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Duguetia furfuracea is frequently used as amedicinal plant in Brazil. However, studies have evidenced its cytotoxic, bactericide, and
antitumor activities. In the present studywe aimed to evaluate the potential toxicity of hydroalcoholic leaves extracts ofD. furfuracea
(HEDF) in a Drosophila melanogaster model. Toxicity was assessed as changes in locomotor performance, mitochondrial activity,
oxidative stress,MAPKs phosphorylation, and apoptosis induction after exposure toHEDF concentrations (1–50mg/mL) for 7 days.
The phytoconstituents of the plant were screened for the presence of alkaloids, tannins, xanthones, chalcones, flavonoids, aurones,
and phenolic acids. Exposure of adult flies to HEDF caused mitochondrial dysfunction, overproduction of ROS, and alterations in
the activity of detoxifying enzymes GST, SOD and CAT. Induction of ERK phosphorylation and PARP cleavage was also observed,
indicating occurrence of HEDF-induced cell stress and apoptotic cell death. In parallel, alterations in cholinesterase activity and
impairments in negative geotaxis behavior were observed. Our study draws attention to the indiscriminate use of this plant by
population and suggests oxidative stress as a major mechanism underlying its toxicity.

1. Introduction

Theuse of plant extracts in the treatment and/or prevention of
various diseases including cancer and cardiovascular diseases
is recognized since ancient time, and some of these plants
have led to the development of an impressive number of new
drugs [1, 2]. The growing use of plant extracts instead of
synthetic compounds is primary because they are generally

regarded as safe, easily accessible, affordable, and culturally
acceptable form of health care trusted by large number of
people [3–6]. Despite the beneficial effects of plant extracts,
there are substantial evidences suggesting they can cause
cytotoxicity [7, 8].Therefore, evaluation of the toxic effects of
plant extracts used in folk medicine seems to be imperative
since they are generally consumed by population without
concerns on their toxicity [9].
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Oxidative stress, caused by overproduction of free rad-
icals and/or alterations in antioxidant defense systems, is
implicated as a mechanism of toxicity of many synthetic and
natural compounds [10].The antioxidant cellular defense sys-
tem including enzymatic (glutathione-S-transferase (GST),
catalase (CAT), and superoxide dismutase (SOD)) and
nonenzymatic (glutathione (GSH), ascorbic acid (vitamin
C), 𝛼-tocopherol (vitamin E), and 𝛽-carotene (vitamin A))
antioxidants act on reactive oxygen species (ROS) resulting
from physiological or pathological processes [11]. Environ-
mental stressors, toxic agents, and natural compounds as
flavonoids [12–14] are reported to modulate the phosphory-
lation of mitogen activated protein kinases family (MAPKs),
represented by ERK, c-Jun NH

2
-terminal kinase (JNK), and

p38MAPK kinases, which participate in signaling pathways
that are responsible for many cellular functions, such as
growth, differentiation, and apoptosis.

Duguetia furfuracea, belonging to theAnnonaceae family,
is a perennial and shrubby species found in the Central
West, Southeast, and Northeast regions of Brazil [15, 16]. It
is popularly known as “Araticum-Miúdo,” “Araticum-seco,”
and “Ata brava” and is used in Brazilian folk medicine as an
antihyperlipidemic and anorectic agent [17]. Accordingly, D.
furfuracea has also been reported in the treatment of rheuma-
tism and renal colic [18], as an antiparasitary agent. The
powder of its seeds is used in the treatment of pediculosis [19].
D. furfuracea has shown to exhibit larvicidal activity against
Aedes aegypti [20], and isolated alkaloids from the stem
bark of the plant have been reported to exhibit antitumoral,
trypanocidal and leishmanicidal activities [21]. Although D.
furfuracea have been used by population due its therapeutic
properties, recently, attention has been paid regarding the
toxicity of this plant species.The aqueous extract of the leaves
of D. furfuracea presented toxic effect in pregnant rats [22].
Studies have demonstrated cytotoxic effects of the leaves of
D. furfuracea in bacteria and animal models [23, 24].

