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Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anticancer treatment, which may influence its
successful completion. )e Huang-Qi-Gui-Zhi-Wu-Wu decoction (HQGZWWD) has been widely used to treat CIPN in China
although the pharmacological mechanisms involved have not been clarified. Using the network pharmacology approach, this
study investigated the potential pathogenesis of CIPN and the therapeutic mechanisms exerted by the HQGZWWD herbal
formula in CIPN. )e targets of HQGZWWD were identified using traditional Chinese medicine (TCM) databases (TCMSP and
ETCM) and prediction platforms (PharmMapper and TargetNet), and the genes of CIPN were collected by DisGeNET,
GeneCards, and literature search. )e common target interaction network between herbal formula and diseases was constructed
by using Cytoscape. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis were used to reveal the mechanism and efficacy of HQGZWWD in the treatment of CIPN. A total of 153 CIPN-related
genes were screened, and a protein-protein interaction (PPI) network with 96 nodes and 424 edges was constructed. Sixty-three
active components were retrieved fromHQGZWWD, with a herb-composite compound-target network including 748 nodes and
5448 edges. Forty-one targets belong to the above two networks. )e analysis of network results and literature review shows that
the main pathological processes of CIPN may be the inflammatory response and nerve injury, and HQGZWWD plays a
therapeutic role in CIPN by regulating inflammatory response and repairing nerve injury, thus verifying the reliable efficacy of this
herbal formula. In addition, we found two new potential therapeutic targets (CDK7 and GSTM2) warranting further investigation.
)is study fully illustrates that TCM has the characteristics of a multicompound, multitarget, and multipathway treatment, which
is of great significance to study the curative effect of herbal formulations.

1. Introduction

Chemotherapy-induced peripheral neuropathy (CIPN) is
one of the most common side effects of chemotherapy with
platinum drugs, taxanes, Catharanthus roseus alkaloids,
thalidomide, and bortezomib. It has been reported that the
total incidence of CIPN is more than 60%, while for

oxaliplatin and taxanes, rates may be as high as 90% [1]. )e
occurrence of CIPN is dose dependent and may be relieved
by dose reduction or drug withdrawal. )e emergence of
CIPN seriously affects the efficacy of chemotherapy and the
quality of life of patients [2]. CIPN usually occurs in the early
stages of chemotherapy; its typical clinical manifestations
include sensations of symmetrical burning or tingling, loss
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of sensation, and numbness at the ends of the extremities.
Physical examination reveals fine motor impairment and
sensory ataxia, as well as motor neuropathy and proprio-
ceptive impairment, such as myasthenia and muscle bundle
tremor [3, 4]. Further, autonomic neuropathy such as ab-
dominal pain, diarrhea, constipation, postural hypotension,
and laryngospasm are often accompanying symptoms.
Neurogenic pain is also a clinical symptom, which is more
likely to have more of a physical and mental impact on
patients, and often needs auxiliary pain relief and antide-
pressant therapy [5]. )e emergence of CIPN will lead to
tension in patients, affect their quality of life, reduce the
treatment dose, prolong chemotherapy treatment, or even
stop treatment, thus interfering with the achievement of the
desired effect.

)e management of CIPN has entered a stage of com-
prehensive treatment. Traditional Chinese Medicine (TCM),
as an important part of the Complementary and Alternative
Medicine (CAM) approach, plays a key role. Increasing data
show that TCM has an obvious efficacy in the prevention
and treatment of cancer and its complications, including
radiotherapy, chemotherapy, and postoperative recovery
[6–8].

