Supplemental figure legends

Figure S1. Ovatodiolide specifically inhibits WNT/β-catenin signaling. (A) After 24 hr of transfection with TOPflash or FOPflash plasmids, each compound (20 and 40 µM) or DMSO was added to cells and lucifierase activity was measured after 24-hr treatment. The pGL4.71 renilla luciferase vector (Promega) was cotransfected as a transfection control, and luciferase activity was measured within 20 min. Psoralen was used as a WNT/ β -catenin signaling inductive control. (B) After 24 hr of transfection, cells were treated with 25 ng/ml recombinant human WNT3a (rhWNT3a) or 20 mM LiCl containing ovatodiolide or DMSO for an additional 24 hr. The control group was ovatodiolide or DMSO alone. (C) Immunocytochemistry with 40 µM ovatodiolide shows inhibited β -catenin nuclear translocation and its downstream genes cyclin D1 and survivin. The positivity of each marker was quantified with Aperio ImageScope and Spectrum Software. Data are mean±SD of triplicate experiments. (D) Western blot assay of effect of 40 μM ovatodiolide on protein levels of active β-catenin (p-β-catenin [S552]) and its downstream genes (c-myc, cyclin D1 and survivin) and other WNT molecules (TCF4, LRP5/6, p-LRP5/6, Axin1 and dishevelled) in RCC cell lines ACHN and A498, human embryonic kidney HEK293T cells and normal kidney epithelial HK-2 cells. (E) Representative high-performance liquid chromatography (HPLC) of ovatodiolide revealed the purity of compounds to be ~95% pure.

Figure S2. As Figure 2, ovatodiolide inhibits RCC cell viability and induces apoptosis in ACHN and A498 RCC cell lines. (A) The effect of ovatodiolide on cell viability was evaluated in ACHN and A498 cells by MTT assay at various times. The IC₅₀ at 48 hr and the relative viability (the percentage of MTT absorbance) were shown. Data are mean±SD of triplicate experiments. (B) The original data for Figure 2A and S2A were re-plotted with absorbance 570 nm on MTT assay by treatment time for RCC and

HK-2 cells. (C) Flow cytometry of the effect of ovatodiolide on cell cycle distribution. ACHN and A498 cells were treated with 40 μ M ovatodiolide for 48 hr, and sub-G1 and G2/M populations were measured. Data are mean±SD of triplicate experiments. (D) Western blot analysis of protein levels of cleaved caspase 3, 8, 9, and PARP and apoptotic proteins Bax, Bid and PUMA and antiapoptotic proteins Bcl-2, Bcl-xL and survivin in ACHN and A498 cellstreated with ovatodiolide for 24 or 48 hr. (E) A sub-IC50 concentration (15 μ M) was also examined in Caki-1 and 786-O cells for 24h and 48h. The sub-IC50 concentration also reduced levels of active β -catenin (p-Ser552- β -catenin) and its downstream genes (c-myc, cyclin D1 and survivin) but not other WNT molecules (TCF4), LRP5/6 and its active phosphorylated form, Axin1, and disheveled.

Figure S3. As Figure 3, ovatodiolide inhibits RCC cell migration, invasion and tumorigenicity. (A) Wound healing assay of four cell lines with ovatodiolide concentrations for 24 and 48 hr. The wound-repair area was imaged under the same field every 24 hr and quantified. (B) Western blot analysis of protein levels of matrix metalloproteinase 2 (MMP-2) and MMP-9 with 20 µg of each cell lysate. Activities were evaluated by 0.1% gelatin zymography with 50 µg conditioned media. (C) RT-PCR quantification of effect of ovatodiolide (40 µM for 24 hr) on mRNA level of β-catenin. (D) Ovatodiolide for 24 hr dose-dependently reduced β-catenin nuclear transloacation in Caki-1 and 786-O cells. (E) Ovatodiolide-induced β-catenin degradation is not lysosome-mediated. Ovatodiolide co-treated with lysomal inhibitors (10 and 20 µM chloroquine or 10 and 20 µM NH₄Cl) for 48 hr had no effect on β-catenin protein levels. (F) Immunoprecipitation and western blot analysis of protein

2

levels of β -catenin – TCF4 and β -catenin – E-cadherin interaction in four RCC cells and HEK293T cells.

Figure S4. (A) 786-O and ACHN cells were xenografted each in six mice. Xenografted mice were treated with 100 μg/kg ovatodiolide and DMSO control were shown. (B) Tumor, lung and liver weight, and (C) Body weight of 50 μg/kg, 100 μg/kg ovatodiolide treatment or DMSO control. Data are mean±SD of triplicate experiments. (D) Ovatodiolide- and DMSO-treated 786-O- or ACHN-xenografted mice showed no systemic toxic effects. Representative sections of major organs, including brain (cerebrum and cerebellum), heart, liver, spleen, lung, kidney, stomach, intestine, and urine bladder, underwent hematoxylin and eosin staining.