Phytochemical analysis of essential oil from leaves of
D. furfuracea revealed the presence of sesquiterpenoids
[25] and the bark of the underground stem revealed the
presence of the alkaloid, (-)-duguetine 𝛽-N-oxide [26]; in
addition, flavonoids and several alkaloids [16] have been also
described for aerial parts of Duguetia furfuracea. Previous
studies demonstrated the at least five alkaloids isolated
from this plant have cytotoxic, antitumoral, trypanocidal,
and leishmanicidal activities [21], while sesquiterpenes are
potential anticancer agents [27]. Flavonoids are recognized
by their beneficial and prooxidative effects, depending on
the concentration and frequency of exposure, presenting
properties such as anti-inflammatory, diuretic, antimicrobial,
antiviral, antioxidant, and proapoptotic [12].

In the present study, we investigated the potential toxicity
of a hydroalcoholic extract from leaves of D. furfuracea
(HEDF) in a fruit fly D. melanogaster model. The advantage
of using this model is based on the fact that it raises few
ethical concerns and has served as a unique and powerful
model to study human genetics, diseases and for screening
synthetic and natural compounds [28, 29]. Particularly, we
investigated the behavioral (negative geotaxis assay and

acetylcholinesterase activity) and biochemical markers of
oxidative stress and apoptotic cell death (ROS generation, cell
viability, antioxidant enzymes, p38MAPK and ERK phospho-
rylation, and PARP cleavage) following exposure of flies to
HEDF up to seven days. In addition, the identification and
quantification of phenolic compounds present in HEDFwere
carried out by HPLC.

2. Materials and Methods

2.1. Materials. Reduced glutathione (GSH), tetramethyleth-
ylenediamine (TEMED), sodiumorthovanadate (Na

3
VO
4
),

Quercetin (Q4951), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphen-
yltetrazolium bromide (MTT), Secondary antibodies
(anti-rabbit IgG) horse radish peroxidase (HRP) conjugat-
ed, 5,5-dithiobis (2-nitrobenzoic acid) DTNB (D8130), acet-
ylthiocholine iodide (A5751), 1-Chloro, 2,4-dinitrobenzene
(CDNB) (237329), and 2󸀠,7󸀠-dichlorofluorescein diacetate
(DCFH-DA) (35845) were obtained from Sigma-Aldrich
(St. Louis, MO). The anti-phospho-p38 (Thr180/Tyr182),
total anti-p38, anti-phospho ERK1/2 (Thr202/Tyr204), and
anti-total-ERK1/2 antibodies and b-actin were purchased
from Cell Signaling (Beverly, MA, USA). Poly (ADP) ribose
polymerase (PARP) antibody was obtained from Santa
Cruz Biotechnology (Santa Cruz, CA). SDS acrylamide,
bis-acrylamide chloride, hybond nitrocellulose, and dithio-
threitol (DTT) were obtained from GE Healthcare Life
Division. Acetonitrile and formic, gallic, chlorogenic, ellagic,
and caffeic acids were purchased from Merck (Darmstadt,
Germany). Catechin, quercetin, quercitrin, isoquercitrin,
rutin, and kaempferol were purchased from Sigma Chemical
Co. (St. Louis, MO, USA). High performance liquid
chromatography (HPLC-DAD) was performed using HPLC
system (Shimadzu, Kyoto, Japan) prominence autosampler
(SIL-20A) equippedwith plunger pumps LC-20AT Shimadzu
DGU connected to the integrator with 20A5 Degasser CBM
20A UV-VIS detector DAD (diode) and SPD-M20A LC 1.22
SP1 software solution. All other chemicals were of analytical
grade.

2.2. Plant Material. Leaves of D. furfuracea were col-
lected from Barreiro Grande, Crato-Ceará (7∘22󸀠2.8󸀠󸀠S,
39∘28󸀠42.4󸀠󸀠W and altitude of 892m above sea level), Brazil,
in September 2011, and identified by Dr. Maria Arlene Pessoa
da Silva. A voucher specimen (n. 6703) was deposited in the
Herbarium Caririense Dárdano de Andrade Lima (HCDAL)
of the Regional University of Cariri (URCA).

2.3. Preparation of Crude Ethanolic Extract. Fresh leaves
(1,050 g) of D. furfuracea were washed with water, then
crushed, and macerated with 99.8% of ethanol and water
(1 : 1, v/v) for three days. The suspension was filtered, and the
solvent evaporated under reduced pressure and lyophilized to
obtain 261.13 g of crude ethanolic extract. The dried extract
was then kept frozen prior to use.

