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Hyperuricemia and dyslipidemia are involved in Cd nephrotoxicity. The aim of this study was to determine the effect of quercetin,
a dietary flavonoid with anti-hyperuricemic and anti-dyslipidemic properties, on the alteration of renal UA transport system and
disorder of renal lipid accumulation in 3 and 6 mg/kg Cd-exposed rats for 4 weeks. Cd exposure induced hyperuricemia with
renal XOR hyperactivity and UA excretion dysfunction in rats. Simultaneously, abnormal expression levels of renal UA transport-
related proteins including RST, OAT1, MRP4 and ABCG2 were observed in Cd-exposed rats with inhibitory activity of renal
Na+-K+-ATPase. Furthermore, Cd exposure disturbed lipid metabolism with down-regulation of AMPK and its downstream
targets PPARα, OCTN2 and CPT1 expressions, and up-regulation of PGC-1β and SREBP-1 expressions in renal cortex of rats. We
had proved that Cd-induced disorder of renal UA transport and production system might have cross-talking with renal AMPK-
PPARα/PGC-1β signal pathway impairment, contributing to Cd nephrotoxicity of rats. Quercetin was found to be effective against
Cd-induced dysexpression of RST and OAT1 with XOR hyperactivity and impairment of AMPK-PPARα/PGC-1β signal pathway,
resulting in renal lipid accumulation reduction of rats.

1. Introduction

Cadmium (Cd) is considered to be toxic, heavy metal that
causes nephrotoxicity in humans [1–3]. More evidence dem-
onstrates the role of high-serum uric acid (UA) levels in
Cd-induced overproduction of endogenous reactive oxygen
species (ROS), which subsequently leads to renal injury [4, 5]
and lipid metabolism disorder [6]. Xanthine oxidoreductase
(XOR), including its initial form xanthine dehydrogenase
(XDH, EC1.1.1.204) and xanthine oxidase (XO, EC1.2.3.2),
is the key enzyme to catalyze UA production. Cd exposure
induces the conversion of XDH into XO [7] and causes
XO activation [8]. Renal organic ion transporters of solute
carrier (SLC) 22 family are increasingly recognized as impor-
tant determinants of urate transport. Urate transporter 1
(URAT1, SLC22A12) is the major absorptive urate transport
protein in the kidney being responsible for regulation of
blood urate homeostasis [9]. In addition to URAT1, OAT1
(SLC22A6) is a basolateral urate transporter [9]. The efflux
transporters of the ATP binding cassette (ABC) family such

as the multidrug resistance protein 4 (MRP4, ABCC4) [10]
and breast cancer-resistance protein (BCRP, ABCG2) [11]
seem to be major candidates for urate secretory transport.
Therefore, abnormality of these renal organic ion trans-
porters may contribute to the impaired UA excretion and
hyperuricemia [9–12].

As important cross-regulators, UA and XOR are directly
or indirectly related to lipid metabolism [13]. Dyslipidemia
is suggested to be responsible for the progression of chronic
kidney disease [14]. Cd exposure can alter serum lipid level
and liver lipid metabolism in male Wistar rats [15] and
induce lipid accumulation in the tubular lumen of male
cat [16]. Therefore, animal studies evaluating Cd exposure-
induced dysfunction of renal UA transport and production
system are needed to verify its role in lipid metabolism
disorder in Cd nephrotoxicity.

A dietary flavonoid quercetin from herbal foods has a
variety of biological activities [17, 18]. Our previous
studies have demonstrated that quercetin regulated renal
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UA transport-related proteins in fructose-induced hyper-
uricemic rats [19] and reduced hepatic XOR hyperactivity in
potassium oxonate-induced hyperuricemic mice [20], being
an effective antihyperuricemic agent. Moreover, quercetin
enhances lipid metabolism in triton-fed rats [21] and inhibits
proinflammatory factors against Cd-induced nephrotoxicity
[22]. However, the efficacy of quercetin for hyperuricemia
and lipid accumulation involved in Cd nephrotoxicity has
not been investigated so far.

Therefore, the present study aimed to explain the effects
of Cd exposure on renal UA transport-related proteins
including renal-specific transporter (RST, a homolog of
hURAT1, identified in rats), OAT1, MRP4, and ABCG2 as
well as XOR activity in rats. We also investigated its effects
on the expression levels of lipid metabolism-related genes
including renal AMP-activated protein kinase (AMPK),
its downstream targets peroxisome proliferator-activated
receptor α (PPARα), organic cation transporter 2 (OCTN2),
carnitine palmityl transferase 1 (CPT1), PPARγ coactivators
1β (PGC-1β), and sterol regulatory element-binding protein
1 (SREBP-1) in rats, demonstrating renal lipid metabolism
disorder involved in renal UA transport system dysregulation
and XOR hyperactivity in Cd nephrotoxicity of rats. Fur-
thermore, we evaluated the efficacy of quercetin treatment in
ameliorating hyperuricemia and lipid accumulation in Cd-
exposed rats and explored its mechanisms.

