molecular investigations
into the cytotoxic mechanisms of these prodiginine deriva-
tives demonstrated effects on caspase-3 activation and DNA
fragmentation, indicating the potential to induce apoptosis
in leukemia cells.

2.2. Carotenes. Carotenes are polyunsaturated hydrocarbons
that contain 40 carbon atoms per molecule and are exclu-
sively synthesized by plants. They are orange photosynthetic
pigments important for plant photosynthesis. Recently, an
unusual halophilic bacterium, which requires 15–25% salt
for its normal growth, was found in Santa Pola near Alicante
and on the Balearic island of Mallorca, Spain. It appeared
to be red or pink due to a wide variety of isoprenoid com-
pounds (phytoene, phytofluene, lycopene, and β-carotene)
produced by this prokaryote. Oren and Rodrı́guez-Valera
[33] investigated red-pigmented saltern crystallizer ponds in
these areas of Spain and demonstrated that the pigments
were carotenoid or carotenoid-like compounds produced by
halophilic bacteria related to the Cytophaga-Flavobacterium-
Bacteroides group. Thus, it has been shown that Salinibacter
is an important component of the microbial community
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Figure 1: Prodiginine derivatives.

that contributes to the red coloration of Spanish saltern
ponds.

Astaxanthin is one of the carotenoids that have commer-
cial value as a food supplement for humans and as food
additives for animals and fish (Figure 2). A carotenoid bi-
osynthesis gene cluster for the production of astaxanthin has
been isolated from the marine bacterium Agrobacterium au-
rantiacum [34]. Recently, another astaxanthin-producing
marine bacterium was isolated and identified as Paracoccus
haeundaensis [35].

2.3. Violacein. The violet pigment violacein is an indole
derivative, predominantly isolated from bacteria of the genus
Chromobacterium that inhabit the soil and water of tropical
and subtropical areas [36]. Over the past decade, the biosyn-
thesis and biological activities of violacein have been exten-
sively studied, and many scientific papers and reviews have
been published [37–41]. Violacein has a variety of biological
activities, including antiviral, antibacterial, antiulcerogenic,
antileishmanial, and anticancer properties [36, 37, 41, 42]
(Figure 3). Use of violacein as a chemical defense against
eukaryotic predators has also been investigated [43–46].

One of the first published reports on violacein pro-
duction by marine bacteria was by Hamilton and Austin
[47]. This bacterial strain, Chromobacterium marinum, was
isolated from open ocean waters and produced a blue
pigment that was identified as violacein on the basis of

physicochemical characteristics [47]. Later, Gauthier [48]
described 16 violet-pigmented heterotrophic bacilli isolated
from Mediterranean coastal waters and proposed the name
Alteromonas luteo-violaceus for these strains. Another six
bacterial species were also isolated by Gauthier et al. [49]
from neritic waters on the French Mediterranean coast and
were very similar to Alteromonas species. These species pro-
duced characteristic pigmentations ranging from pinkish-
beige with reddish-brown diffusible pigment, lemon yellow,
bright red turning carmine in old cultures, and orange to
greenish-brown. Light violet, dark violet, or almost black
pigments were also produced and later identified as violacein.
The strains showed antibiotic activity against Staphylococcus
aureus [49]. Subsequently, many other reports on violacein
production have been published [50, 51].

Several purple pigment-producing Alteromonas species
were also isolated from Kinko Bay in Kagoshima Prefecture,
Japan. One of these, Alteromonas luteoviolacea (reclassified
as Pseudoalteromonas luteoviolacea), is the only extensively
characterized marine bacterium ever reported that produces
violacein [48, 52, 53]. Previously, we have also reported 13
strains of Gram-negative, rod-shaped bacteria that produce
a violacein-like purple pigment, which were isolated from
the Pacific Ocean at a depth of 320 m off the coast of
Cape Muroto, Kochi Prefecture, Japan [32]. Among them,
two groups of novel violacein and deoxyviolacein producing
marine bacteria were isolated and characterized in detail
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[50]. Biological investigations of violacein produced by these
strains revealed potent cytotoxic effects against U937 and
HL60 leukemia cell lines, with an IC50 value of 0.5–1 μM. The
molecular mechanisms currently known to be involved in
violacein cytotoxicity include caspases activation, chromatin
condensation, and DNA fragmentation, which all contribute
to cell apoptosis. Recently, we also demonstrated that the
protein kinases actively involved in the signal transduction
pathway are also targeted by violacein.