2.4. Preliminary Phytochemical Analysis. Classes of sec-
ondarymetabolites were screened for the presence or absence
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of alkaloids, tannins, xanthones, chalcones, flavonoids, and
aurones in HEDF, using the methods previously described
by Matos [30]. This is a qualitative test based on visual
observation of change in coloration or precipitate formation
in addition to specific reagents.

2.5. Identification and Quantitation of Phenolic Compounds
of HEDF by HPLC. Reverse phase chromatographic analyses
were carried out under gradient conditions using C

18
column

(4.6mm × 250mm) packed with 5𝜇m diameter particles.
The mobile phase was water containing 1% formic acid (A)
and acetonitrile (B), and the composition gradient was 13%
of B until 10min and changed to obtain 20%, 30%, 50%,
60%, 70%, 20%, and 10% B at 20, 30, 40, 50, 60, 70, and
80min, respectively [31] with slight modifications. HEDF
was analyzed at a concentration of 5mg/mL. The presence
of ten antioxidants compounds, namely, gallic, chlorogenic,
ellagic, and caffeic acids, catechin, quercetin, quercitrin, iso-
quercitrin, rutin, and kaempferol were investigated.The iden-
tification of these compounds was performed by comparing
their retention time and UV absorption spectrum with those
of the commercial standards. The flow rate was 0.7mL/min,
injection volume 40 𝜇L and the wavelength 254 nm for gallic
acid, 280 nm for catechin, 325 nm for caffeic, ellagic, and
chlorogenic acids, and 365 nm for quercetin, isoquercitrin,
quercitrin, rutin, and kaempferol. All the samples andmobile
phase were filtered through 0.45 𝜇m membrane filter (Milli-
pore) and then degassed by ultrasonic bath prior to use. Stock
solutions of standards references were prepared in the HPLC
mobile phase at a concentration range of 0.030–0.250mg/mL
for kaempferol, quercetin, quercitrin, isoquercitrin, catechin,
and rutin and 0.030–0.250mg/mL for gallic, caffeic, ellagic,
and chlorogenic acids. All chromatography operations were
carried out at ambient temperature and in triplicate.The limit
of detection (LOD) and limit of quantification (LOQ) were
calculated based on the standard deviations of the responses
and the slopes using three independent analytical curves, as
defined by [32]. LOD and LOQ were calculated as 3.3 and
10𝜎/S, respectively, where 𝜎 is the standard deviation of the
response and S is the slope of the calibration curve.

2.6. Drosophila melanogaster Stock and Media. Drosophila
melanogaster (Harwich strain) was obtained from the
National Species Stock Center, Bowling Green, OH, USA.
The flies were maintained at 25 ± 1∘C and 60–70% relative
humidity.The diet was composed of 6mL of cereal flour, corn
flour, water, and antifungal agent (Nipagin) as previously
described [14].

2.7. Experimental Procedure—Flies Exposed to HEDF

2.7.1. Mortality. In order to determine the doses and the
duration of exposure, 45 adults flies of both genders (1-
to 5-day-old) per vial were exposed for 7 days to vari-
ous concentrations of HEDF (0, 1, 2, 10, 20, 50, 100, and
200mg/mL)mixed to the diet. Each concentration contained
three replicates. The number of dead and alive flies was
recorded daily for 7 days. Based on these preliminary data,

the concentrations range of 0, 1, 10, and 50mg/mL of HEDF
were chosen with 7-day-exposure.

2.7.2. Negative Geotaxis Test. Locomotor activity of flies
was determined based on negative geotaxis behavior assay
as previously described [33] with some modifications. The
flies were exposed to HEDF as described above. Following
exposure, 10 flies (both genders) were sorted under a brief ice
anesthesia and transferred in labeled vertical glass columns
tube (15 cm length and 1.5 cm in diameter). After 30min of
recovery from ice, flies were gently tapped to the bottom
of the tube, and the number of flies that climbed up to
6 cm mark of the column (i.e., the top) in 5 sec as well as
those that remained below the mark was counted separately.
The procedure was repeated five times per group at 1min
intervals.

2.7.3. Mitochondrial Activity-MTT Reduction Assay. Cell
viability was determined by the mitochondrial dehydro-
genase activity using the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT). After exposure, the
viability of HEDF-treated and nontreated flies was evaluated
in the whole body of flies according to the method described
by Sudati et al. [34]. For this set of experiment, three whole
flies of similar size were used per well. The absorbance was
measured at 540 nm in a microplate reader (2,300 Enspire
Multilabel Plate Reader, 2009), and the results were expressed
as mean of absorbance of three determinations performed in
triplicate.

