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Cytochrome p450 (CYP450) enzymes are predominantly involved in Phase I metabolism of xenobiotics. In this study, the CYP450
isoforms involved in xanthotoxol metabolism were identified using recombinant CYP450s. In addition, the inhibitory effects of
xanthotoxol on eight CYP450 isoforms and its pharmacokinetic parameters were determined using human liver microsomes.
CYP1A2, one of CYP450s, played a key role in the metabolism of xanthotoxol compared to other CYP450s. Xanthotoxol showed
stronger inhibition on CYP3A4 and CYP1A2 compared to other isoenzymes with the IC

50
of 7.43 𝜇M for CYP3A4 and 27.82 𝜇M

for CYP1A2. The values of inhibition kinetic parameters (Ki) were 21.15𝜇M and 2.22 𝜇M for CYP1A2 and CYP3A4, respectively.
The metabolism of xanthotoxol obeyed the typical monophasic Michaelis-Menten kinetics and 𝑉max, 𝐾𝑚, and CLint values were
calculated as 0.55 nmol⋅min−1⋅mg−1, 8.46 𝜇M, and 0.06mL⋅min−1⋅mg−1. In addition, the results of molecular docking showed that
xanthotoxol was bound to CYP1A2 with hydrophobic and 𝜋-𝜋 bond and CYP3A4 with hydrogen and hydrophobic bond. We
predicted the hepatic clearance (CL

𝐻
) and the CL

𝐻
value was 15.91mL⋅min−1⋅kg−1 body weight. These data were significant for the

application of xanthotoxol and xanthotoxol-containing herbs.

1. Introduction

Xanthotoxol (Figure 1), a biologically active linear furo-
coumarin, occurs in a large number of plants and is
mainly extracted from the fruit of Fructus Cnidii [1]. Xan-
thotoxol shows strong pharmacological activities as anti-
inflammatory, antioxidant, 5-HT antagonistic, and neuropro-
tective effects [2–4]. Respecting so many pharmacological
activities of xanthotoxol, xanthotoxol is likely used with
other drugs, and the possibility of herb-induced toxicity
should be paid more attention. Among all of the metabolic
processes, metabolisms catalyzed by the cytochrome P450
(CYP450) enzymes are the most important because almost
70%–80% of the known Phase I metabolisms are attributed
to them [5]. Some of herbal medicines may result in CYP-
mediated herb-drug interactions (HDIs) with prescribed
other drugs [6]. For example, lovastatin was a substrate of
cytochrome P450 3A4 (CYP3A4), and clarithromycin was an
inhibitor of CYP3A4. When clarithromycin and lovastatin

were coadministered, clarithromycin inhibited the activity
of CYP3A4 and increased the serum concentrations of
lovastatin and subsequent elevated the risk of myopathy [7].
In recent years, using humanized enzyme to study the drug-
drug interactions in vitro has avoided the species differences
of enzyme’s isoforms, expression, and activities [8, 9].The US
FDA has already confirmed the validity of in vitro enzymes
to assess the in vivo interaction between medications [10, 11].

In this study, we examined the inhibitory potential of
xanthotoxol on CYP450s and kinetic parameters using in
vitro human liver microsomes (HLMs), which will provide
the basis for further in vivo studies in future.

2. Materials and Methods

2.1. Materials. Xanthotoxol (purity > 98%) was purchased
from Sichuan Weikeqi Biotechnology Co. Ltd. (Sichuan,
China). Paclitaxel, 1-aminobenzotriazole (ABT), phenacetin,
sulfaphenazole, chlorzoxazone, quinidine, clomethiazole,

Hindawi Publishing Corporation
Evidence-Based Complementary and Alternative Medicine
Volume 2016, Article ID 5416509, 8 pages
http://dx.doi.org/10.1155/2016/5416509



2 Evidence-Based Complementary and Alternative Medicine

OOO

OH

Figure 1: The structure of xanthotoxol.

furafylline, 8-methoxypsoralen, coumarin, diclofenac, quer-
cetin, dextromethorphan, ketoconazole, testosterone, S-
mephenytoin, omeprazole, glucose-6-phosphate dehydroge-
nase, NADP+, and D-glucose-6-phosphate were obtained
from Sigma-Aldrich (St. Louis, MO, USA). All other reagents
were the highest purity commercially available or HPLC
grade.