2.4. Phenazine Compounds. Phenazines are redox-active,
small nitrogen-containing aromatic compounds produced
by a diverse range of bacterial genera, including Strepto-
myces (terrestrial), Pseudomonas (ubiquitous), Actinomycetes
(terrestrial and aquatic), Pelagibacter (aquatic), and Vibrio
(aquatic), under the control of quorum sensing [54, 55]
(Figure 4). These compounds were subjected to extensive
studies due to their broad spectrum of antibiotic activities
against other bacteria, fungi, or plant/animal tissues [56–62].
Phenazine color intensity may vary among the derivatives
and range from blue, green, purple, yellow, red to even brown
[58, 63]. More than 6,000 phenazine derivatives have been
identified and described during the last two centuries [59].

Maskey et al. [63] reported the isolation of two yellow
pigments from the marine Pseudonocardia sp. B6273, a mem-
ber of the Actinomycetes. Structural investigations identified
the two pigments as novel phenazostatin D, inactive against

the tested microorganisms, and methyl saphenate, a known
phenazine antibiotic. Li et al. [64] also reported the isolation
of a novel phenazine derivative with cytotoxic effects against
P388 cells, together with six previously identified com-
pounds from the marine Bacillus sp., collected from a Pa-
cific deep-sea sediment sample at a depth of 5059 m. A
novel phenazine derivative with antibiotic activity, identified
as 5,10-dihydrophencomycin methyl ester, along with (2-
hydroxyphenyl)-acetamide, menaquinone MK9 (II, III, VIII,
IX-H8), and phencomycin, was isolated from an unidentified
marine Streptomyces sp. by Pusecker et al. [65].

Pyocyanin and 1-hydroxyphenazine also downregulate
the ciliary beat frequency of respiratory epithelial cells by
reducing cAMP and ATP, alter the calcium concentration by
inhibition of plasma membrane Ca2+-ATPase, and induce
death in human neutrophils [60, 61, 66]. Due to the abun-
dance and biotechnological application of Pseudomonas aer-
uginosa phenazines, pyocyanin and pyorubrin have also been
suggested as food colorant pigments [58].

2.5. Quinones. Quinones are additional colored compounds
with an aromatic ring structure that have been isolated from
marine environment [67, 68] (Figure 5). Quinone derivatives
range in color from yellow to red, exhibit antiviral, anti-
infective, antimicrobial, insecticidal, and anticancer activi-
ties, and have many commercial applications as natural and
artificial dyes and pigments [69, 70].
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Streptomyces sp. B6921 strain produced glycosylated
pigmented anthracycline antibiotics, including fridamycin D
and two new compounds, named himalomycin A and B,
each of which displayed similar levels of strong antibacterial
activity against Bacillus subtilis, Streptomyces viridochromo-
genes (Tü 57), S. aureus, and Escherichia coli. This strain also
produced rabelomycin, N-benzylacetamide, and N-(2′-
phenylethyl) acetamide [68]. Two novel pigmented antitu-
mor antibiotics, chinikomycin A and B, together with manu-
mycin A, were isolated from a marine Streptomyces sp. strain

M045 [71]. The two chlorine containing quinone derivatives
were shown not to have antiviral, antimicrobial, and phyto-
toxic activities; however, they exhibited antitumor activity
against different human cancer cell lines. Chinikomycin A
selectively inhibited the proliferation of mammary cancer,
melanoma, and renal cancer cell lines, while chinikomycin
B showed selective antitumor activity against a mammary
cancer cell line [71].