2.7.4. Measurement of ROS Production. ROS generation was
measured as a general index of oxidative stress using the
2󸀠,7󸀠-dichlorofluorescein diacetate (DCHF-DA), a nonpolar
compound, which after conversion to a polar derivative by
intracellular esterase activity rapidly reacts with ROS to
form the highly fluorescent compound dichlorofluorescein
(DCF) [35, 36]. Briefly, after exposure of flies to HEDF (0–
50mg/mL), the whole body of 20 flies was homogenated in
1mL of 20mM Tris buffer (pH 7.0) and then centrifuged
at 1.000 rpm for 10min at 4∘C. An aliquot of 20𝜇L of the
supernatant was incubated with 6 𝜇L of 10mM DCFH-DA
for 60min. The formation of the fluorescent product DCF
was measured using a microplate reader (2300 Multilabel
Plate reader Enspire, 2009) at 488 and 525 nm, excitation
and emission wavelengths, respectively. The results were
expressed in arbitrary units as themean of DCF fluorescence.

(1) Estimation of Protein Thiol (PSH) and Nonprotein Thiol
(NPSH). Protein thiols (PSH) and nonprotein (NPSH) were
measured as previously described [37]. For thiols estimation,
20 flies were homogenated in 300 𝜇L of percholic acid (PCA;
0.5M) and centrifuged at 10.000×g for 5min at 4∘C. The
supernatant was used to measure NPSH and the pellet was
resuspended in 200 𝜇L of Tris/HCl 0.5M, pH 8.0, to measure
PSH.

(2) Activity of Selected Enzymes (AChE, CAT, GST, and SOD).
To determine acetylcholinesterase (AchE), catalase (CAT),
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glutathione-S-transferase (GST), and superoxide dismutase
(SOD) activities, flies homogenates were centrifuged at
1.000×g for 5min at 4∘C, and an aliquot of the supernatant
(S1) was used for measurement of AchE [38], while the (S1)
was centrifuged again at 14.000×g for 30min at 4∘C, for the
measurement CAT [35], GST [36] and SOD [39].

2.7.5. Western Blotting. Western blotting methodology was
performed according to the method described [14]. Forty
flies from HEDF-treated and untreated were homogenized
at 4∘C in 200𝜇L of buffer (pH 7.0) containing 50mM Tris,
1mMEDTA, 0.1mMphenyl methyl sulfonyl fluoride, 20mM
Na
3
VO
4
, 100mMsodiumfluoride, and phosphatase inhibitor

cocktail. The homogenates were centrifuged at 1.000×g for
10min at 4∘C and the supernatants (S1) were collected. After
determination of the protein [40], 10% DTT was added
to the samples. Then, the samples were frozen at −20∘C
for later determination of total and phosphorylated forms
of ERK 1/2 and phosphorylated form of p38MAPK using
specific antibodies. The immunoblots were visualized and
quantified on the 400MM Pro Bruker imaging system using
ECL detection reagents. The density of the bands was mea-
sured and expressed as percent of increase over the control
(nontreated flies). 𝛽-actin, total p38MAPK and total ERK were
used as loading controls for Western blotting experiments.
Protein levels were quantified using bovine serum albumin
as standard.

2.8. Statistical Analysis. Theresults are shown asmean± SEM
(standard error of mean) of three independent experiments
performed in duplicate. Statistical significance was measured
by one-way analysis of variance (ANOVA), followed by
Dunnett’s or Tukey’s posttest when appropriated. Differences
between groups were considered to be significant when 𝑃 <
0.05.

3. Results

3.1. Phytochemical Screening of HEDF. The presence of alka-
loids, tannins, flavones, flavonols, chantonas, chauconas, and
auronas was identified in HEDF (data not shown).