2. Materials and Methods

2.1. Materials. Cadmium chloride (CdCl2, AR) and quer-
cetin were obtained from Sigma-Aldrich (St. Louis, MO,
USA). Diagnostic kits for the activity or level of n-
acetyl-β-glucosaminidase (NAG), Na+-K+-ATPase, protein,
albumin (ALB), creatinine (Cr), and triglyceride (TG)
were obtained from Jiancheng Biotech Institution (Nanjing,
China). The enzyme-linked immunosorbent assay (ELISA)
kits for L-carnitine (KA0860, Abnova), retinol-binding pro-
tein (RBP, E90929Ra, Uscn), β2-microglobulin (β2-MG,
E0260r, EIAab) and uromodulin (UMOD, E96918Ra, Uscn),
and very low-density lipoprotein (VLDL, E1847r, EIAab)
were used for the study. TRIzol reagent was obtained from
Invitrogen (Carlsbad, CA, USA). M-MLV reverse transcrip-
tase was obtained from Promega (Madison, WI, USA). The
primers for all the genes were designed and synthesized by
Generay Biotech (Shanghai, China). Polyvinylidene diflu-
oride membrane was obtained from Millipore (Bed-ford,
MA, USA). Primary antibodies including rabbit polyclonal
antibodies against RST and OAT1 were provided by SaiChi
Biotech (Beijing, P. R. China), MRP4 by Santa Cruz (CA,
USA), ABCG2 by Cell Signaling Technology (Boston, MA,
USA), OCTN2 by Abcam (Cambridge, MA, USA), CPT1 by
Bioss Biotech (Beijing, P. R. China), and GAPDH by Jingmei
Biotech (Shanghai, P. R. China).

2.2. Animals. Male Sprague-Dawley rats (7-week old, weigh-
ing 220–240 g) were purchased from the Laboratory Animal
Center (Hangzhou, Zhejiang Province, P. R. China) and
housed in plastic cages with a 12:12 h light-dark cycle at a
constant temperature of 22–24◦C. They were given standard

chow libitum for study duration and allowed 1 week to adapt
to laboratory environment before experiments. All proce-
dures were carried out in accordance with Chinese legislation
on the use and care of laboratory animals and with the
guidelines established by the Institute for Experimental
Animals of Nanjing University.

2.3. Experimental Protocol. Rats were randomly divided into
7 groups (n = 8 animals/group) as described below:

Group I: normal control. Rats were treated with
saline (vehicle) by intragastric gavage (i.g.) at 8:00
AM and received saline (i.g.) at 2:00 PM;

Group II: rats were daily exposed to 3 mg/kg Cd at
8:00 am and received saline at 2:00 pm;

Group III: rats were daily exposed to 6 mg/kg Cd at
8:00 am and received saline at 2:00 pm;

Group IV: rats were daily exposed to 3 mg/kg Cd at
8:00 am and received 50 mg/kg quercetin at 2:00 pm;

Group V: rats were daily exposed to 3 mg/kg Cd at
8:00 am and received 100 mg/kg quercetin at 2:00 pm;

Group VI: rats were daily exposed to 6 mg/kg Cd at
8:00 am and received 50 mg/kg quercetin at 2:00 pm;

Group VII: rats were daily exposed to 6 mg/kg Cd at
8:00 am and received 100 mg/kg quercetin at 2:00 pm.

The doses of Cd were selected because that evidently
induced changes in renal structure and function in rats
[23, 24]. The doses of quercetin were selected because that
showed protective effects on Cd-induced nephrotoxicity
[22]. Furthermore, our preliminary experiments demon-
strated hyperuricemia with dyslipidemia in 3 and 6 mg/kg
Cd-exposed rats after 4 weeks, which were restored by the
treatment of quercetin.

2.4. Urine, Blood, and Tissue Collection. At periodic intervals
(the end of weeks 0, 1, 2, 3, and 4, resp.), rats were placed
in metabolic cages individually for 24 h to collect urine over
ice. Each urine sample was centrifuged at 3,000 × g (5 min,
4◦C), and the volume was recorded. The supernatant was
used for assays of NAG activity as well as UA, RBP, β2-MG,
UMOD, ALB and protein levels. At the end of week 4, blood
samples from rat’s retroorbital venous plexus at 9:00-10:00
a.m. were centrifuged at 3,000 × g (5 min, 4◦C) to get serum
and then stored at 4◦C for analyses of UA, Cd, Cr, L-carnitine,
TG and VLDL levels, respectively. Then, rats were killed by
decapitation, their kidney tissues were dissected quickly on
ice and stored at −80◦C for assays, respectively.

2.5. Determination of Biochemistry Parameters in Urine, Se-
rum, and Kidney. Urine NAG activity, protein and ALB levels
were measured using standard diagnostic kits, respectively.
Serum, urine and renal L-carnitine, RBP, β2-MG and UMOD
levels were measured using ELISA kits, respectively. UA levels
in serum (Sur) and urine (Uur) were determined by the
phosphotungstic acid method [25]. Cr levels in serum (Scr)
and urine (Ucr) were determined spectrophotometrically
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Table 1: Summary of the sequences of RT-PCR primers, the appropriate annealing temperature used in experiments, and product size.

