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0e infructescence of Platycarya strobilacea Sieb. et Zucc. (PS) has been used in the treatment of rhinitis and sinusitis in clinical
practice. Our preliminary study showed that an ethanol extract of the infructescence of PS (EPS) had significant anti-
nasopharyngeal carcinoma (NPC) effects in vitro. However, the mechanism underlying the NPS cell death induced by EPS
remains unclear. 0e aim of the present study was to investigate the inhibitory effects of EPS on NPC cells and to elucidate the
underlying mechanism. 0e effects of EPS on NPC cells were investigated in CNE1 and CNE2 cells in vitro. In EPS-treated cells,
the cell morphological changes were evaluated through fluorescence microscope, transmission electron microscopy, and flow
cytometry. 0e underlying mechanism was analyzed via network pharmacology and further verified by western blot analysis. 0e
anticancer effects of EPS were associated with the generation of CNE1 and CNE2 cell fusion and vacuoles, the perturbation of
lysosomal vesicle transportation, and the induction of methuosis. 0e network pharmacology and western blot results indicated
that the effect of EPS in NPC cells might be achieved via regulation of the Ras proto-oncogene (RAS)/mitogen-activated protein
kinase (MAPK) signaling pathway and the transcription factor c-Fos proto-oncogene (c-FOS) and its downstream genes. EPS
induces NPC cell death throughmethuosis.0emechanismmight be related to regulation of the transcription factor c-FOS and its
downstream genes.

1. Introduction

Nasopharyngeal carcinoma (NPC) is a malignant tumor
derived from human nasopharyngeal epithelial tissue. One
report estimated that 129,079 new cases of NPC and 72,987
NPC-related deaths occurred worldwide in 2018 [1]. 0e
number of NPC patients diagnosed in China within the last 5
years reached 138,500 [2]. At present, the clinical treatment
of NPC is mainly based on radiotherapy supplemented by
chemotherapy, and no specific drugs for this disease are
available [3]. 0erefore, identification of new therapeutic
targets for drugs, which will help improve the cure and
survival rates of NPC and enhance patient quality of life, is
important.

Platycarya strobilacea Sieb. et Zucc. (PS) has been widely
recognized as a medicinal plant from China with various
beneficial effects. 0e infructescence of PS is believed to
eliminate toxic heat, activate blood circulation, relieve
swelling, eliminate pus, and ameliorate pain [4–6]; it has also
been used in NPC treatment [7]. 0e Chinese herbal
medicine Xiangju capsule, which includes this infructes-
cence as its main component, has been applied in the clinical
treatment of rhinitis and sinusitis for more than 20 years.
0is treatment can induce human leukocytes to produce
interferon and improve immunity [8]. 0e main constitu-
ents identified from this infructescence are polyphenols,
ellagitannins, and flavone-related compounds [9]. 0ese
components include ellagic acid, gallic acid, and ursolic acid,
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which have antioxidative and anti-inflammatory effects
[10, 11]. Our previous experimental study found that ethanol
extract of PS (EPS) induced CNE1 and CNE2 cell death,
which was similar to methuosis. Methuosis is a form of cell
death that ultimately leads to rupture through the pro-
duction of many intracellular vesicles [12, 13].

However, to our knowledge, the antitumor properties of
EPS have not been investigated. We conducted the present
research to investigate the inhibitory effect of EPS on NPC
cells and to elucidate the intracellular pharmacological
mechanism.

2. Materials and Methods

2.1.PlantMaterial. 0e infructescence of PS was collected in
August of 2016 in the vicinity of Dayuanzi Village, Qikou
Town, Lueyang County, Hanzhong City, Shanxi Province,
China (position: latitude 33.183675°, longitude 106.358065°).