)e Huang-Qi-Gui-Zhi-Wu-Wu decoction
(HQGZWWD) was first published in the Synopsis of Golden
Chamber written by Zhang Zhongjing, a medical scientist in
the Han Dynasty (25 AD), and represents one of the more
commonly used clinical herbal formulations. It consists of
five herbs: Hedysarum Multijugum Maxim (Huang Qi),
Cinnamomi Ramulus (Gui Zhi), Paeoniae Radix Alba (Bai
Shao), Zingiber Officinale Roscoe (Sheng Jiang), and Jujubae
Fructus (Da Zao). Its main function is to supplement qi, the
warming meridian, and to ease pain. HQGZWWD is mainly
used for the hand-foot syndrome, CIPN, diabetic peripheral
neuropathy, and rheumatoid arthritis. Previously, we have
confirmed the efficacy of HQGZWWD in the prevention
and treatment of CIPN without reducing antitumor activity
of chemotherapeutic drugs in the animal model and cancer
patients [9]. However, the potential therapeutic mechanism
involved has not been fully elucidated.

Network pharmacology is based on the similarity of the
structure and efficacy of drugs to construct a drug-target
network to explore the mechanisms of action of different
agents. It emphasizes the multichannel regulation of sig-
naling pathways to improve the therapeutic effects of drugs
and to reduce their toxicity and adverse effects, so as to
improve the success rate of new drug clinical trials and save
on the costs involved in drug research. Network pharma-
cology is a current research hotspot applied to clarify the
effective components and treatment activity of TCM [10]. It
has been widely used to explore the therapeutic mechanisms
of TCM in diseases involving the cardiovascular and nervous
systems, respiratory diseases, diabetes, cancer, and osteo-
arthropathy and has achieved significant results [11–16].)e
purpose of this study was to analyze the pathogenesis of
CIPN and the potential therapeutic mechanisms of
HQGZWWD through network pharmacology, so as to
provide a theoretical basis for the clinical application of
herbal formulations.

2. Methods of Data Preparation

2.1. Composite Compounds ofHQGZWWD. ADME refers to
the process of absorption, distribution, metabolism, and
excretion of exogenous compounds, which can reflect the
dynamic changes of drug activity in animals or humans. It is
an important guide to the development of new drugs and to
the design of compounds [17]. We searched the Traditional
Chinese Medicine Systems Pharmacology Database and
Analysis Platform (TCMSP, http://tcmspw.com/tcmsp.php),
which is the most widely used information query platform
for TCM, to identify the composite compounds and targets
of HQGZWWD [18]. A total of 790 compounds were
identified: 87 in Hedysarum Multijugum Maxim, 220 in
Cinnamomi Ramulus, 85 in Paeoniae Radix Alba, 265 in
Zingiber Officinale Roscoe, and 133 in Jujubae Fructus. All
molecules were screened according to the ADME criteria
(oral bioavailability ＞30% and drug likeness ＞0.18) rec-
ommended by TCMSP [19, 20]. A total of 63 compounds
were selected. Notably, 14 of these effective compounds were
verified by ultraperformance liquid chromatography-
quadrupole-time-of-flight mass spectrometry (UPLC-Q-
TOF-MS) technology in our previous study, and several
compounds are included: jaranol, isorhamnetin, for-
mononetin, calycosin, kaempferol, (3R)-3-(2-hydroxy-3,4-
dimethoxyphenyl)chroman-7-ol, quercetin, sitosterol,
(+)-catechin, paeoniflorin, benzoyl paeoniflorin, and por-
iferast-5-en-3beta-ol (Supplementary Tables S1 and S2).

2.2.CompoundTargets ofHQGZWWD. In order to make the
targets of HQGZWWD more comprehensive, we have
added descriptions of target information from the Ency-
clopedia of Traditional Chinese Medicine (ETCM, http://
www.nrc.ac.cn:9090/ETCM/). )e ETCM was updated in
2018 and provides a more professional ADME evaluation
and enhanced information on compounds and targets [21].
Based on the limitations of the database, we also used
PharmMapper (http://lilab-ecust.cn/pharmmapper/) and
TargetNet (http://targetnet.scbdd.com/), both of which are
target prediction platforms. )e former predicts the target
using a pharmacophore model, which models the molecular
docking of compounds through characteristic features and
the spatial arrangement of pharmacologically active mole-
cules [22]. TargetNet builds a large number of quantitative
structure activity relationship (QSAR) models based on the
input compounds to predict targets [23]. Next, UniProt
(https://www.uniprot.org/) was used to standardize all target
names. Some compounds for which the target information
could not be identified were excluded. In total, 48 com-
pounds were selected (Supplementary Table S3).