3.2. Identification and Quantification of Phenolic Compounds
of HEDF by HPLC. HPLC fingerprinting of HEDF revealed
the presence of the gallic acid (𝑡

𝑅
= 9.95min; peak 1),

catechin (𝑡
𝑅
= 16.08min; peak 2); chlorogenic acid (𝑡

𝑅
=

20.14min; peak 3), caffeic acid (𝑡
𝑅
= 24.63min; peak

4), ellagic acid (𝑡
𝑅
= 37.29min; peak 5), rutin (𝑡

𝑅
=

39.87min; peak 6), isoquercitrin (𝑡
𝑅
= 44.93min; peak

7), quercitrin (𝑡
𝑅
= 48.15min; peak 8), quercetin (𝑡

𝑅
=

51.07min; peak 9), and kaempferol (𝑡
𝑅
= 61.56min; peak

10). They were identified by comparisons with the retention
times and UV spectra of the standards analyzed under the
same analytical conditions (Figure 1). Caffeic acid (33.17 ±
0.03mg/g), rutin (20.05 ± 0.01mg/g), quercitrin (19.07 ±
0.02mg/mL), and isoquercitrin (18.61 ± 0.01mg/mL) were
the major components present in HEDF, while kaempferol
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Figure 1: High performance liquid chromatography profile of
HEDF, detection UV, was at 325 nm. Gallic acid (peak 1), catechin
(peak 2), chlorogenic acid (peak 3), caffeic acid (peak 4), ellagic
acid (peak 5), rutin (peak 6), isoquercitrin (peak 7), quercitrin (peak
8), quercetin (peak 9), and kaempferol (peak 10). Calibration curve
for gallic acid: Y = 14286x + 1395.8 (𝑟 = 0.9996); catechin: Y =
15097x + 1189.3 (𝑟 = 0.9997); caffeic acid: Y = 12758x + 1259.7
(𝑟 = 0.9996); chlorogenic acid: Y = 13461x + 1275.3 (𝑟 = 0.9992);
ellagic acid: Y = 13576x + 1346.4 (𝑟 = 0.9999); rutin: Y = 12845 +
1305.7 (𝑟 = 0.9999); quercetin: Y = 13560x + 1192.6 (𝑟 = 0.9991),
isoquercitrin: Y = 12873x + 1325.6 (𝑟 = 0.9998); quercitrin: Y =
11870x + 1329.8 (𝑟 = 0.9993); and kaempferol: Y = 14253x + 1238.9
(𝑟 = 0.9997).

Table 1: Quantification of phenolic compounds from the HEDF.

Compounds HEDF LOD LOQ
mg/g % 𝜇g/mL 𝜇g/mL

Gallic acid 5.29 ± 0.01
a 0.52 0.015 0.049

Catechin 5.31 ± 0.01
a 0.53 0.032 0.105

Chlorogenic acid 16.03 ± 0.02b 1.60 0.009 0.029
Caffeic acid 33.17 ± 0.03

c 3.31 0.024 0.078
Ellagic acid 7.30 ± 0.01

d 0.73 0.013 0.042
Rutin 20.05 ± 0.01

e 2.00 0.027 0.090
Isoquercitrin 18.61 ± 0.01

f 1.86 0.008 0.026
Quercitrin 19.07 ± 0.02

ef 1.80 0.035 0.114
Quercetin 5.87 ± 0.01

a 0.58 0.019 0.063
Kaempferol 5.36 ± 0.01

a 0.53 0.026 0.085
Results are expressed asmean± standard deviations (SD) of three determina-
tions. Averages followed by different letters differ by Tukey’s test at𝑃 < 0.001.

(5.36 ± 0.01mg/mL), catechin (5.31 ± 0.01mg/mL) and gallic
acid (5.29 ± 0.01mg/mL) were less abundant (Table 1).

3.3. Effects of HEDF Exposure on Survival of Flies. Our
preliminary results showed that exposure of flies to HEDF
(0–200mg/mL) caused 78% (𝑃 < 0.05) mortality at con-
centration of 50mg/mL after 7 days of exposure, while 100
and 200mg/mL of HEDF caused 100% mortality (Figure 2).
Considering the high toxicity of the higher concentrations
of the extract, we decided to use the concentrations of 1, 10,
and 50mg/mL of HEDF for the evaluation of biochemical
analyses.
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Figure 2: Mortality curve of HEDF (0–200mg/mL) exposed flies.
The number of live and dead flies was counted daily for seven days.
The data represent the mean ± SEM of three separate experiments
and are expressed number of dead flies in relation to total number of
flies. Doses of 100 and 200mg/mL were significant when compared
to control group ∗𝑃 < 0.05.

