## **Supporting Information**

## Two New 3,4;9,10-*seco* Cycloartane Type Triterpenoids from *Illicium difengpi* and their Anti-inflammatory Activities

Chuntong Li  $^1$ , Fengmin Xi  $^1$ , Junling Mi  $^2$ , Zhijun Wu  $^{1\ast}$  and Wansheng Chen  $^{1,\,\ast}$ 

- <sup>1</sup> Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai 200003, PR China; E-Mails: chuntongli@yahoo.cn (C.L.); fengmin.x@gmail.com (F.X.); wuzhijun999@sina.com (Z.W.); chenwanshengsmmu@yahoo.com.cn (W.C.).
- <sup>2</sup> School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Liutai Road 1166, Chengdu, 611137, Sichuan, PR China; E-Mail:miboai@126.com (J.M.).

 \* Author to whom correspondence should be addressed; E-Mail: wuzhijun999@sina.com (Z.W.); chenwanshengsmmu@yahoo.com.cn (W.C.) Tel.: +86-021-81886181; Fax: +86-021-81886191.

## Contents

- S1. Figure S1. High resolution ESI mass spectrum of Illiciumolide A (1).
- S2. Figure S2. IR spectrum of Illiciumolide A (1).
- S3. Figure S3. <sup>1</sup>H NMR spectrum of Illiciumolide A (1) in CDCl<sub>3</sub>.
- S4. **Figure S4**. <sup>13</sup>C NMR spectrum of Illiciumolide A (1) in CDCl<sub>3</sub>.
- S5. **Figure S5**. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of Illiciumolide A (1) CDCl<sub>3</sub>.
- S6. Figure S6. HSQC spectrum of Illiciumolide A (1) in CDCl<sub>3</sub>.
- S7. Figure S7. HMBC spectrum of Illiciumolide A (1) in  $CDCl_3$  (H $\rightarrow$ C).
- S8. Figure S8. NOESY spectrum of Illiciumolide A (1) in CDCl<sub>3</sub>.
- S9. Figure S9. High resolution ESI mass spectrum of Illiciumolide B (2).
- S10. Figure S10. IR spectrum of Illiciumolide B (2).
- S11. **Figure S11** <sup>1</sup>H NMR spectrum of Illiciumolide B (2) in CDCl<sub>3</sub>.
- S12. Figure S12. <sup>13</sup>C NMR spectrum of Illiciumolide B (2) in CDCl<sub>3</sub>.
- S13. Figure S13. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of Illiciumolide B (2) CDCl<sub>3</sub>.
- S14. Figure S14. HSQC spectrum of Illiciumolide B (2) in CDCl<sub>3</sub>.
- S15. Figure S15. HMBC spectrum of Illiciumolide B (2) in  $CDCl_3$  (H $\rightarrow$ C).
- S16. Figure S16. NOESY spectrum of Illiciumolide B (2) in CDCl<sub>3</sub>.