Other bacteria, including a marine isolate Pseudomonas
nigrifaciens (later reclassified as Alteromonas nigrifaciens),
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produce the blue pigment indigoidine [72]. Kobayashi et al.
[73] isolated a new violet pigment with an alkylated indi-
goidine structure from Shewanella violacea, a deep-sea bac-
terium from sediments of Ryukyu Trench at a depth of
5110 m. This pigment was established as 5,5′-didodecylam-
ino-4,4′-dihydroxy-3,3′-diazodiphenoquinone-(2,2′) based
on X-ray diffraction analysis of single crystals. It does not
have antibiotic activity against E. coli; however, it could po-
tentially be used as a dye because of its high stability
and low solubility. Thus, it could be suitable for industrial
applications.

2.6. Tambjamines. It has long been noticed that marine
bacteria have the ability to prevent biofouling. Holmström
et al. [74] found that, amongst the marine Pseudoalteromonas
species, P. tunicata has the widest range of antibiofouling
activities against microorganisms, including bacteria, inver-
tebrate larvae, algal spores, protozoan, and fungi, and pro-
vides protection for host marine organisms. These activities
were linked to the production of unidentified yellow and
purple pigments [75]. Recently, this yellow pigment was
isolated from P. tunicata and was identified as a new member
of the tambjamine class of compounds [76].

Tambjamines (Figure 6) are alkaloids isolated from var-
ious marine organisms like bryozoans, nudibranchs, and
ascidians [77–79]. This yellow pigment has also been isolated
from marine bacteria [76]. The tambjamines also exhibit
antibiotic activity against E. coli, Staphylococcus, Vibrio an-
guillarum [77], B. subtilis, and Candida albicans [80, 81]
and displayed cytotoxic activity against several tumor cell
lines [80]. Recently, Pinkerton et al. [80, 82] reported the
first total synthesis of nine tambjamines and their antimi-
crobial and cytotoxic activities. All of the tested tambjamines
showed antibacterial, antifungal, and cytotoxic effects that
contributed to cell death through apoptosis, but not necrosis.
These activities were, however, lesser than the positive con-
trol (doxorubicin) [80].

2.7. Melanins. Vibrio cholerae, Shewanella colwelliana, and
Alteromonas nigrifaciens were some of the first marine

bacterial strains described to produce melanin or melanin-
like pigments [83–86]. The pigment synthesized by Vibrio
cholerae was reported to be a type of allomelanin derived
from homogentisic acid [87]. Melanin formation in V.
cholerae is a consequence of alterations in tyrosine catabolism
and not from the tyrosinase-catalyzed melanin synthetic
pathway. Cellulophaga tyrosinoxydans was reported to have
tyrosinase activity and produce a yellow pigment suggested
to be a pheomelanin [88].

The most illustrative example of melanin-producing
marine bacteria is the actinomycetes. This is particularly
the case for the genus Streptomyces, from which most com-
pounds with known biological activity have been isolated
[89]. All Streptomyces strains are reported to use tyrosi-
nases in the synthesis of melanin pigments [90]. Another
important melanin-synthesizing bacterium is Marinomonas
mediterranea, which produces black eumelanin from L-
tyrosine [91].

2.8. Other Pigmented Compounds. Scytonemin, a yellow-
green pigment isolated from aquatic cyanobacteria, forms
when the bacteria are exposed to sunlight (Figure 7). It
protects bacteria by preventing about 85–90% of all UV-light
from entering through the cell membrane [92]. High UV-
A irradiation inhibited photosynthesis and delayed cellular
growth until sufficient amounts of scytonemin had been
produced by the cyanobacteria. Scytonemin may also have
anti-inflammatory and antiproliferative activities by inhibit-
ing protein kinase Cβ (PKCβ), a well-known mediator of
the inflammatory process, and polo-like protein kinase 1
(PLK1), a regulator of cell cycle progression [93]. In addition,
scytonemin inhibited phorbol-induced mouse ear edema
and the proliferation of human umbilical vein endothelial
cells.