3.3.1. HEDF Exposure Induced Locomotor Deficits in D. mela-
nogaster. Exposure of flies to 1 and 10mg/mL of HEDF
for 7 days did not change the locomotion activity of flies
when compared to control (Figure 3, 𝑃 > 0.05). However,
flies treated with 50mg/mL of HEDF remained mostly at
the bottom of the column when compared to the control
group (Figure 3) indicating locomotor deficit. In parallel to
behavioral parameter, the activity of AchE was evaluated
since acetylcholine is themain excitatory neurotransmitter of
the insect central nervous system [41]. As shown in Figure 4,
the activity of AchE was significantly elevated (𝑃 < 0.001) in
flies exposed to 1 and 10mg/mL of HEDF, when compared
to control flies. In contrast, 50mg/mL of HEDF caused a
significant inhibition of AchE activity when compared to
control flies (Figure 4, 𝑃 < 0.05).

3.3.2. Mitochondrial Activity of HEDF Exposed Flies. The
metabolic viability of cells was evaluated by assessing the
MTT reducing capacity of flies’ homogenates. HEDF expo-
sure caused a significant decrease in MTT reduction at con-
centrations of 10 and 50mg/mL when compared to control
flies (Figure 5) (𝑃 < 0.05).

3.3.3. Oxidative Stress Analysis. As depicted in Figure 6,
HEDF (50mg/mL) caused significant increase of DCF flu-
orescence in the homogenates of flies when compared to
control (𝑃 < 0.01). Our results also revealed that only the
highest concentration of HEDF (50mg/mL) exposed flies
caused a significant decrease in the levels of nonprotein
thiols (NPSH) (Figure 7, 𝑃 < 0.05). However, no changes
in the levels of protein thiols (PSH) were observed in HEDF
exposed flies when compared to control (Figure 7).
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represents the mean ± SEM of the number of flies that were in the
top and bottom. Exposure of flies to 50mg/mL of HEDF caused
significant deficit in locomotive performance when compared to
control group (∗∗∗𝑃 < 0.0001).

∗∗∗

0 1 10 50
0

50

100

150

200

HEDF (mg/mL)

∗∗∗

Ac
hE

 ac
tiv

ity
 (m

U
/m

g 
pr

ot
ei

n)

Figure 4: Effect of HEDF exposed flies on the activity of AchE.
HEDF (1 and 10mg/mL) induced alteration in the activity of AchE
in HEDF-treated flies after 7 days of exposure. The data represent
the mean ± SEM of three replicates performed in duplicate. ∗∗∗𝑃 <
0.001 and ∗𝑃 < 0.05 indicate significant difference when compared
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Considering that oxidative stress was induced by expo-
sure of flies toHEDF (evidenced by increasedROS generation
and decreasedNPSH levels), wemeasured the activity ofGST,
SOD, and CAT, which are antioxidant enzymes involved in
the cell adaptive response to oxidative stress. HEDF induced
a marked increase in the activities of GST (Figure 8(a)), SOD
(Figure 8(b)) and CAT (Figure 8(c)) at concentrations of 1
and 10mg/mL when compared to their respective control
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50mg/mL) flies for seven days. ROS production is represented by
the intensity of fluorescence emitted by the DCF and represents
the mean ± SEM of three independent experiments, performed in
triplicate (𝑛 = 3). ∗∗𝑃 < 0.01 compared to the control group
(untreated flies).

(𝑃 < 0.001). However, at the highest concentration tested
(50mg/mL), there was a substantial decrease in GST activity
(Figure 8(a),𝑃 < 0.05), while CAT and SOD activities did not
change (Figures 8(b) and 8(c)).

3.3.4. Phosphorylation of MAPKs and PARP Cleavage. The
phosphorylation of MAPK family components was assayed
after 7 day-exposure of D. melanogaster to HEDF. Phospho-
rylation of ERK2 was significantly increased in flies treated
with 10mg/mL of HEDF, while p38MAPK was not modified
at all the concentrations tested when compared to untreated
flies (Figures 9(b) and 9(c)). Exposure to all concentrations
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Figure 7: Levels of protein (PSH) and nonprotein thiol (NPSH) in
homogenates of flies exposed to different concentrations of HEDF
(1, 10 and 50mg/mL) for 7 days. There was a significant decrease
in PSH levels at dose of 50mg/mL of HEDF. PSH or NPSH levels
are represented in 𝜇Mol/g of flies. ∗∗𝑃 < 0.01 versus untreated
flies. Data are expressed as mean ± SEM of 𝑛 = 4 independent
experiments, performed in triplicate.

of extract caused PARP cleavage (Figure 9(a)), indicating the
occurrence of apoptotic cell death.