Genes Primer Annealing temperature (◦C) Product size (bp)

GAPDH S 5′-TCAACGGCACAGTCAAGG-3′ 54 299

A 5′-ACCAGTGGATGCAGGGAT-3′

RST S 5′-CACAGTGGGCAGACTGGACCAGAGC-3′ 57 412

A 5′-CCAAGGATGAGCGAAGGA-3′

OAT1 S 5′-TAATACCGAAGAGCCATACGA-3′ 56 358

A 5′-TCCTGCTGCTGTTGATTCTGC-3′

MRP4 S 5′-AAATCGGAATCTCCTGTCTG −3′ 56 203

A 5′-TATGAGGTCGGCGAATGA-3′

ABCG2 S 5′- TAGCAGCAAGGAAAGAC−3′ 54 835

A 5′-TGATGACAGAACGAGGTA-3′

XDH S 5′-CTTTGCGAAGGATGAGGTT-3′ 58 412

A 5′-CACTCGGACTACGATTCTGTT-3′

CPT1 S 5′-CCACGAAGCCCTCAAACAGA-3′ 57 315

A 5′-AGCACCTTCAGCGAGTAGCG-3′

OCTN2 S 5′-AGGTTTGGTCGCAAGAATG-3′ 56 458

A 5′-AACTCACTGGGATCGAAGAT-3′

PPARα S 5′-GGCTCGGAGGGCTCTGTCATC-3′ 56 655

A 5′-ACATGCACTGGCAGCAGTGGA-3′

SREBP-1 S 5′-GGAGCGAGCATTGAACTGTAT-3′ 58 344

A 5′-GGGCAGCCTTGAAGGAGTA-3′

PGC-1β S 5′-GGTACAGCTCATTCGCTACAT-3′ 58 210

A 5′-TAGGGCTTGCTAACATCACA-3′

using standard diagnostic kit (picric acid assay). Fractional
excretion of UA (FEUA) is suggested to be a reliable indicator
for renal UA excretion. This study calculated FEUA using the
formula: FEUA = (Uur × Scr)/(Sur × Ucr) × 100, expressed
as percentage. For TG assay, serum and kidney samples
were determined using Van Handel-Caslson method. VLDL
levels were measured using ELISA kit. Renal Na+-K+-ATPase
activity was measured using standard diagnostic kit. For XO
and XDH activity assays, renal cortex tissues were homoge-
nized in 10 w/v 50 mM ice-cold potassium phosphate buffer
(pH7.4) containing 5 mM ethylenediamine tetraacetic acid
disodium salt and 1 mM phenylmethanesulfonyl fluoride
(AMRESCO Inc, OH, USA) and centrifuged at 12,000 × g
(15 min, 4◦C). The supernatant fraction was centrifuged at
12,000 × g (15 min, 4◦C) once again and then used to detect
XO and XDH activity by the method described previously
[26].

2.6. RNA Isolation and Reverse Transcription-PCR. Total
RNA was extracted from rat kidney using TRIzol reagent.
The homogenate was mixed with 200 μL chloroform and
then centrifuged at 12,000 × g for 15 min. Aqueous phase
(about 0.5 mL upper layer) was precipitated with equal
volume of isopropanol and centrifuging at 12,000 × g for
10 min. The final RNA total pellet was resuspended in 20 μL
DEPC water. Reverse transcription was performed with 1 μg
RNA using M-MLV reverse transcriptase for cDNA synthesis.
PCR amplification was carried out using gene-specific
PCR primers. The sequences of PCR primers were listed

in Table 1. PCR products were electrophoresed on 1.2%
agarose gels, visualized with Bio-Rad ChemiDoc XRS Gel
Documentation system, and then quantified using Bio-Rad
Quantity One 1D analysis software. Relative quantitation
for PCR products was calculated by normalization to the
amount of GAPDH mRNA levels.

2.7. Protein Preparation and Western Blot Analysis. Rat renal
cortex was homogenized in 10 w/v buffer (10 mM Tris-HCl,
1 mM ethylenediaminetetra-acetic acid and 250 mM sucrose,
pH 7.4, containing 15 μg/mL aprotinin, 5 μg/mL leupeptin,
and 0.1 mM phenylmethyl sulfonyl fluoride), using a
Polytron at setting 5 for 20 s, and centrifuged at 3,000 × g for
15 min. The supernatant was centrifuged at 12,000 × g for
20 min. The final peptide samples were dissolved in Tris-HCl
buffer (pH 7.5) containing 150 mM NaCl, 0.1% SDS, 1%
NP-40, and 1% PMSF. After resolution of 75 μg protein by
12% SDS-PAGE using Power Pac Basic electrophoresis
apparatus (Bio-Rad, Hercules, CA, USA), protein
samples were electrophoretically transferred onto PVDF
membranes (Millipore, Shanghai, China), respectively.
The membranes were blocked with 5% skim milk for 1 h
and subsequently incubated with primary and secondary
antibodies. Primary antibodies included rabbit polyclonal
antibodies against RST (1 : 2000, NP 001030115), OAT1
(1 : 2000, NP 058920), MRP4 (1 : 1000, AAS78928.1) ABCG2
(1 : 1000, NP 852046.1), OCTN2 (1 : 200, NP 062142.1),
CPT1(1 : 1000, NP 113747.2), and GAPDH (1 : 5000,
NP 058704.1). Reactivity was detected using an anti-rabbit
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Figure 1: Effects of a 4-week treatment of CdCl2 and coadministration of quercetin on urinary activity of NAG (a), levels of Cr (b), RBP
(c), β2-MG (d), and ALB (e) in rats. Values are mean ± SEM of n = 8 in each group. P value CdCl2 versus control at + <0.05, ++ <0.01, and
+++ <0.001; treatment versus CdCl2 at ∗ <0.05 and ∗∗ <0.01 for LSD post hoc test.
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Figure 2: Effects of a 4-week treatment of CdCl2 and coadministration of quercetin on weekly urine UA levels (a), levels of serum UA (b),
and urine UMOD (c) at the end of week 4. Values are mean± SEM of n = 8 in each group. P value CdCl2 versus control at + <0.05, ++ <0.01,
+++ <0.001; treatment versus CdCl2 at ∗ <0.05 and ∗∗ <0.01 for LSD post hoc test.