Plant material (4500 g) with the seeds removed was
smashed with a 60 mesh sieve. Powder was extracted with
13500mL of 95% (v/v) ethanol in a shaker bath set at 30°C
for 0.5 h, and this process was repeated three times. Ethanol
was removed from the combined filtrate at 45°C using a
rotary evaporator. A total of 180 g of extract was obtained
after the aqueous phase, and the yield was 4.5%. A voucher
specimen (No. 20160801) was deposited in the Chinese
medicine preparation laboratory. HPLC was used to
identify the active ingredients in the EPS (Supplemental
Table 1).

2.2. Chemicals and Reagents. Methyl thiazolyl tetrazolium
(MTT) was purchased from Sigma (Sigma-Aldrich, Inc., St
Louis, Missouri, USA). LysoTracker Green DND-26 (L7526)
and Hoechst 33342 (R37605) were purchased from Invi-
trogen (Life Technologies, Shanghai, China). An Annexin
V-FITC Apoptosis Kit (556547) and a Cell Cycle Detection
Kit (340242) were purchased from BD (BD Biosciences, Inc.,
San Jose, California, USA). 0e following antibodies were
used in this work: HRas proto-oncogene (HRAS, ab32417),
Rac family small GTPase 1 (RAC1, ab155938), coiled-coil
domain-containing protein 42 (CDC42, ab187643), Raf-6
proto-oncogene (RAF6, ab131261), member of the RAS
oncogene family 7 (RAB7, ab137029), Ras homolog gene
family member A (RhoA, ab187027) (Abcam, Cambridge,
UK), extracellular regulated protein kinase 1/2 (ERK1/2,
137F5, 4695), caspase-3 and cleaved caspase-3 (D3R6Y,
14220), phosphorylated ERK1/2 (p-ERK1/2,0r202/Tyr204,
4370), c-Fos proto-oncogene (c-FOS, 9F6, 2250; Cell Sig-
naling Technology, Boston, Massachusetts, USA), and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH,
10494-1-AP). Horseradish peroxidase-labeled secondary
antibodies (SA00001-2; Proteintech Group, Inc., Chicago,
Illinois, USA) were also used. β-sitosterol (22564) and EHT
1864 (HY-16659, an inhibitor of RAC1) were purchased
from MedChemExpress (Monmouth Junction, New Jersey,
USA). EHT 1864 was dissolved in dimethyl sulfoxide
(DMSO) at 10mM and stored at −20°C. Gallic acid
(110831–201605), ellagic acid (111959–201602), and ursolic

acid (110742–201421) were obtained from the National
Institutes for Food and Drug Control (Beijing, China).

2.3. Cell Culture. 0e CNE1 and CNE2 cell lines were ob-
tained from the Cell Bank of the Chinese Academy of Science
(Shanghai, China). 0e NP69 cell line was provided by the
University of Hong Kong.0e cells were maintained in RPMI
1640 medium supplemented with 10% fetal bovine serum
(FBS) (Biological Industries, Inc., Kibbutz Beit Haemek, Is-
rael) at 37°C in a humidified chamber containing 5% CO2.

2.4. Cell Viability Assays. Cell viability was quantified by
MTT assays. CNE1 and CNE2 cells were plated at a density
of 2.5×103 cells/well in 96-well plates with eight replicates
for each condition. After 24 h, various concentrations of EPS
(0, 2.5, 5, 10, 15, 20, 30, and 50mg/mL) were added to each
well, and the plates were incubated for 24 h. 0en, 5mg/mL
of MTT solution was added at 20 µL/well and incubated for
4 h at 37°C. At the end of the incubation, the MTT-formazan
was solubilized in DMSO, and the absorbance was deter-
mined with a 96-well plate reader at 490 nm.

2.5. Apoptosis Assay. 0e cancer cells were seeded into six-
well plates at a density of 2.5×105 cells/well and then treated
with EPS (1.0mg/mL). After 24 h of incubation, apoptosis
was evaluated using an Annexin V-Fluorescein Iso-
thiocyanate (Annexin V-FITC) Kit following the manu-
facturer’s instructions.