2.3. Targets of CIPN

2.3.1. Targets from Known Databases. )e molecular targets
for CIPN were obtained from GeneCard (https://www.
genecards.org/) and DisGeNET (https://www.disgenet.org/).
GeneCard is an authoritative platform for human gene an-
notation information that integrates human gene information
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from other databases [24]. DisGeNET integrates a large
number of data about disease-associated genes and variants
from multiple sources, covering almost all areas of human
diseases [25]. In addition, we searched the PubMed database
(https://www.ncbi.nlm.nih.gov/pubmed/) to supplement in-
formation on the disease gene.

2.3.2. Target Supplement. GeneMANIA (http://genemania.
org/), developed by the University of Toronto, was used to
analyze and identify dominant genes and provided genomic
and proteomic data to discover functionally similar genes
[26]. We uploaded the disease targets downloaded from
GeneCard andDisGeNETto the database and output a list of
20 resultant genes.

)rough database screening, literature search, and
prediction target supplements, a total of 153 disease genes
were selected (Supplementary Table S4).

2.4. Protein-Protein Interaction Network. )e protein-pro-
tein interaction (PPI) networks in this article were all derived
from String V11.0 (https://string-db.org/), which was
updated in November 2018, to search for functional inter-
actions between proteins and help to mine core regulatory
genes in the network [27].

2.5. Network Construction. We constructed three networks:
(i) the CIPN network, (ii) the herbal-compounds-targets
network for HQGZWWD, and (iii) the HQGZWWD-CIPN
overlapping targets network. All networks were built
through the network visualization software Cytoscape
(V3.7.2 https://cytoscape.org/), an open source network that
focuses on data visualization and analysis. Its core function is
to provide a basic functional visual layout and query network
based on the combination of basic data [28]. In addition, we
modularized the CIPN network through the Mcode cluster
function in Cytoscape, which is conducive to better mining
the core functions of the network.

2.6. Gene Ontology Functional and Kyoto Encyclopedia of
GenesandGenomesPathwayEnrichmentAnalysis. )eGene
Ontology (GO) function and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses of all
targets were obtained from the Database for Annotation,
Visualization and Integrated Discovery (DAVID, V6.8,
https://david.ncifcrf.gov/), which integrates biological data
and analysis tools to provide comprehensive biological
function annotation information for the large-scale gene or
protein lists [29].

3. Results

3.1. =e CIPN Network. Information relative to 150 targets
was extracted from String, and 96 nodes and 424 edges were
constructed under the condition of high confidence. In this
network, targets with a higher degree are regarded as the
core targets (32 in STAT3, 31 in IL6, 28 in TNF, 24 in IL10,
24 in VEGFA, 23 in TP53, 22 in IL2, 22 in IL4, and 21 in

CSF2).)is suggests that these genes may be the key genes or
central genes affecting the development of CIPN (Figure 1).

3.2. GO Functional Analysis of the CIPN Network.
)rough the modular analysis of the CIPN network using
the Mcode cluster, the entire network was divided into three
clusters (Figure 2).

)ese clusters were then interpreted using GO biological
process (GO-BP) analysis. )e top 10 most significantly
enriched BP terms in each group were selected for analysis.
)e results showed that cluster 1 included the immune
response, cellular response to lipopolysaccharide, positive
regulation of nitric oxide biosynthesis, positive regulation of
chemokine biosynthesis, and inflammatory response.
Cluster 2 included mechanisms involving transcription-
coupled nucleotide-excision repair, transcription elongation
from the RNA polymerase I promoter, nucleotide-excision
repair, and DNA incision. Cluster 3 included processes
involved in glutathione derivative biosynthesis, cellular
detoxification of nitrogen compounds, glutathione meta-
bolism, and xenobiotic metabolism (Figure 3).