horseradish peroxidase-linked secondary antibody (1 : 1000).
Immunoreactive bands were visualized via the Phototope-
horseradish peroxidase Western Blot Detection System (Cell
Signaling Technologies) and quantified via densitometry
using Molecular Analyst software (Bio-Rad Laboratories,
Hercules, CA, USA).

2.8. Histological Analyses. Rat kidney cortex was immediately
fixed for 1 day at room temperature in 10% neutral buffered
formalin for histopathological examination. Renal biopsies
were dehydrated with a graded series of alcohol and embed-
ded in paraffin. Specimens were cut in 7 μm thick sections
on a rotary microtome and mounted on APES-coated
glass slides. Each section was deparaffinized in xylene,
rehydrated in decreasing concentrations of alcohol in water,
and stained with hematoxylin-eosin reagent (Sigma). The
slide was mounted with neutral balsam. Another kidney
cortex was snap-frozen immediately at −70◦C. 6 μm-thick

cryostat sections were prepared on APES-coated glass slides.
Each section was washed by distilled water and then stained
with oil red O reagent (Sigma) for 5–10 min. After being
washed with 60% isopropyl alcohol, the section was restained
by hematoxylin.

2.9. Statistical Analysis. All data were expressed as mean
± SEM. Statistical analysis for experimental groups was
performed by using a one-way analysis of variance followed
by LSD post hoc test. P value < 0.05 was considered to be
statistically significant. Figurers were obtained by GraphPad
Prism 4 (GraphPad Software, Inc., San Diego, CA, USA).

3. Results

3.1. Body Weight and General Biomarkers of Nephropathy. In
order to monitor the efficacy of Cd and subsequent quercetin
treatment, body weight as well as urinary macromolecular
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Figure 3: Renal cortex morphology in rats of a 4-week treatment of CdCl2 exposure and coadministration of quercetin. The kidney
tissue slices were stained with hematoxylin or oil red O and then observed by microscope (original magnification ×200). Normal rat
kidney (a) showed the identical structure of glomerulus and proximal tubules. CdCl2 exposure at 3 mg/kg (b) and 6 mg/kg (c) induced
moderate inflammatory infiltration (black arrows). Quercetin at 50 mg/kg (d; f) and 100 mg/kg (e; g) significantly attenuated CdCl2-induced
inflammatory infiltration around glomerulus and proximal tubules in kidney of rats. Normal rat kidney (h) showed no lipid deposition.
CdCl2exposure at 3 mg/kg (i) and 6 mg/kg (j) induced moderate lipid deposition (red). Quercetin at 50 mg/kg (k; m) and 100 mg/kg (l; n)
significantly attenuated CdCl2-induced renal lipid deposition in renal tubular epithelial cells by oil red O-stain analysis.

enzyme activity and protein level was measured, respectively.
As shown in Table 2, Cd exposure caused body weight reduc-
tion in rats (P < 0.001) compared with control group during
the experimental period; however, quercetin treatment failed
to restore this change.

Dysfunction and damage of renal tubules are charac-
terized by the increased activity of urine NAG/Cr [23].
Figure 1(a) showed that Cd at 3 mg/kg (P < 0.01) and
6 mg/kg (P < 0.001) increased urine NAG activity in rats.
Quercetin at 50 and 100 mg/kg significantly inhibited NAG
activity (P < 0.05) in 3 mg/kg Cd-exposed rats, the latter
decreased NAG activity (P < 0.01) in 6 mg/kg Cd-exposed

rats. In addition, there were no significant changes of Cr
levels in serum (data not shown) and urine (Figure 1(b))
among the tested groups.