2.6. Cell Cycle Analysis. 0e cancer cells were seeded into
10 cm plates in 1.0mg/mL EPS and RPMI 1640 containing
10% FBS. After 24 h, 5×106 cells were harvested, rinsed with
cold PBS, and fixed with 75% ice-cold ethanol for 24 h at 4°C.
0en, the fixed cells were washed with cold PBS and in-
cubated with propidium iodide (PI, 10 µg/mL) and RNase A
(0.5mg/mL) for 30min at 37°C.0e procedure was the same
for the control group and the experimental group after the
cells were recultured in complete culture medium.0e DNA
content of the labeled cells was quantified by FlowJo 7.6.1
software.

2.7. Transient Transfection with the RAC1 Inhibitor EHT
1864. Twenty-four hours before transfection, the CNE1 and
CNE2 NPC cells were plated onto 10 cm plates at 50%
confluence. EHT 1864 at 40 µM was added to the cells for
24 h, and the protein levels were then detected by western
blot analysis.

2.8. Live Cell Imaging with Fluorescent Tracers. CNE1 and
CNE2 cells were seeded in 6-well plates at a density of 2×105
cells/well. Labeling of intracellular acidic compartments
with LysoTracker Green DND-26 and staining for EPS
activity were performed as described previously. Hoechst
33342 (50 μg/mL) was used to label the nucleus for 15min at
37°C with protection from light. Fluorescence intensity was
quantified by ImageJ.
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2.9. Transmission Electron Microscopy (TEM). Human
CNE1 and CNE2 cells were exposed to 1.0mg/mL EPS for
24 h, treated with 2% citrate fixative, dehydrated with dif-
ferent concentrations of ethanol, infiltrated with acetone,
sliced after embedding, double stained with uranyl acetate
and lead citrate, and examined with H-7650B TEM (Hitachi,
Hitachinaka, Japan).

2.10. Pathway Enrichment Analysis. Gene ontology (GO)
functional and pathway enrichment analyses of differentially
expressed genes (DEGs) were carried out using the clus-
terProfiler package of R [14]. 0e GO terms and pathway
terms with adjusted P values <0.05 were selected. 0e search
tool for the retrieval of interacting compounds/proteins in
the traditional Chinese medicine systems pharmacology
database and analysis platform (TCMSP, version 2.3) was
used for the prediction of compound-protein interaction
information [15]. We set the criteria of oral bioavailability
(OB) greater than 40% and drug-likeness (DL) greater than
0.18.

2.11. Western Blot Analysis. 0e cells were lysed in RIPA
buffer (70-WB020, MultiSciences, Hangzhou, China). 0e
protein concentration was detected by bicinchoninic acid
assays (5000002, Bio-Rad, Hercules, California, USA). 0e
total protein concentration was determined, and the protein
samples were separated by SDS-polyacrylamide gel elec-
trophoresis. Nonspecific binding was blocked with 3% bo-
vine serum albumin in Tris-buffered saline (pH 7.5);
subsequently, the membranes were incubated with primary
antibodies at 4°C and then with the corresponding horse-
radish peroxidase-labeled secondary antibodies. 0e im-
munoreactive bands were detected using an enhanced
chemiluminescent detection (ECL) kit (70-P1425, Multi-
Sciences, Hangzhou, China).

2.12. Statistical Analyses. 0e experiments presented are
representative of at least three independent repetitions. All
data were analyzed using R (3.6.1) and SPSS 20.0 software.
0e data are presented as the mean± SD. A two-tailed
Student’s t-test was used for comparisons of the means of
two independent groups. ANOVAwas used for comparisons
of more than two groups. P< 0.05 was considered
significant.

3. Results

3.1. EPS Inhibited NPC Cell Viability. To examine the effect
of EPS on cell proliferation, we treated CNE1 and CNE2 cells
with multiple concentrations of EPS. As shown in
Figure 1(a), the group treated with the lowest concentration
of EPS (0.5mg/mL) showed a significant difference com-
pared with the control group (P< 0.01). 0e IC50 values of
the CNE1 and CNE2 cell lines for EPS were 1.025 and
1.109mg/mL, respectively. NPC cell viability decreased as the
EPS concentration increased. A concentration (1.0mg/mL)

that showed a moderate antiproliferative effect was used for
the subsequent experiments.