Recently, two γ-Proteobacteria strains of the genus Rhein-
heimera were isolated from the German Wadden Sea and
from Øresund, Denmark that produced a deep blue pigment
[94]. Structural analysis of the pigment revealed that this
new compound has no similarity with any known blue
pigments, like violacein and its derivatives. Due to its blue
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color and marine origin, the new pigment was named
glaukothalin (from Greek glaukos “blue” and thalatta “sea”).
The ecological role and biological activities of glaukothalin
are currently under investigation.

AM13,1 strain, which was identified to belong to the
Cytophaga/Flexibacteria cluster of North Sea bacteria, was
found to produce yellow tryptanthrin, a rare compound
that had never before been found in bacteria [95]. This
compound was suggested to be a biocondensation product
of anthranilic acid and isatin and exhibited a broad yet
moderate antibiotic activity. Thus, the yellow color of the
AM13,1 colonies was potentially due to their tryptanthrin
content. In another yellow cultured Hel21 strain, pigment
color may be a consequence of carotenoid zeaxanthin or one
of the many vitamin K derivatives (e.g., menaquinone MK6)
[95].

3. Biosynthesis of Pigments

Numerous reports detail the regulation and biosynthesis
of bacterial secondary metabolites. Increased research and

verification of specific bacterial pathways has predominantly
been due to the antibiotic, immunosuppressive, and anti-
cancer potential of these compounds. A brief discussion of
this topic is given next, as detailed information is further pro-
vided in the cited references.

Biosynthesis of bacterial prodiginines has extensively
been studied and reviewed [96, 97]. Prodigiosin biosynthesis
was proposed to originate during the enzymatic condensa-
tion of 2-methyl-3-n-amyl-pyrrole (MAP) and 4-methoxy-
2,2′-bipyrrole-5-carbaldehyde (MBC) precursors. Prodigi-
nine biosynthetic gene clusters for Serratia sp. ATCC 39006
[98], Serratia marcescens ATCC 274 [98], Hahella chejuensis
KCTC 2396 [27, 99], and Streptomyces coelicolor A3(2) [100]
have been identified, sequenced, and expressed. Several gene
clusters are involved in the biosynthetic pathway, depicted
as pig in Serratia strains, red in S. coelicolor A3(2), and
hap (numbered) in H. chejuensis KCTC 2396, with each
encoding several proteins responsible for synthesis. The
largest gene cluster found in S. coelicolor A3(2) consists of
four transcriptional units, whereas the other three clusters
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are strongly homologous to each other and are arranged uni-
directionally.

In Serratia strains, pigB–pigE genes were identified to
encode proteins responsible for the biosynthesis of MAP
and condensation with MBC to form prodigiosin [96, 97].
A common pathway of MBC biosynthesis is proposed for
all strains, in which proline, acetate, serine, and S-adeno-
sylmethionine are incorporated into the bipyrrole at the
initial stage [97]. PigA, PigF, PigG, PigH, PigI, PigJ, PigM,
and PigN in Serratia strains and RedE, RedI, RedM, RedN,
RedO, RedW, RedV, and RedX proteins in S. coelicolor A3(2)
have been determined to participate in MBC biosynthesis
[97]. PigB, PigD, and PigE enzymes in Serratia strains were
proposed to be involved in the MAP biosynthesis, which
requires 2-octenal as the initial precursor [97]. Monopyrroles
condense with MBC during the final step of prodigiosin
and/or undecylprodigiosin biosynthesis. PigC and its homo-
logues catalyze this condensation in bacteria.

Some prodiginines can also be produced when monopy-
rroles are supplied to colorless S. marcescens mutants [8].
Addition of monopyrroles directly to a culture medium or
as a vapor across the culture surface of a colorless mutant of
S. marcescens resulted in the strain becoming initially pink
and later red, indicating prodiginine formation [8]. Similar
prodiginine biosynthesis produced by exogenously adding
MAP and MBC was observed in white strains of Serratia
marcescens isolated from patients [101].