4. Discussion

Although the use of plant extracts has been reported to exert a
variety of pharmacological actions by different mechanisms,
there is evidence that some of them can cause toxicity [42, 43].
Therefore, it is imperative to explore the toxicity potential
of plant extracts popularly used in folk medicine. In the
present study, we investigated the potential toxicity of the
hydroalcoholic extract of the leaves of D. furfuracea (HEDF)
in aDrosophila melanogastermodel and identified some phy-
tochemicals of the plant extract. Our results demonstrated
that 7 days of exposure of D. melanogaster to HEDF caused
toxicity in a process involving oxidative stress, alterations in
the antioxidant enzymes, MAPK proteins phosphorylation,
and apoptotic cell death.

The flies exposed to HEDF showed a significant decrease
in the MTT reduction, indicating that viability of flies’ cells
was compromised. In the same line, flies that were exposed
to HEDF revealed a significant increase in ROS production at
concentration of 50mg/mL, whereas lower concentrations of
HEDF (1 and 10mg/mL) seemed to stimulate ROS generation
in minor extent and improve antioxidant enzymes activities.
In parallel, PARP cleavage, a general index of apoptotic
cell death, was observed at all concentrations analyzed. The
observed increase of antioxidant enzymes could represent an
adaptive cellular response, in counteracting HEDF toxicity.
This apparent adaptive response was possibly induced by the
mild increase of ROS at the lower concentrations of HEDF,
leading to an increase of GST, SOD, and CAT activities in
the flies, thus improving its antioxidant capacity. The highest
level of ROS generation in the homogenates of flies exposed to
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Figure 8: Analysis of antioxidant enzymes activities after 7 days exposure of flies to various concentrations of HEDF (1–50mg/mL). (a) GST,
(b) SOD, and (c) CAT activities are expressed as mU/mg of protein. The data represent the mean ± SEM of three independent replicates
performed in duplicates. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001 versus control flies (untreated).

50mg/mL may be at least, in part, responsible for the deple-
tion of GST and CAT activities, decrease in mitochondrial
activity, as well as NPSH oxidation. In fact, oxidative stress
results from an unbalance between the production of reactive
species and the capacity of cellular antioxidant defense to
neutralize those species. When this capacity is overwhelmed,
it leads to a diversity of cellular damages [44]. A significant
reduction of NPSH (i.e., GSH) levels was identified in flies
exposed to the 50mg/mL of HEDF. It is well described that
low levels of cellularGSH results froman increase in oxidative
stress associated with toxic agents (ROS inducers) [45, 46]. It
is interesting to note that GST, SOD, and CAT activities were
increased in the flies that were exposed to the lower doses of
HEDF (1 and 10mg/mL). Low to moderate level of oxidative
stress has been associated with increased antioxidant defense
system [46]. In previous studies, flies exposed to rotenone
presented a significant elevation of antioxidant enzymes, and
this effect was related to the increased ROS generation and
formation of toxic aldehydes [47]. Excessive ROS generation
can cause lipid peroxidation, mitochondrial dysfunction, and

damage to proteins, lipids, and nucleic acids, thereby, altering
the normal function of the cells [48].

The activity of acetylcholinesterase (AChE) was increased
in the flies exposed to 1 and 10mg/mL of HEDF and was
inhibited at 50mg/mL. In fact, acetylcholine (Ach) plays
several functions in the nervous system, acting in cognitive
process, motivation and reward, stimuli processing, and
the sleep cycle. The inhibition of AChE compromises the
hydrolysis of the neurotransmitter ACh, leading to the accu-
mulation of this neurotransmitter in the synapses [49, 50].
Many studies with toxic agents, such as rotenone, paraquat,
and organophosphorus, revealed that these agents can lead
to the inhibition of AchE, generating the loss of the cholin-
ergic homeostasis, which causes many neurochemical and
neurobehavioral disturbances [51–53]. The central nervous
system is very susceptible to oxidative stress due to high
oxygen consumption, lower levels of antioxidant defenses,
high levels of polyunsaturated fatty acids (phospholipid
membrane), and high levels of iron [54]. The inhibition
of AchE at 50mg/mL of HEDF correlated well with the
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Figure 9:Western blot analysis of the phosphorylated and total forms of ERK (a) and p38MAPK (b) and PARP cleavage in homogenates of flies
exposed to HEDF (1–50mg/mL) for seven days. The total content and phosphorylation of proteins were detected by specific antibodies and
the reaction was developed by the method of detection by enhanced chemiluminescence (ECL). The graph represents the quantification of
the immunoreactive bands and means ± SEM of three independent experiments (% of control) (𝑛 = 3) ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01 compared
to the control group.