| User Spectra     Fragmentor Voltage   O   Ionization Mode     80   Collision Energy   Ionization Mode     40   457.3688     457.3688     (M+H)+     453.3027   (M+H)+     453.2642   1   16800   Counts vs. Mass-to-Charge (m/z)     774.2749   1   1   1   10061     274.2749   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 <th 1<="" colspan="2" th="" th<=""><th>Tergementor Voltage<br/>80   Collision Energy<br/>0   Ionization Mode<br/>Esl     x10<sup>4</sup>   +ESl Scan (0.092-0.157 min. 9 scams) Frage800 VD F-62-POS-1.4<br/>453.1687  </th><th></th><th>:35:36 PM</th><th>P1-F3<br/>10/16/2012 3:3<br/>ERROR.m</th><th>tion<br/>Name<br/>Jired Time<br/>Method</th><th>Posi<br/>User<br/>Acqu<br/>DA N</th><th>2-POS-1.0<br/>ole<br/>ument 1<br/><sup>-</sup>-POS-03.m<br/>ess</th><th>Samp<br/>Instru<br/>TEST</th><th>tatus</th><th>ne<br/>Name<br/>tion S</th><th>Data Filenan<br/>Sample Type<br/>Instrument I<br/>Acq Method<br/>IRM Calibrat<br/>Comment</th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <th>Tergementor Voltage<br/>80   Collision Energy<br/>0   Ionization Mode<br/>Esl     x10<sup>4</sup>   +ESl Scan (0.092-0.157 min. 9 scams) Frage800 VD F-62-POS-1.4<br/>453.1687  </th> <th></th> <th>:35:36 PM</th> <th>P1-F3<br/>10/16/2012 3:3<br/>ERROR.m</th> <th>tion<br/>Name<br/>Jired Time<br/>Method</th> <th>Posi<br/>User<br/>Acqu<br/>DA N</th> <th>2-POS-1.0<br/>ole<br/>ument 1<br/><sup>-</sup>-POS-03.m<br/>ess</th> <th>Samp<br/>Instru<br/>TEST</th> <th>tatus</th> <th>ne<br/>Name<br/>tion S</th> <th>Data Filenan<br/>Sample Type<br/>Instrument I<br/>Acq Method<br/>IRM Calibrat<br/>Comment</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | Tergementor Voltage<br>80   Collision Energy<br>0   Ionization Mode<br>Esl     x10 <sup>4</sup> +ESl Scan (0.092-0.157 min. 9 scams) Frage800 VD F-62-POS-1.4<br>453.1687 |       | :35:36 PM          | P1-F3<br>10/16/2012 3:3<br>ERROR.m | tion<br>Name<br>Jired Time<br>Method | Posi<br>User<br>Acqu<br>DA N | 2-POS-1.0<br>ole<br>ument 1<br><sup>-</sup> -POS-03.m<br>ess | Samp<br>Instru<br>TEST | tatus                   | ne<br>Name<br>tion S | Data Filenan<br>Sample Type<br>Instrument I<br>Acq Method<br>IRM Calibrat<br>Comment |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|------------------------------------|--------------------------------------|------------------------------|--------------------------------------------------------------|------------------------|-------------------------|----------------------|--------------------------------------------------------------------------------------|
| Fragmentor Voltage     Collision Energy     Diržation Mode       x10 4     -Esi Scan (0.092-0.157 min. 9 scans) Frag=80.0V DF-62-POS-1.d     4       4     453.3687     457.3688       4     457.3688     (M+H)+       4     457.3688     (M+H)+       4     457.3688     (M+H)+       4     453.3027     (M+H)+       4     453.3027     (M+H)+       4     453.3027     (M+H)+       4     453.456 458 450 452 454 456 458 450 470 472 474 476 478       266.2642 1     1 11680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pragmentor Voltage Collision Energy Joinzation Mode   0 Esi   x10 <sup>4</sup> +ESI Scan (0.092-0.157 min. 9 scans) Frage80.0V DF-62-POS-1.4 453.1687   4 453.1687 453.3027   4 454.444 445 445   4 457.3688   (M+H)* 475.3774   4 445.454   4 456.456   4 456.456   2 44   44 445   452.454 456   453.3027 (M+H)*   4 456.365   2 444   44 445   452 454   452 454   452.262 1   1680 1   256.2642 1   11680 1   274.2749 1   2061 1   274.2749 1   20637 1   453.1687 1   457.3688 1   1563 16563   145.2133 1   453.1687 1   457.3688 1   1563 156563   145.133 1   453.1687 1   1563 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              | tra                    | User Spect              |                      |                                                                                      |
| x10 4<br>+ESI SCan (0.092-0.157 min, 9 scme) Frag-80.0V DF-62-POS-1.d<br>453.1687<br>457.3688<br>(M+H)+<br>455.3774<br>(M+H)+<br>455.3774<br>(M+H)+<br>475.3774<br>(M+H)+<br>475.3774<br>(M+H)+<br>475.3774<br>(M+H)+<br>475.3774<br>(M+H)+<br>475.3774<br>(M+H)+<br>274.2749<br>284.2951 1 1680<br>274.2749 1 20861<br>284.2951 1 1680<br>288.2911 1 26833<br>437.1946 1 39742<br>437.1946 1 39742<br>437.1946 1 39742<br>455.3687<br>1 126633<br>1 126633<br>1 12177<br>477.3688 1 15863<br>C30 H49 O3<br>(M+H)+<br>92.0097 1 1 12109<br>Formula Calculator Element Limits<br>Element Min Max<br>C 0 0 100<br>H 0 367<br>O 0 0 25<br>N 0 0 0<br>Formula Calculator Results<br>Formula Calculator Results<br>Formula Calculator Results<br>Formula Calculator Area (Masson Calculator Chement Limits)<br>Element Min Max<br>C 0 0 100<br>H 0 367<br>O 0 0 25<br>N 0 0 0<br>Formula Calculator Results<br>Formula Calcul | #ESI Scan (0.092-0.157 min, 9 scans) Frag-80.0V DF-62-POS-1.d     433.1587     4457.3688     1   453.3027     4457.3688     (M+H)+     453.3027     4457.3688     (M+H)+     457.3688     1     42 444 446 448 450 452 454 456 456 456 456 456 457 0472 474 476 478     256.2642     1   11680     274.2749   1     288.2911   1     268.2051   1     415.2133   1     37.1946   1     1   126833     415.2133   1     453.1687   47103     453.1687   47103     453.1687   47103     453.1683   1     1   12107     457.3688   1     1   12107     457.3688   1     1   12077     453.1687   470 472     453.1687   470 478 03     1   12109     1   12007     1   1208     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                                                                                                                                                           |       | Mode               | Esi                                | 0                                    | Collisi                      | Itage                                                        | tor Vo<br>80           | Fragment                |                      |                                                                                      |