Figure S5. (A) AKT inhibitor treatment induced effects similar to that of ovatodiolide and constitutively active AKT abrogated the ovatodiolide-induced inhibition of WNT/β-catenin signaling. In the left column, RCC cells were treated with 40 µM ovatodiolide, or co-treatment with AKT inhibitor VIII (5 µM) and ovatodiolide for 24 hr, and levels of p-β-catenin (S552) and β-catenin were examined. In the right column, RCC cells were transfected with 2µg constitutively active AKT plasmid (addgene#14751) for 24 hr, then treated with 40 µM ovatodiolide for an additional 24 hr. Ovatodiolide obviously reduced p-β-catenin (S552) and slightly reduced β-catenin. Constitutively active AKT induced higher levels of p-β-catenin (S552), p-Foxo3a (T32), p-mTOR (S2448) and p-p70S6K (T389), and it also abrogated most of the ovatodiolide inhibited p-β-catenin (S552) level. Nevertheless, ovatodiolide treatment did not modify AKT-induced p-Foxo3a (T32), p-mTOR (S2448) and p-p70S6K (T389) levels. (B) RT-PCR quantification of mRNA levels of WNT/β-catenin signaling targets

3

Axin2, Nkd1 and Sp5 in RCC cells treated with ovatodiolide (40 μ M) with/without AKT inhibitors VIII (5 μ M) or 2 μ g constitutively active AKT plasmid. (C) Schematic diagram depicts the mechanism of inactivation of β -catenin by ovatodiolide in RCC cells.

Figure S6. (A) The effect of constitutively active Akt also partially rescued the ovatodiolide-induced cell death. (B) The physically binding between ovatodiolide and beta-catenin was simulated on the molecular docking website PATCHDOCK with the 3D structure files for ovatodiolide (PubChem: CID_6451060) and beta-catenin (PDB: 1QZ7). The ovatodiolide inserted into the β -catenin molecule enclosing by the AKT phosphorylation site, Ser-552 residue, and may result in a stereochemical change to reduce its activation. There is no proper 3D structure including N-terminus of β -catenin and it is uneasy to evaluate whether ovatodiolide also bound to the GSK3 β targeting Ser33, Ser37 or Thr41 residues.

Dishevelled

 α -tubulin

Table S1

Compound	PubChem BioActivity		
Compound	Outcome	IC50	
Citrus reticulata Blan	со		
Nobiletin	Active	40µM In vitro cytotoxic potency against NCI-60 human tumor cell line	
Tangeretin	Active	41.2µM Growth inhibition of human SHSY5Y cells assessed as viable cells after 48 hrs by Trypan blue dye	
5-Demethylnobiletin	Active	2.07µM Antiproliferative activity against HL60 after 24 hrs	
5-Demethyltangeretin	Active	<= 50uM or explicitly reported as active by ChEMBL	
Isosinensetin	Active	28µM Anticancer activity against human HT-29 cells after 72 hrs by MTT assay	
β-Myrcene	Inactive	Not shown	
α-Pinene	Inactive	Not shown	
Naringin	Inactive	Not shown	
Hesperetin	Inactive	Not shown	
Limonene	Inactive	Not shown	
Sabinene	Inactive	Not shown	
Linalool	Inactive	Not shown	
Hesperidin	Unspecified	142 μ M Anticancer activity against human HT-29 cells after 72 hrs by MTT assay	
3-Carene	Unspecified	NA	
Sinensetin	Unspecified	$67\mu M$ Anticancer activity against human HT-29 cells after 72 hrs by MTT assay	
β-Pinene	Untested	Not shown	
Terpinolene	Untested	Not shown	
Limonene oxide	Untested	Not shown	
Decanal	Untested	Not shown	
α-Phellandrene	Untested	Not shown	
Tetramethyl-O-isoscutellarein	Untested	Not shown	
Hibiscus syriacus L.			
Betulin	Active	$1.4\mu M$ Cytotoxicity against human WI 38 cells after 48 hrs by WST-8 assay	
Betulinic acid	Active	0.026µM Cytotoxicity against human HeLa cells after 72 hrs by MTT assay	
Lupeol	Active	<= 50uM or explicitly reported as active by ChEMBL	
Nonanedioic acid	Active	42.1µM Cytotoxicity against human MCF7 cells by MTT assay	
Suberic acid	Inactive	Not shown	
Myristic acid	Inactive	Not shown	
Palmitic aicd	Inactive	Not shown	
Lauric acid	Inactive	Not shown	
Canthin-6-one	Inactive	50µM Cytotoxicity against human HepG2 cells upto 50 uM by neutral red assay	
(+)-pinoresinol	Inactive	Not shown	
Syringaresinol	Unspecified	Cytotoxicity against human KB cells	
Feruloyltyramines	Unspecified	38µMc Growth inhibition of mouse B16 2F2 cells after 3 days	
1,22-Docosanediol	Unspecified	100μM, cytotoxicity against human A549 cells after 72 hrs by MTT assay	
1-Octacosanol	Untested	Not shown	
Erythrotriol	Untested	Not shown	
3'-Hydroxydaidzein	Untested	Not shown	