As sensitive markers of macromolecular protein for renal
tubular injury, urine levels of RBP (3 mg/kg: P < 0.05;
6 mg/kg: P < 0.01), β2-MG (3 mg/kg: P < 0.01; 6 mg/kg:
P < 0.001), and ALB (3 mg/kg: P < 0.05; 6 mg/kg: P <
0.001) were significantly increased in rats after Cd exposure
(Figures 1(c)-1(e)). Urine RBP and β2-MG levels in 3 and
6 mg/kg Cd-exposed rats were significantly decreased by
the treatment of 100 mg/kg quercetin (P < 0.05), so were
urine ALB in 6 mg/kg Cd-exposed rats. 50 mg/kg quercetin
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Figure 4: Effects of a 4-week treatment of CdCl2 and coadministration of quercetin on renal XO (a), XDH activity (b) and XDH/XO ratio
in rats (c). Values are mean ± SEM of n = 6–8 in each group. P value CdCl2 versus control at + <0.05, ++ <0.01, and +++ <0.001; treatment
versus CdCl2 at ∗ <0.05 and ∗∗ <0.01 for LSD post hoc test.

Table 2: Effects of a 4-week treatment of cadmium chloride
(CdCl2) and coadministration of quercetin on body weight (g) in
rats. (Values are mean ± SEM from eight rats in each group).

Group Body weight (g)

Normal control 352.4± 11.9

3 mg/kg CdCl2 323.0± 18.5+

3 mg/kg CdCl2 + 50 mg/kg quercetin 309.8± 9.3+++

3 mg/kg CdCl2 + 100 mg/kg quercetin 309.7± 9.3+++

6 mg/kg CdCl2 305.4± 18.5+++

6 mg/kg CdCl2 + 50 mg/kg quercetin 309.3± 14.1+++

6 mg/kg CdCl2 + 100 mg/kg quercetin 310.1± 7.6+++

P value CdCl2 versus control at + <0.05 and +++ <0.001.

significantly decreased urine RBP levels (P < 0.05) in 3 and
6 mg/kg Cd-exposed rats and urine ALB levels (P < 0.05) in
3 mg/kg Cd-exposed rats (Figures 1(c)–1(e)).

UA is a biomarker of nephropathy, and its detection is
stable and easy. Compared with control group, urine UA
levels were increased in rats exposed to Cd from week 2

and maintained until week 4 (3 mg/kg Cd: week 2, P <
0.01, week 3, P < 0.05, and week 4, P < 0.05; 6 mg/kg
Cd: week 2, P < 0.01, week 3, P < 0.001, and week 4,
P < 0.001) (Figure 2(a)). The decreased urine UA levels were
observed in 6 mg/kg Cd-exposed rats receiving quercetin at
week 4 (quercetin 50 mg/kg: P < 0.05; 100 mg/kg: P <
0.01). Furthermore, 6 mg/kg Cd exposure increased serum
UA levels in rats compared with normal control (P <
0.001), which were significantly restored by the treatment
of quercetin (P < 0.05) (Figure 2(b)). UMOD is a useful
marker of renal dysfunction associated with hyperuricemia.
The decreased urine UMOD levels (P < 0.05) were observed
in 6 mg/kg Cd-exposed rats. Quercetin did not affect urine
UMOD levels in Cd-exposed rats (Figure 2(c)).

Microscopically, 3 and 6 mg/kg Cd-induced mild inflam-
matory infiltration was observed in renal cortex of rats,
which was remarkably ameliorated by the treatment of quer-
cetin (Figures 3(a)–3(f)).

3.2. XOR Activity and Expression. We next examined renal
activity and expression of XOR, which plays an important
role in UA synthesis. 6 mg/kg Cd exposure significantly
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increased renal activity of XO (P < 0.01) in rats compared
with normal control, which were restored by quercetin at
50 mg/kg (P < 0.05) and 100 mg/kg (P < 0.01) (Figure 4(a)).
However, 6 mg/kg Cd exposure relatively decreased renal
activity of XDH (P < 0.01) (Figure 4(b)) with significantly
decreased XDH/XO ratio (P < 0.001) (Figure 4(c)), which
were restored by quercetin treatment. Both Cd exposure and
quercetin treatment failed to significantly alter renal XDH
mRNA levels in rats (data not shown).

3.3. FEUA. FEUA is investigated with the unbalanced bidirec-
tional transport of UA in renal proximal tubules, supporting
the predominant mechanism for hyperuricemia and renal
UA underexcretion [19, 27]. FEUA in 3 and 6 mg/kg Cd-
exposed rats were significant lower than that of normal con-
trol (P < 0.05) (Figure 5). Quercetin significantly increased
FEUA in rats exposed to Cd at 3 mg/kg (50 mg/kg: P < 0.05)
and 6 mg/kg (50 mg/kg: P < 0.01; 100 mg/kg: P < 0.001),
suggesting that quercetin may enhance renal UA excretion.