| $\begin{array}{c} 4\\ 3\\ 2\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4   457.3688     4   463.027   75.3774     4   444 446 448 450 452 454 456 456 466 468 450 452 474 476 478     Total tot                                                                                                                                                                    |   |                                                                                                                                                                           |       |                    |                                    | 30.0V DF-62-POS-1.d                  | scans) Frag=8<br>53.1687     | -0.157 min, 9<br>4                                           | n (0.092-              | x10 4 +ESI Scar         |                      |                                                                                      |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a   457.3688<br>(M+H)+     b   42.444.464.484.950.452.4354.456.9452.464.465.463.470.472.474.476.478.     Text List     T   T     25.2642   1   11680     254.2749   1   20861     284.2951   1   26833     415.2133   1   3901     415.2133   1   39742     415.2133   1   39742     453.1687   1   47103     454.1715   1   12089     454.1715   1   12170     457.3688   1   15863   201 H49 03     454.1715   1   12177     457.3687   1   15863   201 H49 03     92.0097   1   12109     Pormula Calculator Element Limits   T     Formula Calculator Results   T     Formula Scalculator Results   T     Total 450.301   Table 350.301   2.59(301 H49 03)   95.66     30.180.04   TRUE   456.3603   2.59(301 H49 03)   95.86     30.180.04   TRUE   474.37   474.3700   1.98(30 H51.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              |                        | 4-                      |                      |                                                                                      |
| 2   457.3888     447.3888   456.3027     462.444.446.448.450.452.456.456.456.456.466.468.470.472.474.476.478     Peak List     m/z   z     Abund   Formula     256.2642   1     1   1009     288.2911   1     288.2911   1     288.2911   1     1   26833     437.1946   1     1   39301     453.1687   1     1   12107     454.1715   1     1   12109     92.0097   1     1   12109     Formula Calculator Element Limits     Element   Min     Max   0     C   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 497.3888<br>10   475.3774<br>483.3027   475.3774<br>(M+H)+     422 444 46 448 450 452 454 456 458 do dé2 464 466 458 470 472 474 476 478 <b>Eak List</b> 1   11680     274.2749   1   20661     284.2951   1   14099     284.2911   2   26833     415.2133   1   39301     437.1946   1   39742     453.1687   1   47103     453.1687   1   47103     454.1715   1   12177     457.3688   1   15863   C30 H49 03     92.0097   1   12109     Formula Calculator Element Limits     Formula Calculator Results     Formula Calculator Results     Formula Calculator Hass   156.3615   456.3615   2.59   C30 H49 03   95.86     0   0   0   0   0   95.86   0   453.308   1.98   2.59   C30 H49 03   95.86     1   1568   156.3603   -2.59   C30 H49 03   95.86   0   456.3615   456.3603   -2.59   C30 H51 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              |                        | 3-                      |                      |                                                                                      |
| 43.3027   475.3774     442 444 445 448 450 452 454 456 458 460 452 454 466 468 470 472 474 476 478     Peak List     m/z   z     Abund   Formula   Ion     256.2642   1   11680     274.2749   1   20861     284.2951   1   14099     284.2951   1   2633     415.2133   1   39301     437.1946   1   39742     453.1687   1   47103     454.1715   1   12177     454.3715   1   12109     92.0097   1   12109     9   0   0     14   0   367     0   0   0     0   0   0     0   0   0     1   12177   474     453.1715   1   12109     Formula Calculator Element Limits   Element   Max     C   0   100     H   0   367     0   0   0     0 <td>1   475.374     42   444   465   450   452   456   450   452   454   466   458   470   475.374     Peak List     1   1   100   1   100   1   100   100     256.2642   1   1   1080   1   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100<!--</td--><td></td><td></td><td></td><td></td><td></td><td>.3688<br/>+H)+</td><td>457.<br/>(M+</td><td></td><td></td><td>2-</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   475.374     42   444   465   450   452   456   450   452   454   466   458   470   475.374     Peak List     1   1   100   1   100   1   100   100     256.2642   1   1   1080   1   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>.3688<br/>+H)+</td> <td>457.<br/>(M+</td> <td></td> <td></td> <td>2-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                                           |       |                    |                                    | .3688<br>+H)+                        | 457.<br>(M+                  |                                                              |                        | 2-                      |                      |                                                                                      |
| 1   42   446   446   445   454   456   456   456   456   457   474   476   478     Peak List     m/z   z   Abund   Formula   Ion     256.2642   1   11680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image: style  |   |                                                                                                                                                                           |       | 475.3774<br>(M+H)+ |                                    | 463 3027                             |                              |                                                              |                        | 1                       |                      |                                                                                      |