2.2. Preparation and Characterization of Liver Microsomes.
Liver microsomes from human (HLMs) used in this study
were provided by the Research Institute for Liver Disease
Co. (Shanghai, China). The HLMs were prepared from
eleven individual human donor livers. Protein concentration
and microsomes activities of CYP2C19, CYP2A6, CYP2C8,
CYP2D6, CYP1A2, CYP2C9, CYP2E1, andCYP3A4 had been
previously characterized by the Research Institute for Liver
Disease Co.

2.3. CYP450 Probe Substrate Assays. HLMs phenacetin
o-deethylation, coumarin 7-hydroxylation, paclitaxel 6𝛼-
hydroxylation, diclofenac 4-hydroxylation, dextromethor-
phan o-demethylation, chlorzoxazone 6-hydroxylation, tes-
tosterone 6𝛽-hydroxylation, and S-mephenytoin 4-hydrox-
ylation activities were utilized as selective markers for
CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, CYP2E1,
CYP3A4, and CYP2C19.

2.4. Incubation System for Liver Microsomes or Recombinant
CYP450 Supersomes. Theoptimal conditions formicrosomal
incubation were described previously [12]. The incubation
mixture, with a total volume of 200 𝜇L, consisted of 100mM
potassium phosphate buffer (pH 7.4), an NADPH-generating
system (10mM glucose 6-phosphate, 1 unit/mL of glucose 6-
phosphate dehydrogenase, and 4mM MgCl

2
), liver micro-

somes (0.3mg/mL), or recombinant CYP450s (15 nM). In all
experiments, xanthotoxol was serially diluted to the required
concentrations and the final methanol concentration did not
exceed 1% (v/v) in themixture. After a 5min preincubation at
37∘C, the NADP+ (1mM, 20𝜇L) was added into the mixture
to initiate the reaction. The reaction was terminated by the
addition of methanol (200𝜇L) with internal standard. The
mixture was kept on ice until it was centrifuged at 20 000×g
for 10min at 4∘C. Aliquots of supernatants were stored at
−40∘C until analysis. Control incubations without NADPH
or without substrate or without microsomes were carried
out to ensure that the formation of metabolites was micro-
somes and NADPH dependent. All incubations throughout
the study were carried out in at least three independent

experiments with standard deviations (SD) generally below
10%.

2.5. CYP450s Inhibition Experiments. Inhibition study was
conducted using the above incubation system consisting of
liver microsomes, NADPH-generating system, probe sub-
strate at the concentration of about 𝐾

𝑚
value, and xantho-

toxol (or the control inhibitor).The concentrations of positive
inhibitors usedwere as follows: 10𝜇Mfurafylline forCYP1A2,
2.5 𝜇M 8-methoxypsoralen for CYP2A6, 10 𝜇Mquercetin for
CYP2C8, 10 𝜇M sulfaphenazole for CYP2C9, 10 𝜇M quini-
dine for CYP2D6, 50 𝜇M clomethiazole for CYP2E1, 20𝜇M
omeprazole for CYP2C19, 1 𝜇M ketoconazole for CYP3A4,
and 500 𝜇M ABT for broad CYP450s. Kinetic analysis was
performed where activity has been inhibited by more than
90%. Half inhibition concentration (IC

50
) value was obtained

by incubating various xanthotoxol concentrations (0–100𝜇M
for CYP1A2 and CYP3A4). The 𝐾

𝑖
value was obtained by

incubating various xanthotoxol and probe substrates concen-
tration.

2.6. Kinetic Study. To estimate kinetic parameters of xan-
thotoxol and make sure that the formations of metabolites
were in the linear range of both reaction time and the
concentration of microsomes, xanthotoxol (0.25–200𝜇M)
was incubated with pooled HLMs for 30min. Reaction
velocities and substrate concentrations were used to calculate
the apparent 𝐾

𝑚
and 𝑉max values according to nonlinear

regression from the Michaelis-Menten equation (see (1)).
CLint was calculated as 𝑉max/𝐾𝑚. In addition, the result
was graphically represented on Eadie-Hofstee plots (veloc-
ities versus ratios of velocities to substrate concentrations)
to determine whether the metabolism was monophasic or
biphasic. Consider

𝑉 =
𝑉max ⋅ [𝑆]

𝐾
𝑚
+ [𝑆]
, (1)

where 𝑉max was the maximum reaction velocity, 𝐾
𝑚
was the

Michaelis constant that represented the substrate concentra-
tion at which the velocity was half of𝑉max,𝑉was the reaction
velocity, and [𝑆] was the substrate concentration.