3.4. Expression of UA Transport-Related Proteins and Activity
of Na+-K+-ATPase. In order to explore the reasons for renal
UA excretion abnormality, we examined the expression levels
of renal RST, OAT1, MRP4, and ABCG2 in Cd-exposed
rats by RT-PCR and Western blot analyses, respectively.
As shown in Figures 6 and 7, Cd exposure significantly
increased RST mRNA (3 mg/kg: P < 0.05; 6 mg/kg: P <
0.01) (Figure 6(a)) and protein (3 mg/kg: P < 0.05; 6 mg/kg:
P < 0.001) (Figure 7(a)) levels and decreased OAT1 mRNA
(3 mg/kg: P < 0.05; 6 mg/kg: P < 0.01) (Figure 6(b))
and protein (6 mg/kg: P < 0.01) levels (Figure 7(b)) in
the kidney of rats compared with normal control. Cd
exposure suppressed renal mRNA levels of MRP4 (6 mg/kg:
P < 0.05) (Figure 6(c)) and ABCG2 (3 and 6 mg/kg:
P < 0.001) (Figure 6(d)) and increased renal protein levels
of ABCG2 (6 mg/kg: P < 0.05) (Figure 7(d)) in rats.
Moreover, 100 mg/kg quercetin ameliorated 3 mg/kg Cd-
induced changes of RST mRNA levels (P < 0.05) in rats

(Figure 6(a)). Meanwhile, quercetin ameliorated 6 mg/kg
Cd-induced changes of RST mRNA levels (50 and 100 mg/kg:
P < 0.01) (Figure 6(a)) and protein levels (100 mg/kg: P <
0.05) (Figure 7(a)) in rats. The changed expression levels of
renal OAT1 mRNA (100 mg/kg: P < 0.05) and protein (50
and 100 mg/kg: P < 0.05) in 6 mg/kg Cd-exposed rats were
also restored by the treatment of quercetin (Figures 6(b)
and 7(b)). However, quercetin performed no effects on renal
MRP4 and ABCG2 in Cd-exposed rats.

Na+-K+-ATPase is an energy supplier for some of UA
transport-related proteins such as OAT1 [28]. Cd exposure
significantly decreased renal Na+-K+-ATPase activity in rats
compared with normal control (3 mg/kg: P < 0.05; 6 mg/kg:
P < 0.001) (Figure 6(e)). However, quercetin failed to affect
the activity in Cd-exposed rats.

3.5. Serum and Renal TG and VLDL Levels. UA and XOR
are confirmed to be related to lipid metabolism [13], we
addressed the question whether Cd nephrotoxicity was
correlated to renal lipid metabolism disorder. Thus, TG and
VLDL levels were detected in Cd-exposed rats. Cd exposure
increased TG levels in serum (6 mg/kg: P < 0.001) and
kidney (3 and 6 mg/kg: P < 0.001) of rats compared with
normal control (Figures 8(a) and 8(b)), exhibiting renal lipid
accumulation. 100 mg/kg quercetin significantly reduced
serum TG levels (P < 0.05) in 6 mg/kg Cd-exposed rats
(Figure 8(a)). The increased renal TG levels were ameliorated
by the treatment of quercetin at 50 mg/kg (P < 0.05) and
100 mg/kg (P < 0.01) in 3 and 6 mg/kg Cd-exposed rats
(Figure 8(b)). However, Cd exposure did not significantly
change serum and renal VLDL levels (Figures 8(c) and 8(d)).
100 mg/kg quercetin reduced renal VLDL levels (P < 0.01) in
6 mg/kg Cd-exposed rats (Figure 8(d)).

Moreover, oil red staining analysis revealed moderate
lipid deposition observed in tubular epithelial cells in renal
tissue sections of Cd-exposed rats, which could be improved
by the treatment of quercetin (Figures 3(h)–3(n)).

3.6. L-Carnitine Levels and Expression of Renal Lipid Me-
tabolism-Related Genes. L-carnitine is essential to fatty acid
β-oxidation from mitochondrial membrane mediated by
CPT1. OCTN2 is an important transporter for L-carnitine
reabsorption [29]. However, no significant changes of L-
carnitine levels in serum, urine, and kidney cortex were
observed in the tested groups (data not shown). Cd exposure
reduced renal levels of OCTN2 and CPT1 mRNA (3 mg/kg:
P < 0.05; 6 mg/kg: P < 0.001) (Figures 9(a) and 9(b)) and
protein (P < 0.001) (Figures 9(g) and 9(h)) in rats compared
with normal control. These data indicated that Cd-induced
OCTN2 downregulation did not affect L-carnitine levels,
which might not be an important factor to cause renal lipid
metabolism disorder in Cd nephrotoxicity of rats.

Next, we analyzed whether Cd exposure affected the
expression levels of other lipid metabolism-related genes
in the kidney of rats. Compared with normal control,
Cd exposure significantly suppressed renal mRNA levels of
AMPK (Figure 9(c)) and PPARα (Figure 9(d)) (3 mg/kg: P <
0.01; 6 mg/kg: P < 0.001). Cd-induced elevation in renal
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Figure 6: Effects of a 4-week treatment of CdCl2 and coadministration of quercetin on expression of RST (a), OAT1 (b), MRP4 (c), and
ABCG2 (d) at mRNA levels and activity of Na+-K+-ATPase (e) in renal cortex of rats. The mRNA levels were normalized by GAPDH. Values
are mean ± SEM of n = 4–6 in each group. P value CdCl2 versus control at + < 0.05, ++ < 0.01, and +++ < 0.001; treatment versus CdCl2 at
∗ <0.05 and ∗∗ <0.01 for LSD post hoc test.

mRNA levels of and SREBP-1 (Figure 9(e)) and PGC-1β
(Figure 9(f)) (3 mg/kg: P < 0.05; 6 mg/kg: P < 0.001) was
observed in rats.