The violacein biosynthesis pathway and associated bi-
osynthetic enzymes have been extensively studied [38, 40,
102], although certain reactions and intermediates are yet
to be elucidated. Currently, this proposed system involves an
operon of five genes, vioA–vioE, which are transcriptionally
regulated by a quorum-sensing mechanism that uses acyl-
homoserine lactones as autoinducers. At the early stationary
phase of bacterial growth, acylhomoserine lactones accumu-
late in the culture medium, inducing the transcription of
the vio genes. Therefore, violacein is considered a typical
secondary metabolite in bacteria. The first enzyme encoded
by the vio gene operon, VioA, converts L-tryptophan to
indole-3-pyruvic acid imine (IPA imine), and the second
enzyme, VioB, catalyzes the reaction to convert IPA imine
into an unidentified compound X (possibly an IPA imine
dimer) [103, 104]. Compound X then undergoes successive
reactions, catalyzed by the enzymes VioE, VioD, and VioC,
to produce violacein.

Phenazine pigment biosynthesis reportedly involves shi-
kimic acid as a precursor and forms chorismic acid as an
intermediate product. Two molecules of chorismic acid then
form phenazine-1,6-dicarboxylic acid, which is sequentially
modified to create a variety of phenazine derivatives with
different biological activities [105]. Pseudomonas aeruginosa
PAO1 has two gene clusters (phzA1B1C1D1E1F1G1 and
phzA2B2C2D2E2F2G2), with each cluster capable of pro-
ducing phenazine-1-carboxylic acid (PCA) from chorismic
acid [106]. It is proposed that PhzM and PhzS catalyze the
subsequent conversion of PCA to pyocyanin. In addition,
PhzH is responsible for producing phenazine-1-carboxamide
from PCA.

Fridamycin, hymalomycin, and chinikomycin are typical
bacterial compounds that share a quinone skeleton. How-
ever, little information regarding the biosynthesis of these
compounds has been accumulated.

Detection and identification of the entire P. tunicata gene
cluster involved in the biosynthetic pathway production of
the tambjamine YP1 using recombinant E. coli was con-
ducted by Australian researchers Burke et al. [107]. In total,
19 proteins encoded the Tam cluster participate in the postu-
lated biosynthetic pathway. Among them, 12 were found to
have high sequence similarity to the red proteins responsible
for undecylprodigiosin synthesis in S. coelicolor A3(2) and
the pig proteins involved in prodigiosin biosynthesis in
Serratia sp. [107]. Such similarity in the chemical structures
of these two classes of compounds results in tambjamines
having two pyrrole rings while the prodiginines have three.
As is the case for the prodiginines, 4-methoxy-2,2-bipyrrole-
5-carbaldehyde (MBC) is initially formed from proline,
serine, and malonyl CoA in the tambjamine biosynthetic
pathway. A double bond is inserted by TamT and an amino
group is transferred by TamH to dodecenoic acid activated
by AfaA, which is predicted to be an acyl-CoA synthase. The
resulting dodec-3-en-1-amine is condensed with MBC by
TamQ to form tambjamine YP1 [107].

In addition to V. cholera, S. colwelliana, A. nigrifaciens,
and C. tyrosinoxydans, melanin syntheses have also been
reported in M. mediterranea, which contains the tyrosinase
gene operon [108], and in an epiphytic Saccharophagus de-
gradans 2-40 bacterium [109]. While the specific details of
melanin formation continue to be debated, well-defined
biosynthetic schemes have now been proposed. Two differ-
ent biosynthetic pathways synthesize the eumelanins and
pheomelanins. Both pathways are initiated by the oxidation
of L-tyrosine to 3,4-dihydroxyphenylalanine (DOPA) and
the subsequent creation of dopaquinone by tyrosinase. The
latter product is transformed either to pheomelanin by com-
bining with cystein and forming an intermediate S-cystein-
yldopa and benzothiazine or to eumelanin with intermediate
leucodopachrome, dopachrome (red), 5,6-dihydroxyindole,
5,6-indolequinone (yellow) formation [69].