3.3. KEGG Pathway Enrichment Analysis of CIPN Targets.
All disease genes were uploaded to DAVID, and 13 pathways
were obtained, of which four pathways contained more
enriched genes (i.e., 20 in pathways in cancer, 18 in the
PI3K-Akt signaling pathway, 13 in the Jak-STAT signaling
pathway, and 10 in theMAPK signaling pathway) (Figure 4).

3.4. Herbal-Compounds-Targets Network of HQGZWWD.
)is network consisted of 728 nodes (5 herbal nodes, 48
compound nodes, and 675 compound-target nodes) and
5448 edges, of which 6 compounds (mairin, beta-sitosterol,
(+)-catechin, quercetin, stigmasterol, and kaempferol)
appeared in more than two herbs, and many targets (such as
GSTM1, GSTM2, ACHE, and ESR2) that were targets of
multiple compounds. In addition, 41 overlapping targets
(peripheral nodes, such as CYP2C8, GSTM1, AGXT,
GSK3B, and ABCC4) were identified after comparing herbal
formula targets with CIPN targets, of which three targets
(AGXT, ABCC4, and PPARD) were not identified in the
previously constructed disease network, and two targets
(CDK7 and GSTM2) were obtained from the predictive
platform. Finally, using the DAVID platform, we found that
the targets in herbal formulations were enriched in a variety
of diseases such as lung cancer, type 2 diabetes, bladder
cancer, chronic obstructive pulmonary disease, colorectal
cancer, and chronic renal failure (Figure 5).

3.5. HQGZWWD-CIPN Overlapping Targets Network.
)e above 41 overlapping targets were inserted into the PPI
network and denominated the HQGZWWD-CIPN com-
mon target network. A total of 40 nodes and 247 edges were
constructed, in which 7 targets had a higher degree in the
network (29 in TP53, 27 in ALB, 23 in IL6, 23 in VEGFA, 22
in CASP3, 21 in TNF, and 20 in CYP3A4). )ese nodes were
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predicted to play a core role in the treatment of CIPN with
HQGZWWD (Figure 6).

3.6. GO Functional and KEGG Pathway Enrichment Analysis
ofOverlappingTargets. To study the biological functions and
metabolic pathways of these key targets, DAVID analysis
was employed to analyze overlapping targets. GO functional
analysis revealed the following target-associated terms: (i)
“biological processes (BP)” involving negative regulation of
apoptosis mechanisms, immune responses, positive regu-
lation of chemokine biosynthetic processes, and positive
regulation of nitric oxide biosynthetic processes; (ii) “cell
components (CC)” comprising the extracellular space, ex-
ternal side of the plasma membrane, and extracellular

region; and (iii) “molecular functions (MF)” involving cy-
tokine activity, oxygen binding, growth factor activity, and
glutathione binding. KEGG pathway enrichment analysis
showed that the overlapping targets were mainly involved in
cytokine and inflammatory responses as well as the T-cell
receptor, NF-kappa B, HIF-1, TNF, and Jak-STAT signaling
pathways (Figures 7(a) and 7(b)).

4. Discussion

At present, the mechanisms involved in CIPN have not been fully
elucidated and may include disruption of neuronal axonal trans-
port, mitochondrial dysfunction, inflammatory stimulation, oxi-
dative stress, nerve injury, and changes in ion channel activity.)e
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pathogenesis of CIPN is mainly associated with injury to sensory
neurons in the dorsal root ganglion caused by chemotherapeutic
drugs.)e incidence and severity are not only related to individual
factors but also include the type of agent, cumulative dose, treat-
ment schedule, and treatment time [30]. )e classic treatment
strategy is still prevention and management of symptoms [31]. Ion
channel modulators, neuroprotective agents, antioxidants, tricyclic