Quercetin treatment increased AMPK in rats exposed to
Cd at 3 mg/kg (100 mg/kg: P < 0.05) and 6 mg/kg (50 and
100 mg/kg: P < 0.05) (Figure 9(c)). Quercetin at 100 mg/kg
also ameliorated 3 mg/kg Cd-induced downregulation of
renal PPARα mRNA levels (P < 0.05) (Figure 9(d)) as well
as 6 mg/kg Cd-induced downregulation of renal OCTN2
protein levels (Figure 9(g)), CPT1 mRNA, and protein

levels (P < 0.05) in rats (Figures 9(b) and 9(h)). More-
over, quercetin significantly downregulated renal SREBP-1
(50 mg/kg: P < 0.05) and PGC-1β (100 mg/kg:P < 0.01)
(Figures 9(e) and 9(f)) in Cd-exposed rats.

4. Discussion

The main findings of this study were that Cd exposure
induced renal UA transport system dysfunction with XOR
hyperactivity and impaired renal AMPK-PPARα/PGC-1β
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Figure 7: Effects of a 4-week treatment of CdCl2 and coadministration of quercetin on expression of RST (a), OAT1 (b), MRP4 (c), and
ABCG2 (d) at protein levels in renal cortex of rats. The protein levels were normalized by GAPDH. Values are mean ± SEM of n = 4–6 in
each group. P value CdCl2 versus control at + <0.05, ++ <0.01, +++ <0.001; treatment versus CdCl2 at ∗ <0.05, and ∗∗ <0.01 for LSD post
hoc test.

signal pathway, resulting in renal lipid accumulation involved
in Cd nephrotoxicity of rats. By administering a dietary
flavonoid quercetin to Cd-exposed rats, it ameliorated renal
UA transport system dysfunction with XOR hyperactivity
and subsequently improved renal AMPK-PPARα/PGC-1β
signal pathway impairment to restore disorder of renal lipid
metabolism, exhibiting its nephroprotection.

The kidney is the primary critical target of toxicity, where
Cd accumulation reaches the threshold [23, 30–32], leading
to pathological damaged levels of urine enzyme (NAG)
and proteins (RBP, β2-MG, ALB, and UMOD) observed in
the present study. Quercetin treatment restored Cd-induced
renal dysfunction and toxicity in rats.

In parallel with urine enzyme hyperactivity, a continued
rise of serum UA levels was observed in Cd-exposed rats.
The UA change could take place in the early stage of Cd
exposure, as the urine UA levels increased significantly from
week 2. The kidney is a target organ for Cd; therefore,

it was necessary to investigate the effects of Cd on renal
XOR activity and UA transport-related proteins in rats.
Being consistent with activated renal XO in Cd-exposed
Swiss albino mice [33, 34], the present study confirmed
activation of renal XO in Cd-exposed Sprague-Dawley rats
with a significant reduction of renal XDH/XO ratio, which
resulted from the increased XO activity with the relatively
decreased XDH activity. These data further demonstrates
that Cd enhances the conversion of XDH to XO [7] in
the kidney of rats, possibly causing serious renal damage
induced by XOR hyperactivity-mediated ROS. Quercetin, as
a XOR inhibitor [20, 35, 36], inhibits XOR activation in the
kidney of ischemia-reperfusion rat [36]. In the present study,
quercetin was confirmed to prevent the conversion of renal
XDH to XO, which were consistent with its attenuation of
Cd-induced hyperuricemia and renal injury.

More importantly, 6 mg/kg Cd exposure was found to
upregulate RST and downregulate OAT1, MRP4, and ABCG2
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Figure 8: Effects of a 4-week treatment of CdCl2 and coadministration of quercetin on TG levels in serum (a) and kidney (b); VLDL levels
in serum (c) and kidney (d) in rats. Values are mean± SEM of n = 8 in each group. P value CdCl2 versus control at ++ <0.01 and +++ <0.001;
treatment versus CdCl2 at ∗ <0.05, ∗∗ <0.01, and ∗∗∗ <0.001 for LSD post hoc test.

in the kidney of rats, indicating that Cd exposure may
alter renal function for UA transport. Na+-K+-ATPase is the
energy supplier for some organic ion transporters such as
OAT1 [28]. The altered Na+-K+-ATPase activity is incrim-
inated to play a role in renal tubular syndrome associated
with Cd-induced nephrotoxicity [37, 38]. Hypoactivity of
renal rNa+-K+-ATPase was observed in the present study.
Therefore, renal UA transport system dysfunction with
XOR hyperactivity may be involved in the mechanisms
of Cd-induced hyperuricemia and renal dysfunction in
rats. Our previous study showed that quercetin restored
fructose-induced dysexpression of renal RST and OAT1 in
hyperuricemic rats [19]. In this study, although no effect
on renal Na+-K+-ATPase activity, quercetin reduced serum
UA levels, possibly through its amelioration of Cd-induced
abnormality of renal RST and OAT1 to enhance renal UA
excretion, resulting in relief of hyperuricemia and kidney
dysfunction in rats. Thus, renal UA transport system is sug-
gested to be target for quercetin’s action in Cd nephrotoxicity.