Nostoc punctiforme ATCC 29133 is the only scytonemin-
producing organism whose genome has been fully sequenced
[110]. This scytonemin biosynthesis potentially involves a
gene cluster consisting of 18 open reading frames (ORFs)
(NpR1276 to NpR1259). Although, the functional roles of
all these ORFs are not yet fully determined, some intriguing
hypotheses have been proposed. In particular, both tyrosine
and tryptophan are implicated as biosynthetic precursors for
scytonemin in the pigment formation pathway. NpR1275,
which functionally resembles leucine dehydrogenase, is
utilized in the early stages of scytonemin synthesis in N.
punctiforme, thereby oxidizing tryptophan and/or tyrosine to
their corresponding pyruvic acid derivative.

Alternatively, it is suggested that NpR1269, a putative
prephenate dehydrogenase, generates p-hydroxyphenylpyr-
uvic acid, which is a derivative of tyrosine in the early path-
way stages. NpR1276 uses two pyruvic acid derivatives from
tryptophan and tyrosine for the synthesis of a labile β-
ketoacid product, which is homologous to the thiamin
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diphosphate- (ThDP-) dependent enzyme acetolactate syn-
thase. NpR1274 possibly catalyzes the intermediate cycliza-
tion and decarboxylation of the β-ketoacid product to form
the indole-fused cyclopentane moiety of the pigment [111].
Monomer precursors that are formed then undergo dimer-
ization to produce scytonemin. NpR1263, which was found
to be similar to a tyrosinase in melanin biosynthesis, par-
ticipates in these later oxidative dimerization steps, thereby
forming scytonemin [112]. Functional roles of other ORFs
and their putative intermediate products for the pigment
production are still under investigation.

4. Concerns regarding the Physiological Role of
Pigmented Compounds

A number of bacterial species, including those inhabiting
the vast marine environment, produce a wide variety of
pigments that are important to cellular physiology and sur-
vival. Many of these natural metabolites were found to have
antibiotic, anticancer, and immunosuppressive activities.
These secondary metabolites, produced by microorganisms
mostly via the quorum sensing mechanism, have the ability
to inhibit the growth of or even kill bacteria and other mi-
croorganisms at very low concentrations. Due to such diverse
and promising activities against different kinds of diseases,
these compounds can play an important role in both phar-
maceutical and agricultural research.

It still remains uncertain why these pigmented secondary
metabolites from bacteria have antibiotic and/or cytotoxic
activities. Although, their true physiological role is yet to
be fully discovered, there are a few reports that provide
reasonable explanations by making comparisons with non-
pigmented bacteria. In particular, the relationships between
pigment production and toxicity have been studied by Holm-
ström et al. [113], who found that 90% of all dark-pigmented
compounds taken from marine living surfaces showed
inhibitory activity towards invertebrate larvae. Two fractions
isolated after column chromatography, one colorless and the
other a yellowish-green color, were identified as phenazine
derivatives from unidentified marine Streptomycete sp. by
Pusecker et al. [65]. The colorless fraction was biologically
inactive, while the pigmented phenazine derivative showed
highly active antibiotic properties. Previous studies have
also demonstrated that marine bacterial metabolites with
antibiotic properties were always pigmented [114]. Screening
of 38 antibiotic-producing bacterial strains revealed that
all pigmented bacteria belonging to the Pseudomonas-
Alteromonas group displayed antibiotic activity, while non-
pigmented bacteria were inactive.