| Peak List     Ion       m/z     z     Abund     Formula     Ion       256.2642     1     11680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Peak List     Tormula     Ton       256.2642     1     1680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                                                                                                                                           | -     | 2 474 476 478      | 6 468 470 47                       | 458 460 462 464<br>Mass-to-Charge (m | 52 454 456                   | 448 450 4                                                    | 44 446                 | 0 442 44                |                      |                                                                                      |
| m/z     z     Normalization     Normalization       256.2642     1     11680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m/2     z     Abund     Pormula     Abund       256.2642     1     1680         274.2749     1     20861         284.2951     1     14099          288.2911     1     26833          415.2133     1     39301          437.1946     1     39742          453.1687     1     47103          454.1715     1     12177          457.3668     1     15863     C30 H49 03     (M+H)+       922.0097     1     12109         Formula Calculator Element Limits     Element     Mix     Max       C     0     100          H     0     367          O     0     0          Formula B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                                                                                                                                                                           |       |                    | Iton                               | s. mass-to-onarge (m                 | Counts vi                    | Abund                                                        | 1 -                    | Peak List               |                      |                                                                                      |
| Zurd Zr4p 1 Zu861   284.2951 1 14099   288.2911 1 26833   415.2133 1 39301   437.1946 1 39742   453.1687 1 47103   454.1715 1 12177   457.3688 1 15863   C 0 100   H 0 367   O 0   Pormula Calculator Results   Formula Rest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 274.274   1   20861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                                                                                                                                                                           |       |                    | 1011                               |                                      | Formula                      | 11680                                                        | 1                      | <i>m/z</i> 256.2642     |                      |                                                                                      |
| 284.2951   1   14099   Image: constraint of the second se                                                                                                                                                                                                                                                                        | 284.2951   1   14099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              | 20861                                                        | 1                      | 274.2749                |                      |                                                                                      |
| 288.2911   1   26833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 288.2911   1   26833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              | 14099                                                        | 1                      | 284.2951                |                      |                                                                                      |
| 415.2133   1   39301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 415.2133   1   39301     437.1946   1   39742     453.1687   1   47103     453.1687   1   47103     453.1687   1   47103     454.1715   1   12177     457.3688   1   15863   C30 H49 O3     Formula Calculator Element Limits   Element   Min     Element   Min   Max     C   0   100     H   0   367     O   0   25     N   0   0     Formula Best   Mass   Tgt Mass     Formula Best   Mass   Tgt Mass     C30 H48 03   TRUE   456.3615   456.3603   -2.59     C30 H50 O4   TRUE   474.37   474.3709   1.98   C30 H51 O4   69.43     End Of Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              | 26833                                                        | 1                      | 288.2911                |                      |                                                                                      |
| 437.1940 1 39742   453.1687 1 47103   453.1687 1 47103   453.1687 1 12177   457.3688 1 15863   1 12109 (M+H)+   922.0097 1 12109   Formula Calculator Element Limits   Element Min   Max 0   0 367   0 0   Formula Calculator Results   Formula Calculator Results   Formula Calculator X   Formula Calculator S   0 0   0 0   0 0   230 H48 03 TRUE   456.3615 456.3603   -2.59 C30 H49 03   95.86   C30 H50 04 TRUE   474.37 474.3709   1.98 C30 H51 04   69.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 137.13900   1   37.42     453.1687   1   47103     453.1687   1   12177     454.1715   1   12177     457.3688   1   15863   C30 H49 O3     457.3688   1   15863   C30 H49 O3     Formula Calculator Element Limits   Element   Min     Element   Min   Max     C   0   100     H   0   367     O   0   25     N   0   0     Formula Calculator Results   Formula Best   Mass     Formula   Best   Mass   Tgt Mass     C30 H48 O3   TRUE   456.3615   456.3603   -2.59     C30 H50 O4   TRUE   474.37   474.3709   1.98   C30 H51 O4   69.43     End Of Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              | 39301                                                        | 1                      | 415.2133                |                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 454.1715   1   12177   Image: constraint of the second sec                                                |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              | 47103                                                        | 1                      | 453.1687                |                      |                                                                                      |