2.7. Prediction of In Vivo Hepatic Clearance. The following
equations were used to predict the xanthotoxol clearance in
human [13]:

CLint in vitro =
𝑉max
𝐾
𝑚

,

CLint in vivo = CLint in vitro ⋅ SF,

CL
𝐻
=
𝑄
𝐻
⋅ 𝑓
𝑢
⋅ CLint in vivo

𝑄
𝐻
+ 𝑓
𝑢
⋅ CLint in vivo

,

(2)

where SF (scaling factor) represents the milligrams of micro-
somal protein per gram of liver multiplied by the grams of
liver weight; CLint is the intrinsic metabolic clearance; CL

𝐻
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Figure 2: Chromatogram of incubation of xanthotoxol with human
liver microsomes (HLMs). Xanthotoxol (10 𝜇M) was incubated
with HLMs (0.3mg/mL) at 37∘C for 60min with (upper) or
without (lower) a 𝛽-nicotinamide adenine dinucleotide phosphate-
(NADPH-) generating system.

is hepatic clearance; 𝑓
𝑢
is the free fraction in blood (there

are no data of xanthotoxol; here 𝑓
𝑢
was arbitrarily proposed

to be 1); 𝑄
𝐻
is the hepatic blood flow. The hepatic clearance

of xanthotoxol was calculated using (2), and physiological
parameters in human were described as follows: microsomal
protein per gram of liver, liver weight per kilogram of body,
and liver blood flow for human were 48.8mg, 25.7 g, and
20.7mL⋅min−1⋅kg−1, respectively [14].

2.8. Molecular Docking Analysis. TheX-ray crystal structures
of human CYP1A2 (pdb: 2HI4) and CYP3A4 (pdb: 4K9W)
were obtained from RCSB Protein Databank (http://rcsb
.org/). The ligands for docking were prepared using SYBYL
X2.1, and the energy wasminimized using the external Tripos
force field. The protonation state and energy minimization
of the protein and the ligands were calculated using the
default setting in SYBYL X2.1. The active sites were defined
by a sphere of 6.0 Å from the native ligands in the crystal
structures using Gold v5.2. The docked poses were scored
using CHEMPLP scoring function. The best docked pose of
the ligand was visualized using Pymol Molecular Graphics
System v1.3.

2.9. HPLC Method. The HPLC system (Shimadzu, Kyoto,
Japan) consisted of a CBM-20Alite system controller, two
LC-20AB pumps, and an SPD-20A ultraviolet light (UV)
detector.The chromatographic separationwas achieved using
a C18 column (4.6mm: 150mm, 5mmKromasil).Themobile
phases consisted of LC grade water containing 0.1% formic
acid (A) and LC grade acetonitrile (B) with the following
gradient profile: 0–12min, 20% B; 12-13min, 20–95% B; 13–
19min, 95% B; 19-20min, 90–20% B; 20–25min, 20% B. The
flow rate was 1mL/min. Detection wavelength was set at
310 nm and the column temperature was set to 40∘C.
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Figure 3: Representative HPLC profiles of xanthotoxol and
its metabolite in recombinant CYP450 supersomes. Xanthotoxol
(10mM) was incubated with recombinant CYP450 supersomes
(15 nM) and an NADPH-generating system at 37∘C for 30min.

3. Results

3.1. Analysis of Xanthotoxol Metabolites. After the incu-
bations of xanthotoxol (10 𝜇M) in HLMs and NADPH-
generating system, the new peak (M) was found at 3.7min
(Figure 2). The new peak was not observed in the negative
controls without NADPH, or without substrate, or without
microsomes.

3.2. Identifying CYP450s Involved in the Metabolism of
Xanthotoxol. The enzymes involved in the xanthotoxol
metabolism were investigated using cDNA-expressed human
P450 isoforms including CYP3A4, CYP2D6, CYP2E1,
CYP2C9, CYP2C19, and CYP1A2. The incubation for
each isoenzyme was carried out as described for the liver
microsomal study. As shown in Figure 3, the metabolite (M)
was mainly generated in the presence of CYP1A2, and the
amounts of M generated by CYP3A4, CYP2D6, CYP2E1,
CYP2C9, and CYP2C19 were 4.5%, 0%, 7.3%, 13.5%, and 3.6%
comparing to CYP1A2 level which was normalized to 100%.