antidepressants, and antiepileptic agents are commonly used in
clinical treatment [32, 33].)e only agent currently recommended
for the treatment ofneuralgia causedbyCIPN isduloxetine [34, 35].
A “stop-and-go” strategy is generally adopted, which involves
stopping treatment with the drug immediately, reducing the drug
dose, or prolonging the time of chemotherapy and then resuming
treatment after the symptoms are relieved [36].
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)rough previous animal studies, we determined that
HQGZWWD could reduce the intake of platinum in the
dorsal root ganglion of the oxaliplatin rat model and could
promote platinum pumping, so as to reduce accumulation of
platinum and prevent chronic peripheral neurotoxicity in-
duced by exposure to oxaliplatin [37]. A meta-analysis
showed that HQGZWWD could effectively prevent and
reduce oxaliplatin-related peripheral neurotoxicity [38].
)erefore, we propose that HQGZWWD can effectively
reduce and alleviate the incidence and severity of CIPN.
)rough network pharmacology, we constructed the core
networks involved in CIPN and mechanisms of action of
herbal formulations to explore the underlying pathogenesis
of CIPN and to explore any molecular therapeutic mech-
anisms and/or pathways potentially associated with
HQGZWWD.

First, we constructed and analyzed the core network of
CIPN, in which regulatory genes including STAT3, IL6,
TNF, IL10, VEGFA, TP53, IL2, IL4, and CSF2 were iden-
tified. Among these was STAT3, which not only participates
in the signal transduction pathways of many cytokines in-
cluding interferon, interleukins, and growth factors but also
regulates important functional activities such as cell growth,
differentiation, migration, apoptosis, autophagy, immunity,
and metabolism. Studies have shown that STAT3 is not only
involved in the inflammatory response but also mediates
tumorigenesis and stages of carcinogenesis [39, 40]. Fur-
thermore, STAT3 also has an effect on peripheral nerve cell
regeneration and participates in nerve repair [41]. )e cy-
tokines IL6, TNF, IL10, IL2, and IL4 are all immunomod-
ulatory factors, among which TNF and IL-6 have been
confirmed to be involved in the pathological process of
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peripheral nerve injury [42, 43]. )e core biological pro-
cesses of CIPN include the immune response, positive
regulation of nitric oxide biosynthesis, inflammatory re-
sponse, and positive regulation of chemokine biosynthesis.
Nitric oxide exerts both anti-inflammatory and proin-
flammatory regulatory effects. Its proinflammatory activity
is mainly manifested in the promotion of the proliferation of
inflammatory cells and tissue injury. An imbalance in nitric
oxide levels is the key factor causing neuropathic pain [44].
)rough pathway enrichment analysis, we found that most
genes we identified were enriched in inflammation-related

pathways, including the Jak-STAT, NF-kappa B, MAPK, and
Toll-like receptor signaling pathways. )e Jak-STAT sig-
naling pathway is widely involved in cell proliferation,
differentiation, and apoptosis, which can promote the oc-
currence and development of inflammation and tumors.
Dominguez et al. [45] found that this pathway can be ac-
tivated in the spinal cord microglia of rats with peripheral
nerve injury and leads to neuropathic pain. Essentially, we
found that the main pathological processes of CIPN may
involve the inflammatory response and nerve injury, and our
results also indirectly explain the complexity of CIPN
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pathogenesis, and these key pathways provide a direction for
the future development of new drugs.

Secondly, we explored the herbal compounds and their
targets. Our results showed that HQGZWWD comprises a
variety of active compounds. For example, quercetin is a fla-
vonoid widely found in herbs, which exerts antioxidative, anti-
inflammatory, antiallergic, and analgesic effects [46]. Recent
studies have shown that quercetin can reduce the growth and
invasion of tumor cells [47, 48]. Quercetin has anti-inflam-
matory activity by inhibiting the production of cyclooxygenase
(COX) and lipoxygenase (LOX), which are considered to be
closely related to inflammation [49, 50]. In addition, this
compound shows remarkable antinociceptive and neuro-
protective effects in animal models and inhibits light edema
formation [51, 52]. Another molecule identified was catechin,
which has anti-inflammatory and antioxidant activities and can
reduce abnormal sensation after chemotherapy [53, 54]. Other
active compounds identified, such as formononetin [55], iso-
rhamnetin [56], and kaempferol [57], have been shown to be
effective in inhibiting inflammation and analgesia. It is worth
noting that we found that the targets of HQGZWWD can be

mapped to the endocrine system and to respiratory system
diseases, which are especially enriched in cancer. In recent years,
TCM has attracted much attention in improving cancer and its
side effects, which is consistent with our results suggesting that
HQGZWWD exerts pharmacological effect on many diseases,
including CIPN, through the synergistic action of many
compounds and different targets. )is may define this herbal
formula as havingmultitarget andmultifunction characteristics.