| 457.3688 1 15863 C30 H49 O3 (M+H)+   922.0097 1 12109 Image: Constraint of the second secon                                                                                                                                                                                                                                                                                                                                        | 457.3688   1   15863   C30 H49 03   (M+H)+     922.0097   1   1   12109   Image: Constraint of the second seco                                                                                                                                               |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              | 12177                                                        | 1                      | 454.1715                |                      |                                                                                      |
| Visit     Visit <th< td=""><td>922.0097   1   1   12109     Formula Calculator Element Limits     Element   Min   Max     C   0   100     H   0   367     O   0   25     N   0   0     Formula Calculator Results   Formula Best   Mass     Formula   Best   Mass   Tgt Mass     C30 H48 03   TRUE   456.3615   456.3603   -2.59     C30 H50 O4   TRUE   474.37   474.3709   1.98   C30 H51 O4   69.43</td><td></td><td></td><td></td><td></td><td>(M+H)+</td><td>03</td><td>C30 H49 C</td><td>15863</td><td>1</td><td>457.3688</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 922.0097   1   1   12109     Formula Calculator Element Limits     Element   Min   Max     C   0   100     H   0   367     O   0   25     N   0   0     Formula Calculator Results   Formula Best   Mass     Formula   Best   Mass   Tgt Mass     C30 H48 03   TRUE   456.3615   456.3603   -2.59     C30 H50 O4   TRUE   474.37   474.3709   1.98   C30 H51 O4   69.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                                                                                                                                                           |       |                    | (M+H)+                             | 03                                   | C30 H49 C                    | 15863                                                        | 1                      | 457.3688                |                      |                                                                                      |
| Element     Min     Max       C     0     100       H     0     367       O     0     25       N     0     0       Formula Calculator Results     Formula Best     Mass       Formula 0     TRUE     456.3615     456.3603     -2.59     C30 H49 O3     95.86       C30 H50 O4     TRUE     474.37     474.3709     1.98     C30 H51 O4     69.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Element     Min     Max       C     0     100       H     0     367       O     0     25       N     0     0       Formula     Best     Mass       Tgt Mass     Diff (ppm)     Ion Species       Score     C30 H48 03     TRUE       C30 H50 O4     TRUE     474.37       474.3709     1.98     C30 H51 O4       G30 H50 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                                                                                                                                           |       |                    |                                    |                                      | nt Limits                    | or Eleme                                                     | culate                 | 922.0097<br>Formula Cal |                      |                                                                                      |
| C     0     100       H     0     367       O     0     25       N     0     0       Formula Calculator Results     Tgt Mass     Diff (ppm)     Ion Species     Score       C30 H48 03     TRUE     456.3615     456.3603     -2.59     C30 H49 03     95.86       C30 H50 04     TRUE     474.37     474.3709     1.98     C30 H51 04     69.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C     0     100       H     0     367       O     0     25       N     0     0       Formula Calculator Results     Tgt Mass     Diff (ppm)     Ion Species     Score       C30 H48 03     TRUE     456.3615     456.3603     -2.59     C30 H49 03     95.86       C30 H50 O4     TRUE     474.37     474.3709     1.98     C30 H51 O4     69.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                                                                                                                                                                           |       |                    |                                    |                                      | K                            | Max                                                          | Min                    | Element                 |                      |                                                                                      |
| O     0     25       N     0     0       Formula Calculator Results     Tgt Mass     Diff (ppm)     Ion Species     Score       C30 H48 03     TRUE     456.3615     456.3603     -2.59     C30 H49 O3     95.86       C30 H50 O4     TRUE     474.37     474.3709     1.98     C30 H51 O4     69.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Image: Normal and State S |   |                                                                                                                                                                           |       |                    |                                    |                                      | 67                           | 0 3                                                          | -                      | н                       |                      |                                                                                      |