As important cross-regulators, UA and XOR are asso-
ciated with lipid metabolism [13]. XOR inhibitors allop-
urinol and quercetin are confirmed to prevent fructose-
induced hypertriglyceridemia in rats [19, 39]. Lipids play

an important role in the progression and development of
kidney diseases [14]. The present study demonstrated that
Cd induced moderate lipid accumulation and deposition
in renal cortex of rats with high TG levels, which were
restored by the treatment of quercetin. These results indicate
that alteration of renal UA transport system with XOR
hyperactivity may be associated with renal lipid metabolism
disorder of Cd nephrotoxicity in rats.

Lipid metabolism regulator PPARα and its target genes
OCTN2 and CPT1 are involved in mitochondrion fatty
acid β-oxidation, playing an important role in nonadipose
tissue [40]. PPARα can protect renal tubular cells from
doxorubicin-induced ROS [41]. Its agonists prevent renal
oxidative stress and damage to improve proteinuria in hy-
pertensive patients with renal disease [42]. Furthermore,
XOR activation and ROS increase expression of PGC-1
[43], which is suggested to enhance PPARα-mediated tran-
scriptional activity [44, 45]. Hepatic PGC-1β overexpression
reduces the beneficial effects of PPARα activation on gene
expression, leading to hyperlipidemia [45]. In addition,
PGC-1β activates expression of lipogenic genes via direct
coactivation of SREBP-1, a major regulator of fatty acids
synthesis [46]. Interestingly, the present study found that
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Figure 9: Effects of a 4-week treatment of CdCl2 and coadministration of quercetin on expression of OCTN2 (a), CPT1 (b), AMPK (c),
PPARα (d), SREBP-1 (e), PGC-1β (f) at mRNA levels, and OCTN2 (g) and CPT1 (h) at protein levels in renal cortex of rats. The mRNA
levels or protein levels were normalized by GAPDH, respectively. Values are mean ± SEM of n = 4–6 in each group. P value CdCl2 versus
control at + < 0.05, ++ < 0.01, and +++ <0.001; treatment versus CdCl2 at ∗ <0.05, ∗∗ <0.01, and ∗∗∗ <0.001 for LSD post hoc test.

Cd exposure decreased PPARα, OCTN2, and CPT1 and
increased PGC-1β expression, which possibly activated
SREBP-1 in the kidney of rats. These results indicate that
renal downregulation of PPARα and its target genes medi-
ated by PGC-1β overexpression may be involved in renal
reduction of fatty acid β-oxidation and disorder of lipid
metabolism in Cd-exposed rats with renal UA transport
function impairment with XOR hyperactivity.

It is well known that AMPK regulates downstream
PPARα to affect the transcription of numerous genes includ-
ing OCTN2 and CPT1 [47]. AMPK activation enhances fatty
acid β-oxidation in skeletal muscle by activating PPARα

and PGC-1 [48]. Additionally, SREBP-1 is negatively regu-
lated by AMPK. Interestingly, renal AMPK expression was
downregulated in Cd-exposed rats in the present study.
PPARα and its target genes are involved in cross-talking of
lipid metabolism with oxidative stress by Cd-induced UA
overproduction and ROS synthesis. Thus, the ability of Cd
to affect renal lipid metabolism-related AMPK-PPARα/PGC-
1β signal pathway possibly mediated by renal UA transport
function impairment with renal XO hyperactivity may
have significant implication for the pathophysiology of Cd-
induced renal injury in rats. The precise mechanisms need to
be further explored in suitable cell models.
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Quercetin, as an activator of AMPK [49], was confirmed
to upregulate AMPK, PPARα, CPT1, and OCTN2, as well
as downregulate PGC-1β and SREBP-1 in the kidney of
Cd-exposed rats, which were parallel with its restoration of
renal lipid accumulation. Thus, quercetin with regulation
of renal UA transport system and XOR activity may reduce
renal lipid accumulation partly mediated by improving renal
AMPK-PPARα/PGC-1β signal pathway impairment in Cd
nephrotoxicity of rats.

5. Conclusion

This study demonstrated that Cd-induced UA excretion
dysfunction with excess synthesis further aggravated UA
congestion and made renal lesion more serious in rats.
Abnormality of renal UA transport system with XOR activity
may be a key target for disorder of renal lipid metabolism and
induction of secondary renal damage process in rats exposed
to Cd. This study was the first to focus, and confirm the
relative importance of renal UA transport system dysfunction
with XOR activation and AMPK-PPARα/PGC-1β signal
pathway impairment involved in Cd nephrotoxicity of rats.
Quercetin was found to ameliorate renal UA transport
system dysfunction with XOR hyperactivity and improve
renal AMPK-PPARα/PGC-1β signal pathway impairment
and subsequently reduce renal lipid accumulation in rats.
Quercetin may serve as antihyperuricemic and antidyslipi-
demic agent to prevent Cd-evoked nephrotoxicity.
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