Finally, we targeted HQGZWWD and CIPN, as a key
approach in excavating the core treatment mechanism of the
TCM. We found that TP53, ALB, IL6, VEGFA, CASP3, TNF,
and CYP3A4 may play core regulatory roles in treatment.
Among these, TP53 is a highly tumor-related gene. Mutant
TP53 promotes the proliferation, migration, survival, and in-
vasion of tumor cells, enhances drug resistance, and promotes
the metabolism of tumor cells [58]. Both CASP3 and CASP4
belong to the caspase family, which can maintain homeostasis
by regulating apoptosis and inflammation [59, 60]. VEGFA can
protect neurons by promoting neovascularization and vascular
permeability. Vencappa et al. [61] demonstrated that VEGFA
could prevent cisplatin-induced sensory neuronal damage. In
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addition, inflammation-related targets such as IL6 and TNF are
also core targets of CIPN. )e GO function analysis of over-
lapping targets showed that the main biological processes of

these targets were the positive regulation of nitric oxide bio-
synthesis, immune responses, and responses to glucocorticoids,
which are similar to CIPN. While KEGG pathway enrichment
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Figure 7: (a) GO functional analysis of overlapping targets. (b) KEGG pathway enrichment analysis of overlapping targets.
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analysis showed that the targets that were mainly enriched
included cytokines and inflammatory response, elements of the
cytokine network, and the T-cell receptor, NF-kappa B, HIF-1,
and PI3K-Akt signaling pathways, which were mostly associ-
ated with the inflammatory response. For example, the HIF-1
signaling pathway participates in many biological processes
such as hypoxia adaptation, inflammatory development, and
tumor growth and plays a key role in inflammation and me-
diates tumorigenesis [62, 63]. We found that these pathways
intersect with the disease pathway of CIPN, indicating that
HQGZWWD has a certain pertinence in the treatment of
CIPN.

Overall, our results show that HQGZWWD plays a
therapeutic role in CIPN by regulating the inflammatory
response and repairing nerve injury, thus providing support
for the reliable efficacy of this herbal formula. In addition, in
the overlapping targets network, we identified two potential
targets (CDK7 and GSTM2) from the prediction platform,
which have not been verified by experiments, and represent a
clear direction for future research as novel targets for the
treatment of CIPN.

Our innovation in this study lies in our integration of
multiple TCM databases, which may compensate for the de-
ficiency of incomplete data. Further, our supplementary analysis
of the targets for CIPN treatment through a prediction model
provides new information for the future study of pathological
processes and therapeutic targets. Finally, this study fully il-
lustrates that TCM possesses the characteristic of an active
multicompound,multitarget, andmultipathway formula, which
is of great significance in the study of the curative effect of herbal
formulations. However, there are some issues that cannot be
overlooked; although the selection of effective compounds is
well founded (mainly recommended by databases), they are
mostly reported in a single plant, which does notmean that they
are still present and play a therapeutic role in the traditional
preparation. As mentioned above, we found only about 30% of
the effective compounds in a mass spectrometric analysis of
HQGZWWD. )erefore, more mass spectrometric analysis
needs to be carried out to determine the effective compounds of
traditional preparations.

5. Conclusion

)rough network pharmacology, we found that HQGZWWD
has a significant advantage in the treatment of CIPN. At the
same time, the underlying molecular biological mechanisms
have been revealed by analyzing the potential core targets,
biological functions, and signal pathways involved. Our study
provides a theoretical basis for the clinical application of
HQGZWWD for the treatment of CIPN.
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