observed locomotor deficits induced by HEDF at the same
concentration. These results indicate that HEDF-induced
toxicity may be associated with impairment of neurological
functions.There is evidence that enhanced activation of AchE
can cause a reduction of cholinergic neurotransmission and
affect other related functions including cell proliferation and
promote apoptosis [55, 56]. In the present study, exposure
of flies to 1 and 10mg/mL of HEDF significantly increased
AchE activity. Alterations in AchE activity can compromise
the normal motor activity of the flies, and this was evidenced
in our study by the impairment of locomotive performance
in the negative geotaxis behavior assay.

Mitogen-activated protein kinases (MAPKs) are a family
of proteins that participate in transduction pathways affected

by various environmental pollutants, including heavy metals
[14]. Usually, the ERK is activated by mitogenic stimuli
and regulates mainly the growth and differentiation. The
JNK and the p38MAPK are activated by cellular stress and
inflammatory cytokines and are involved in the apoptotic
process. These proteins regulate the transmission of signals
from membrane to the nucleus and are well conserved from
unicellular to more complexes organisms [57, 58]. Studies
demonstrated that plant derivatives such as curcumin can
modulate this pathway, mediating the antitumoral property
attributed to this compound [58, 59]. In our study, exposure
of flies to 10mg/mL of HEDF significantly increased ERK
phosphorylation. It well known that ERK pathway is sus-
ceptible to oxidative stress. In addition, hydrogen peroxide,
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metals, and other cell stressors are demonstrated to stim-
ulate phosphorylation of this MAPK protein [58, 60], thus
contributing to activation of several downstream targets as
transcriptional factors. It was demonstrated that medicinal
plants are able to induce gene activation dependent of the
transcriptional factor Nrf-2 via ERK [61]. This transcription
factor is known as the main regulator of the antioxidant cell
response and control the expression of several antioxidant
enzymes [61]. Here, the phosphorylation of ERK occurred
in parallel with an increase in antioxidant enzymes activity,
possibly in response to extracellular stimuli [62] induced by
HEDF exposure. A possible link between the activity of these
enzymes and ERK activation in our model must be further
investigated.

In the present work, the phytochemical prospection and
HPLC analysis of the leaves of HEDF revealed the presence
of alkaloids and chalcones, in addition to polyphenolic com-
pounds. Of particular importance, chalcone and some chal-
cone analogues have been reported to be toxic in zebrafish
model [63]. Additionally, isolated oxoaporphine alkaloids
from three species of the Annonaceae family, including D.
furfuracea, have shown cytotoxic effect in the lineage of
Hep2-cells (laryngeal carcinoma) [64]. On the other hand, Li
et al., 2014 [65], showed the potentiality of total flavonoids
from Arachniodes exilis to induce apoptotic cell death in
human hepatoma HepG2 cells and cause oxidative stress.
Similarly, it was shown that the flavonoid quercetin caused
apoptotic cell death in different human tumoral cell types
dependently of ERKphosphorylation and this effect occurred
in parallel with a time dependent ROS production [12]. It
was previously demonstrated that the flavonoid quercetin
was protective against H

2
O
2
induced toxicity only at low

concentrations, while at higher concentration it inducted
apoptotic cell death in hepatoma cells [66] and acting as a
prooxidant agent [66, 67]. In accordance, our data shows
that effects of D. furfuracea on survival and biochemical
parameters in flies are related with the concentrations and
time of exposure.

5. Conclusions

The present study demonstrated for the first time the toxicity
ofDuguetia furfuracea in theDrosophila melanogastermodel
system. The adverse effects of HEDF to flies were evidenced
by alterations in several markers of cell stress and neurobe-
havioral parameters. The toxicity induced by the extract to
flies may be attributed to an individual or synergistic action
of phytochemicals found in this plant over the period of
exposure. Overall, our results suggest that oxidative stress
may be major mechanism underlying D. furfuracea induced
toxicity in D. melanogaster.
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