Next, the EPS-induced loss of cell viability was con-
firmed using an Annexin V-FITC/PI-binding assay. Com-
pared with the control cells, EPS-treated cells did not show
an increased apoptotic fraction, indicating that EPS sup-
pressed cell proliferation by other cell death mechanisms,
Figure 1(b).

3.2. EPS Regulated the Cell Cycle. As shown in Figure 1(c),
after treatment with 1.0mg/mL EPS for 24 h, the cell
population in the G0/G1 phase increased to 71.15% for
CNE1 cells and decreased to 43.86% for CNE2 cells com-
pared with that of the control group. 0ese data indicated
that EPS blocked the cell cycle transition from the G1 phase
to the S phase in the CNE1 cell line and the G2 phase in the
CNE2 cell line.

3.3. EPS-InducedCellMethuosis. Interestingly, all of the cells
treated with EPS (1.0mg/mL) for 24 h showed methuosis-
like features [16], such as the formation of multiple pro-
trusions in the cell membrane, and the protrusions between
the cells were constantly in contact. Many vesicles were
produced in the cells, and the multiple vesicles fused into
larger vesicles. 0is change led to extensive cellular
vacuolization and ultimately cell death. EHT 1864 is a small
molecule inhibitor of RAC1 signaling. 0is inhibitor did not
prevent EPS-induced cell vesicle production. However, this
phenomenon was not observed in normal human epithelial
NP69 cells given the same treatment (Figure 2(a)).

TEM analysis of cells treated with EPS showed that the
cell membranes budded to form bulges, and the bulges
formed multiple small vesicles, which then coalesced into a
larger structure; these changes resulted in cell membrane
rupture (Figure 2(b)). 0e transparent vesicles in the cells
have a single layer membrane, do not contain cytoplasmic
components or organelles, and are distinct from the auto-
phagosomes surrounded by a bilayer membrane formed by
autophagy. 0e morphological characteristics of the dying
cells were inconsistent with those of various forms of cell
death, such as apoptosis, autophagy, and pyroptosis. 0e
TEM results were consistent with the findings of cells un-
dergoing methuosis.

0en, we tested the relationship between lysosomes and
methuosis. Lysosomes were visualized by LysoTracker Green
DND-26. We found that, in the EPS group, the number and
fluorescence intensity of cells were reduced. Intensity
quantification revealed that EPS groups have about 29% and
41% reduction of LysoTracker Green DND-26 staining,
respectively, compared to control groups (Figure 3). Lyso-
Tracker Green DND-26’s fluorescence decreases in alkaline
environments, respectively. 0e results suggested that the
pH value of cells increased after adding EPS.

3.4. Expression Profiles of NPC Cells after EPS Treatment.
To identify the potential genes affected by EPS treatment, we
combined OB screening and DL evaluation to identify the
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active compounds in EPS, as shown in Figure 3(a). Five
compounds (ursolic acid, ellagic acid, gallic acid, 3,3′-
dimethoxy ellagic acid, and beta-sitosterol) were widely
distributed in EPS. 0e contents of gallic acid, β-sitosterol,
ellagic acid, and ursolic acid in EPS were 0.72%, 1.85%,
4.99%, and 1.88%, respectively (Supplemental Figure 1). 0e
total content of the four components in the EPS was 9.44%.
We screened 109 candidate targets by TCMSP, explored the
biological networks, and analyzed the relationships between
the functional groups (Figure 4(a)). 0e affected genes that
showed GO enrichment were classified into three categories:
molecular functions (MF), cellular component (CC), and
biological processes (BP) (Figure 4(b)). 0e genes upregu-
lated by more than twofold had the following functions in
sequential order of abundance: G-protein coupled amine
receptor activity, G-protein coupled neurotransmitter re-
ceptor activity, membrane raft, membrane microdomain,
membrane region, plasma membrane raft, transcription
factor complex, negative regulation of apoptotic signaling
pathway, hepatocellular carcinoma, and pancreatic cancer.
Based on the above data, EPS inhibited NPC cells by reg-
ulating the major signaling pathways involved in the
G-protein coupled receptor channel on the cell membrane

and the transcription factor complex. 0erefore, we used
western blotting to confirm the effects of EPS.