| N     0     0       Formula Calculator Results     Tgt Mass     Tgt Mass     Score       G30 H48 03     TRUE     456.3615     456.3603     -2.59     C30 H49 O3     95.86       C30 H50 O4     TRUE     474.37     474.3709     1.98     C30 H51 O4     69.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N     0     0       Formula Calculator Results       Formula     Best     Mass     Tgt Mass     Diff (ppm)     Ion Species     Score       C30 H48 O3     TRUE     456.3615     456.3603     -2.59     C30 H49 O3     95.86       C30 H50 O4     TRUE     474.37     474.3709     1.98     C30 H51 O4     69.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                                                                                           |       |                    |                                    |                                      | 25                           | 0                                                            |                        | 0                       |                      |                                                                                      |
| Formula     Best     Mass     Tgt Mass     Diff (ppm)     Ion Species     Score       C30 H48 03     TRUE     456.3615     456.3603     -2.59     C30 H49 03     95.86       C30 H50 04     TRUE     474.37     474.3709     1.98     C30 H51 04     69.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Formula     Best     Mass     Tgt Mass     Diff (ppm)     Ion Species     Score       C30 H48 03     TRUE     456.3615     456.3603     -2.59     C30 H49 03     95.86       C30 H50 04     TRUE     474.37     474.3709     1.98     C30 H51 04     69.43       End Of Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                                                                                                                                                           |       |                    |                                    |                                      | 0                            | 0                                                            |                        | N<br>Farmula Cal        |                      |                                                                                      |
| C30     H48     O3     TRUE     456.3615     456.3603     -2.59     C30     H49     O3     95.86       C30     H50     O4     TRUE     474.37     474.3709     1.98     C30     H51     O4     69.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C30 H48 O3     TRUE     456.3615     456.3603     -2.59     C30 H49 O3     95.86       C30 H50 O4     TRUE     474.37     474.3709     1.98     C30 H51 O4     69.43       End Of Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ]                                                                                                                                                                         | Score | Ion Species        | ff (ppm)                           | Tgt Mass                             | s<br>ss                      | t Mas                                                        | Bes                    | Formula                 |                      |                                                                                      |
| C30 H50 O4 TRUE 474.37 4/4.3709 1.98 C30 H51 O4 69.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C30 H50 O4   TRUE   474.37 474.3709 1.98 C30 H51 O4   69.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 2                                                                                                                                                                         | 95.86 | C30 H49 O3         | -2.59                              | 456.3603                             | 456.3615                     | UE                                                           | TR                     | C30 H48 O3              |                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | End Of Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | <u>1</u>                                                                                                                                                                  | 69.43 | C30 H51 04         | 1.98                               | 474.3709                             | 474.37                       | RUE                                                          | TR                     | C30 H50 O4              |                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              |                        |                         |                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              |                        |                         |                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              |                        |                         |                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              |                        |                         |                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              |                        |                         |                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              |                        |                         |                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              |                        |                         |                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              |                        |                         |                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              |                        |                         |                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              |                        |                         |                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                                                                                           |       |                    |                                    |                                      |                              |                                                              |                        |                         |                      |                                                                                      |