Table S1 (continued)

Anisomeles indica L.		
Ovatodiolide	Active	1.4µM, HepG2 cells after 48 hrs
Apigenin	Active	35μM, cytotoxicity against human H9 cells after 3 days
Arjunolic acid	Inactive	Not shown
Citral	Inactive	Not shown
Limonene	Inactive	Not shown
Methyl gallate	Inactive	Not shown
Eugenol	Inactive	Not shown
Malic acid	Inactive	Not shown
Stigmasterol	Unspecified	50μM, cytotoxicity against human HeLa cells by MTT assay
Hederagenin	Unspecified	Not shown
Acetoside	Unspecified	Not shown
Isoacetoside	Untested	Not shown
Calceolarioside A	Untested	Not shown
Compneoside	Untested	Not shown
3, 4-Dihydroxybenzoic acid	Untested	Not shown
Terniflorin	Untested	Not shown
Anisofolin A	Untested	Not shown
Iso-ovatodiolide	Untested	Not shown
Anisomelic acid	Untested	Not shown
Borneol	Untested	Not shown
α- Terpineol	Untested	Not shown
Azullene	Untested	Not shown
Caryophyllene	Untested	Not shown

Tabl	е	S2
------	---	----

Gene	Forward	Reverse
β-catenin	5'-AAAATGGCAGTGCGTTTAG-3'	5'-TTTGAAGGCAGTCTGTCGTA-3'
AXIN2	5'-CCCAAGCCCCATAGTGCCCAAAG-3'	5'-CAGGGGAGGCATCGCAGGGTC- 3'
SP5	5'-GCGGCGAGGGGCAAGGGC-3'	5'- CGCCGAGGCATGGACACCCG-3'
NKD1	5'-TCACTCCAAGCCGGCCGCC-3'	5'-TCCCGGGTGCTTCGGCCTATG-3'
GAPDH	5'-TGTTGCCATCAATGACCCCTT-3'	5'-CTCCACGACGTACTCAGCG-3'

Tabl	e S3
------	------

Gene		Manufacturer and product number	
	AKT	Cell Signal Tech.#4691	
	Phospho-AKT (Ser473)	Cell Signal Tech.#4060	
	Bax	Cell Signal Tech.#5023	
	Bcl-2	Epitomics #1017	
	Bcl-xL	Epitomics #1018	
	β-catenin	Epitomics #1247	
	Phospho-β-catenin (S552)	Cell Signal Tech.#9566	
	Phospho-β-catenin (S33/37,T41)	Cell Signal Tech.#9561	
	Bid	Clone FL-195, Santa cruz#SC-11423	
	Caspase-3	Cell Signal Tech. #9662	
	Cleaved Caspase-3	Cell Signal Tech. #9664	
	Caspase-8	Cell Signal Tech. #4790	
	Cleaved Caspase-8	Cell Signal Tech.#9496	
	Caspase-9	Cell Signal Tech.#9502	
	Cleaved Caspase-9	Cell Signal Tech.#9501	
	c-myc	Clone 9E11, Santa Cruz Biotech.#sc-47694	
	cyclin D1	Clone DCS-6, Cell Signaling Tech. #2926	
	E-cadherin	Epitomics #1702	
	ERK-1	Epitomics #1172	
	Phospho-ERK1 (T202)	Epitomics #1481	
	GAPDH	Epitomics #2251	
	GSK3	Cell Signal Tech.#9315	
	Phospho-GSK3 (Ser9)	Cell Signal Tech.#9322	
	Ki-67	Dako Clone MIB-1 #M7240	
	Lamin B1	Epitomics #6581	
	MEK-1	Epitomics #1235	
	Phospho-MEK1 (S217/221)	Epitomics #T3735	
	MMP-2	Lab Vision #RB-1537	
	MMP-9	Lab Vision # RB-1539	
	PARP	Cell Signal Tech.#9542	
	Cleaved PARP	Cell Signal Tech.#5625	
	PUMA	Cell Signal Tech.#4976	
	RAF1	Cell Signal Tech.#9422	
	Phospho-RAF1 (S338)	Cell Signal Tech.#9427	
	RAS	Cell Signal Tech.#3339	
	STAT3	Epitomics #2281	
	Phospho-STAT3 (Y705)	Epitomics #2236	
	Survivin	Epitomics #2463	
	TCF4	Epitomics #2114	
	α-tubulin	Clone DM1A. Lab Vision#MS-581	