3.5. @e Mechanisms Underlying EPS-Induced Methuosis in
NPC. 0e mechanisms underlying methuosis are unclear,
but previous studies have identified HRAS and RAC1
GTPase as important regulators of this process [16]. To test
this hypothesis, we examined the expression levels of HRAS
and RAC1 inNPC cells. As shown in Figure 4(c), the levels of
the senescence proteins HRAS, RAC1, RAF6, p-ERK1/2, and
c-FOS were decreased in the EPS groups. Because caspase-3
is a critical mediator of apoptosis, the protein levels of
caspase-3 and cleaved caspase-3 were detected by western
blot analysis. 0ere was no elevation of cleaved caspase 3
indicating that EPS-treated NPC cells did not show apo-
ptotic signal.

Furthermore, a systemic search was conducted, and a
total of 1491 downstream target genes of c-FOS were defied
through the Harmonizome database [17]. 0e GO BP
analysis showed that the genes were enriched in the fol-
lowing pathways: (1) GO: 0060627, regulation of vesicle-
mediated transport; (2) GO: s0030100, regulation of
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Figure 1: Effects of EPS on NPC cell viability and the cell cycle. (a) CNE1 and CNE2 cells were treated with various concentrations
(0–2.0mg/mL) of EPS for 24 h. Cell viability was detected using an MTTassay. (b) NPC cells were subjected to 1.0mg/mL EPS for 24 h and
then assessed for apoptotic cell death by flow cytometry. 0e total percentages of apoptotic cell death and nonapoptotic cell death were
calculated, as described in the methods. (c) Cell cycle analysis of CNE1 and CNE2 cells treated with the control and 1.0mg/mL EPS for 24 h.
Representative histograms show the distribution of cells in the cell cycle for each treatment group. Data are expressed as the mean± SD of
three independent experiments, ∗P< 0.05, ∗∗P< 0.01 vs the control group, as analyzed by Student’s t-test.
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endocytosis; (3) GO: 0909003, vesicle-mediated transport in
synapse; (4) GO: 00099560, synaptic membrane adhesion;
(5) GO: 0009504, synaptic vesicle cycle; (6) GO: 0022604,
regulation of cell morphogenesis; (7) GO: 0048259, regu-
lation of receptor-mediated endocytosis; (8) GO: 0001101,
response to acid chemical; and (9) GO: 0098693, regulation
of synaptic vesicle cycle (Figures 4(d) and 4(e)). Based on the
GO functional analysis, six parts were identified: cell
pseudopod formation, cell membrane fusion and vesicle
formation, vesicle transport, vesicle growth, stimulation of
chemical substances, and membrane regulation Figure 5.

4. Discussion

Cells display many different forms of nonapoptotic cell
death [18]. Cellular morphological features observed with
TEM are commonly used to distinguish between different
forms of cell death. Different types of vesicles were found in
the cytoplasm in various nonapoptotic forms of cell death,
such as autophagy, oncosis, and paraptosis [19]. In this
study, we conducted MTT tests to select the appropriate
concentration of EPS. 0e selected concentrations were 0,
0.25, 0.5, 1.0, 1.5, and 2.0mg/ml.0e test results showed that
1.0mg/ml was the optimal concentration. After addition of
1.0mg/ml EPS, we observed the formation of many vesicles,
which merged with each other in the cytoplasm to form
larger vesicles; furthermore, membrane rupture was ob-
served 24 h after the EPS treatment. In this report, we

identified the signaling pathways underlying a nonapoptotic
form of cell death, which can be triggered by constitutive
inhibition of the RAS pathway in NPC cell lines. 0e
vacuolization in NPC cells induced by EPS is consistent with
previous findings on methuosis [12].