3.3. Inhibition of Xanthotoxol against CYP3A4 and CYP1A2.
All positive control inhibitors performed strong inhibition to
the corresponding probe reactions with more than 80% of
control activity inhibited. 100 𝜇M xanthotoxol inhibited the
activities of CYP3A4, CYP2C9, CYP1A2, CYP2A6, CYP2D6,
CYP2C8, CYP2C19, and CYP2E1 by 3.3, 35.9, 9.5, 82.1, 72.4,
52.1, 68.3, and 25.9%, respectively (Figure 4). Furthermore,
kinetic analysis of CYP3A4 and CYP1A2 was performed. As
shown in Figures 5 and 6, xanthotoxol inhibited diclofenac 4-
hydroxylation (CYP1A2) and testosterone 6𝛽-hydroxylation
(CYP3A4) in a concentration-dependent manner with the
IC
50

of 27.82𝜇M for CYP1A2 and 7.43 𝜇M for CYP3A4.
Lineweaver-Burk and Dixon plots showed that the inhibition
of xanthotoxol to CYP1A2 and CYP3A4 was best fit to a
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Figure 4: The inhibitory effects of xanthotoxol on CYP450s in human liver microsomes (HLMs).

noncompetitive way. The 𝐾
𝑖
value was calculated to be 21.15

and 2.22𝜇M for CYP1A2 and CYP3A4, respectively.

3.4. Kinetic Characteristics of Xanthotoxol Metabolism. Over
the whole concentration range tested, the metabolism of
xanthotoxol obeyed the typical monophasic Michaelis-
Menten kinetics, as evidenced by the Eadie-Hofstee
plot (Figure 7). Reaction velocity showed significant
concentration-dependent characteristic. 𝑉max and 𝐾𝑚 values
were calculated as 0.55 nmol⋅min−1⋅mg−1 and 8.46 𝜇M via
nonlinear regression from the Michaelis-Menten equation
using Origin software. Intrinsic clearance (CLint) was
0.06mL⋅min−1⋅mg−1.

3.5. Prediction of In VivoHepatic Clearance of Humans. Using
the values of kinetic parameters generated in HLMs, CL

𝐻

was calculated to be 15.91mL⋅min−1⋅kg−1 body weight. The
percentage of CL

𝐻
versus hepatic blood flow (𝑄

𝐻
)% was

76.8%.

3.6. Molecular Docking Study. As shown in Figure 8(a), there
was hydrophobic effect between xanthotoxol and CYP1A2
with ILE117. In addition, the benzene rings of xanthotoxol also
showed 𝜋-𝜋 stacking interaction with PHE125, PHE226, and
PHE260. For docking to CYP3A4 (Figure 8(b)), xanthotoxol
was bound to CYP3A4 via hydrogen bond with ARG105 and
hydrophobic interactions with ILE369 and LEU373.

4. Discussion

Cytochrome P450 enzymes (CYP450s) are heme-thiolate
proteins that are responsible for the oxidative metabolism
of numerous xenobiotics as well as endogenous substrates
[15]. The inhibition against CYP450s has resulted in costly
late failures of drug development and withdrawal of drugs
on the market [16]. Thus, estimating HDIs is a priority

to predict inhibitory potential of major components on
CYP450 isoforms and to clarify the inhibition mechanism
and kinetics.

Using pooled HLMs, we determined the inhibitory
effects of xanthotoxol on eight CYP450 isoforms and the
results showed that xanthotoxol exhibited a stronger and
noncompetitive inhibition to CYP1A2-mediated phenacetin
o-deethylation and CYP3A4-mediated testosterone 6𝛽-
hydroxylation with the IC

50
values of 27.82𝜇M and 7.43 𝜇M,

respectively. The inhibition kinetic parameters (𝐾
𝑖
) were

calculated to be 21.15𝜇M and 2.22𝜇M for CYP1A2 and
CYP3A4, respectively. The metabolite (M) of xanthotoxol
was detected in HLMs and obeyed the typical monophasic
Michaelis-Menten kinetics. The generation of the metabolite
was NADPH dependent. Aminobenzotriazole (ABT), a
nonspecific inhibitor of cytochrome P450s (CYPs), showed
potent inhibition against metabolite production, which
proves that metabolism was catalyzed by CYP450s. The
kinetic characteristics of xanthotoxol metabolism were
0.55 nmol⋅min−1⋅mg−1 and 8.46 𝜇M for 𝑉max and 𝐾𝑚. CLint
was 0.065mL⋅min−1⋅mg−1. According to the Eadie-Hofstee
plots, xanthotoxol metabolism showed amonophasic feature,
suggesting that xanthotoxol was metabolized by only one
isozyme or two isozymes with the same𝐾