Considering data from all reported literature, a number
of reasonable biological functions for pigment production
in bacteria have been established. In general, the pigmented
marine isolates seem to play two important roles: firstly,
they provide an adaption to environmental conditions, and,
secondly, they provide defense against predators [115]. For
instance, it has been shown that the brown colored melanin
pigments produced by a variety of species, as well as a yellow-
green colored scytonemin pigment isolated from cyanobac-
teria, protect cells from UV irradiation and desiccation

[69, 93]. Therefore, in order to adapt to the excessive sunlight
and survive under harmful UV irradiation, bacteria must
produce these indispensable compounds. Griffiths et al.
[116] found that carotenoids, which were later suggested
to be a substitute for sterols, are an important structural
component of microbial membranes [117] and may protect
bacterial cells from photooxidation or damage caused by
visible light irradiation.

Several bacterial pigments that act as antagonists by
exhibiting antibiotic activity against other organisms can be
considered as potent weapons for survival and effective
chemical defenses against eukaryotic predators. This class of
bioactive agents includes almost all pigmented compounds
commonly produced by Pseudoalteromonas, Pseudomonas,
and Streptomyces species. These compounds inhibit the set-
tlement of marine invertebrate larvae [118], the germination
of algal spores [119] and protect the host surface by in-
terfering with bacterial colonization and biofilm formation
[74]. They may also inhibit other organisms that compete for
space and nutrients.

Such hypotheses are also supported by a number of stud-
ies that found that these bacterial compounds were active
against other prokaryotes and even eukaryotes [120–128].
In many studies, pigmented bacterial strains demonstrated
a strong and broad range of antibiotic activities against other
organisms, while nonpigmented strains did not [74, 129].
A clear correlation between pigment production and anti-
bacterial activities of the two Silicibacter sp. strain TM1040
and Phaeobacter strain 27-4 grown under static conditions
was further reported by Bruhn et al. [129]. Mutant strains,
which lacked pigment production, also lost their biological
activities. Holmström et al. have also shown a close relation-
ship between pigmentation and inhibitory activity, whereby
20 out of 22 dark pigmented bacterial strains tested displayed
inhibitory activity against the settlement of two invertebrate
larvae and algal spores [113].

Amongst other bacterial strains, Pseudoalteromonas has
the most diverse antibiotic activities against alga biofouling,
and the dark green pigmented P. tunicata exhibits the most
active and broadest range of inhibitory activity when com-
pared to other strains from this genus [74]. Two nonpig-
mented P. nigrifaciens and P. haloplanktis strains were also
found not to display any antibiotic activities using various
bioassays [74].

Blue-pigmented pyocyanin production in P. aeruginosa
(Pup14B) was observed by Angell et al. to be induced by
Enterobacter species (Pup14A and KM1), and this pyocyanin
displayed moderate antibiotic activity against E. coli and
yeast [130]. It was experimentally demonstrated that met-
abolites produced by Pup14A strain are necessary for the
production of this pigment in Pup14B strain [130]. Many
other reports describe synergism between bacteria and high-
er organisms; however, this is a rare example between two
bacterial species [131]. Such an unusual case contrasts with
the hypothesis of the regulated biodiversity of marine bac-
teria, in which surface-associated microorganisms produce
antimicrobial agents [74] to prevent competing microorgan-
isms. The symbiosis of the two bacterial species is not yet
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fully understood, although both species appear to benefit
from the pigment production.

One of the promising biological activities of marine bac-
teria isolates is their cytotoxic effect against cancer cells. De-
spite many investigations, the exact molecular mechanism
of this pigmented compound cytotoxicity remains undeter-
mined and requires further study. For example, violacein is
known to cause apoptosis in tumorous cells [41]. However,
the pathways leading to cell death have not yet been linked to
the possible effects of the pigment, which was also shown to
affect signal transduction agents, such as protein kinase and
protein phosphatase family enzymes that play crucial role in
cell differentiation and proliferation.