Figure S1. High resolution ESI mass spectrum of Illiciumolide A (1).



Figure S2. IR spectrum of Illiciumolide A (1).



Figure S3. <sup>1</sup>H NMR spectrum of Illiciumolide A (1) in CDCl<sub>3</sub>.



Figure S4. <sup>13</sup>C NMR spectrum of Illiciumolide A (1) in CDCl<sub>3</sub>.



Figure S5. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of Illiciumolide A (1) CDCl<sub>3</sub>.



Figure S6. HSQC spectrum of Illiciumolide A (1) in CDCl<sub>3</sub>.



**Figure S7**. HMBC spectrum of Illiciumolide A (1) in  $\text{CDCl}_3$  (H $\rightarrow$ C).



Figure S8. NOESY spectrum of Illiciumolide A (1) in CDCl<sub>3</sub>.



Figure S9. High resolution ESI mass spectrum of Illiciumolide B (2).

| Agilent Technologi          |  |   |  |  | <br>End Of Report | C30 H50 O4 TRUE<br>C30 H48 O3 TRUE     | Formula Calculator R<br>Formula Best |                    |
|-----------------------------|--|---|--|--|-------------------|----------------------------------------|--------------------------------------|--------------------|
| Ū.                          |  |   |  |  |                   | 474.3691 474.3709<br>456.3613 456.3603 | esults<br>Mass Tgt Mass Diff (p      |                    |
|                             |  |   |  |  | •                 | 3.87 C30 H51 O4<br>-2 C30 H49 O3       | opm) Ion Species                     | Qualita            |
| Page 2 of 2                 |  | x |  |  |                   | 96.06                                  | Score                                | ative Analysis Kep |
|                             |  |   |  |  |                   |                                        |                                      | ort                |
| Printed at: 10:00 AM on: 10 |  |   |  |  |                   |                                        |                                      | *                  |



Figure S10. IR spectrum of Illiciumolide B (2).



Figure S11 <sup>1</sup>H NMR spectrum of Illiciumolide B (2) in CDCl<sub>3</sub>.



Figure S12. <sup>13</sup>C NMR spectrum of Illiciumolide B (2) in CDCl<sub>3</sub>.



Figure S13. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of Illiciumolide B (2) CDCl<sub>3</sub>.



Figure S14. HSQC spectrum of Illiciumolide B (2) in CDCl<sub>3</sub>.



**Figure S15**. HMBC spectrum of Illiciumolide B (2) in  $CDCl_3$  (H $\rightarrow$ C).



Figure S16. NOESY spectrum of Illiciumolide B (2) in CDCl<sub>3</sub>.