𝑚
value. CYP3A4 is

the most important CYP isoform for human andmetabolizes
approximately 50% of marketed drugs [17]. Thus, potential
metabolism-based herb-drug interactions might occur
during coadministration of xanthotoxol with other CYP3A4
or CYP1A2 substrates.

In this study, we identified the CYP450 isoforms involved
in xanthotoxol metabolism by screening assays with recom-
binant CYP450 supersomes including CYP1A2, CYP3A4,
CYP2E1, CYP2C9, CYP2D6, and CYP2C19. CYP1A2 con-
tributed main effect to catalyze the formation of metabolite
of xanthotoxol, while other enzymes displayed a very limited
ability to metabolize xanthotoxol. Thus, xanthotoxol was
selectively metabolized by CYP1A2.
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Figure 5: (a) Inhibitory effects of xanthotoxol on phenacetin o-deethylation activity (CYP1A2). (b) Dixon plot of inhibition effect of
xanthotoxol on phenacetin o-deethylation (CYP1A2). (c) Lineweaver-Burk plot of inhibitory effect of xanthotoxol on phenacetin o-
deethylation (CYP1A2). (d) Secondary plot of slopes from Lineweaver-Burk plot versus xanthotoxol concentrations. Each data point
represented mean of triplicate incubations.

Hepatic clearance is considered to be one of the most
important pharmacokinetic parameters as it directly relates
to drug elimination and bioavailability. So a prediction of
hepatic metabolic clearance is of primary importance during

the drug discovery and development process. In this study,
we investigated the quantitative prediction of human hepatic
metabolic clearance from in vitro experiments using human
liver microsomes focusing on CYP450s metabolism. CL

𝐻
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Figure 6: (a) Inhibitory effects of xanthotoxol on testosterone 6𝛽-hydroxylation activity (CYP3A4). (b) Dixon plot of inhibition effect
of xanthotoxol on testosterone 6𝛽-hydroxylation (CYP3A4). (c) Lineweaver-Burk plot of inhibitory effect of xanthotoxol on testosterone
6𝛽-hydroxylation (CYP3A4). (d) Secondary plot of slopes from Lineweaver-Burk plot versus xanthotoxol concentrations. Each data point
represented mean of triplicate incubations.
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Figure 7: Michael-Menten plots (a) and Eadie-Hofstee plots (b) of xanthotoxol metabolism in human liver microsomes (HLMs). Incubation
conditions were carried out as described in Section 2. Each point represents the mean of three independent experiments in triplicate
determinations.

(a) (b)

Figure 8: Binding modes of compound with CYP 1A2 (a) and 3A4 (b). The compound was displayed in cyan stick, residues were displayed
in green sticks, hydrogen bond was displayed in purple dotted line, and 𝜋-𝜋 stacking was displayed in yellow dotted line.

was calculated to be 15.91mL⋅min−1⋅kg−1 body weight. In
general, drugs that have CL

𝐻
above 70% 𝑄

𝐻
are classified as

high-clearance drugs and those below 30% 𝑄
𝐻
are classified

as low-clearance drugs [18]. So we predicted from in vitro
data that xanthotoxol was high-clearance drug in human
body.

Analyzing molecular docking, we found that xanthotoxol
was bound to CYP1A2 with hydrophobic interaction and 𝜋-𝜋
stacking and CYP3A4 with hydrogen bonds and hydropho-
bic interaction, which implied that xanthotoxol exhibited
stronger interactionwithCYP3A4 thanCYP1A2.The enzyme
kinetic studies confirmed the molecular docking study that

xanthotoxol had lower IC
50

and 𝐾
𝑖
values against CYP3A4

than CYP1A2.
It is important to understand the pharmacokinetic pro-

files of xanthotoxol and its drug interaction with CYP450s.
Our results indicate that xanthotoxol inhibited the activity of
CYP1A2 and CYP3A4 and therefore may interact with drugs
that were metabolized by these two isozymes.
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