In a study by Bromberg et al., violacein showed inhibitory
activity against protein phosphatases isolated from human
lymphocytes [132]. A similar study was also conducted by
Fürstner et al. to assess the inhibitory activity of prodigiosin
derivatives [133]. Other targets of these compounds, includ-
ing ion channels, are further being investigated [134–137].

Unexpected problems have also arisen when investigating
marine environments. While the marine environment is a
promising source for identifying microorganisms that can
produce important biologically active pigments, yields of
these compounds remain variable and are sometimes too
low to provide enough material for drug development [138]
or commercial applications. The main reason for such low
yields is that these compounds are secondary metabolites and
production depends on the quorum sensing mechanism.

Despite marine bacteria being capable of growing in the
extremely low concentrations of nutrients that often exist in
seawater, most species still require seawater or its equivalent
as a growth medium for artificial culturing. Seawater is there-
fore used for the growth of marine bacteria, or similar levels
of sodium, potassium, and magnesium chloride are sup-
plemented in cultures. Optimal growth and the production
of pigments are only sustained for most bacteria when ap-
propriate salt mixtures are used for culturing, as is the case
for the prodigiosin-producing marine Pseudomonas magne-
siorubra and Vibrio psychroerythrus, among other marine
species. These bacteria grew optimally and produced red
pigment when cultured in seawater or its equivalent, while
pigment production by the terrestrial Serratia marcescens was
inhibited in 3% sea salts [8].

Enhancing low pigment productivity is one of the main
issues facing researchers, and some solutions have already
been reported. It is well established that antibiotic produc-
tion by bacteria might be regulated both qualitatively and
quantitatively by the nature of the culture medium. In partic-
ular, the addition of individual natural compounds to nutri-
ent media or the use of gene expression methods was found
to increase the pigment production far beyond expectations.
For example, saturated fatty acids, especially peanut broth,
was found to be a better choice in increasing prodigiosin
production by 40-fold (approximately ∼39 mg/mL) in S.
marcescens [139].

Undecylprodigiosin synthesis by S. marcescens was also
markedly enhanced by the addition of vegetable (soybean,
olive, and sunflower) oils (2–6% [v/v]) and amino acids to
the fermentation broth [140, 141]. Violacein production by

the recombinant Citrobacter freundii strain, the genes of
which were reconstructed from Duganella sp. B2, reached
up to 1.68 g/L, making it fourfold higher than the highest
production previously reported [142]. It is anticipated that
these methods will facilitate the production of sufficient
quantities of many bioactive and pharmacologically impor-
tant compounds obtained from bacteria of marine origin.
These compounds, including prodiginine and violacein, are
now considered as potential drug candidates for potentially
fatal diseases such as cancer and malaria. Although further
improvement of culture methods and technologies for
pigment production including recombinant technology is
necessary, bioactive compounds from marine bacteria may
potentially replace the existing drugs that have lower thera-
peutic actions.

5. Conclusions

Recently, a number of review papers have appeared in the
literature, and they give an overview of all investigations
of the marine environment and its isolates. While previous
reviews have covered the biological activities of natural
products isolated from marine microorganisms [115, 143]
and other living organisms [144, 145], our paper is the first
to review the importance of pigmented compounds from
marine origin and their potential pharmacological applica-
tions.

Most studies investigating marine microorganisms have
shown the efficacy and the potential clinical applications of
pigmented secondary metabolites in treating several diseases.
These studies have also emphasized the effects of microbial
metabolites as antibiotic, anticancer, and immunosuppres-
sive compounds. Despite the enormous difficulty in isolating
and harvesting marine bacteria, significant progress has
been achieved in this field, and investigations of bioactive
compounds produced by these species are rapidly increasing.
As such, the number of compounds isolated from marine
microorganisms is increasing faster when compared with
terrestrial species [95].

Overall, this review of pigmented marine bioactive com-
pounds and their pharmacological applications highlights
the importance of discovering novel marine bacterial met-
abolites. Such compounds have a wide variety of biologically
active properties and continue to provide promising avenues
for both fundamental sciences and applied biomedical re-
search.
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