Methuosis is a nonapoptotic form of cell death char-
acterized by cell sprouting that induces a mutual fusion
between different cells and the accumulation of vacuoles in
the vesicles [20, 21]. We investigated the possible molecular
mechanisms through which EPS causes cell death via
methuosis and found that previous studies have shown how
RAS is related to methuosis [20–22]. 0e results indicated
that inhibition of HRAS resulted in increased methuosis.
HRAS can bind to RAF6-associated vesicles and can be
transported by RAF6-mediated localization of vesicles in-
dependently of the barrier protein pathway. Inactivation of
RAF6 in turn affects membrane trafficking and the actin
backbone, resulting in changes in cell morphology, such as
vesicle production and cell sprouting [23]. Western blot
results also demonstrated that EPS downregulated the
protein levels of HRAS and RAF6, which are involved in
methuosis of EPS-induced NPC cells.

RAC1 can induce plasmamembrane protrusions to form
a lamellar layered pseudopod, regulate tumor cell adhesion,
and contribute to cell invasion and metastasis [24]. RAC1
also interacts with synaptojanin-2 and decreases clathrin-
mediated receptor endocytosis, thereby participating in the
transport of endocytic vesicles [25]. We pretreated CNE1
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Figure 2: Cell phenotypic changes after NPC cells and NP69 cells were incubated with 1.0mg/mL EPS and 40 μM EHT 1840 for 24 h. (a)
Microscopic analysis of EPS-treated NPC cells and NP69 cells. (b) CNE1 and CNE2 cells were observed by TEM.
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and CNE2 cells with ETH 1864, a specific inhibitor of RAC1
[26]. ETH 1864 could not inhibit the EPS-induced vacuo-
lization of NPC cells. 0ese results indicate that the
methuosis induced by EPS in NPC cells does not depend on
RAC1.

Studies in the literature have indicated that the Rho small
G-protein is involved in important BP, such as cytoskeleton
regulation, cell migration, invasion, metastasis, and cell cycle
regulation, and thus can promote cell transformation and
actin polymerization and remodel the extracellular matrix
[27].0e Rho small G-protein family is a member of the RAS
superfamily. 0e best-known RAS homologs, RHOA, RAC1
and CDC42, have important roles. RHOA regulates cell
microfilaments and microtubules, and RAC1 and CDC42
regulate actin activity and cell adhesion, thereby promoting
cytoskeletal rearrangement [28]. ERK phosphorylates the
CDC42GTPase protein, and activation of RAC1 and CDC42
promotes the formation of pseudopods at the leading edge
[29]. ERK phosphorylates cytoskeletal components in the
cytoplasm, such as microtubule-associated protein 1 (MAP-

1), MAP-2, andMAP-4, which are involved in the regulation
of cell morphology and the cytoskeletal structure [30].
Activated ERKs phosphorylate many targets, including ki-
nases, transcription factors, and cytoskeletal proteins; these
proteins include signal transducer and activator of tran-
scription 1/3 (STAT1/3), nuclear factor-κB (NF-κB), the
oncogene c-MYC, estrogen receptor (ESR), and the tran-
scription factors c-JUN and c-FOS [31]. 0e downstream
target genes of c-FOS were found to be involved in the
formation of intracellular vesicles, synaptic membrane ad-
hesion, and cell fusion during cell death.

Simultaneously, in the Cancer Genome Atlas (TCGA)
database, a subgroup of head and neck squamous cell car-
cinoma (HNSC, samples� 508) patients with favorable
clinical outcomes showed infrequent copy number alter-
ations that were correlated with activating mutations of
HRAS, RAF, RAC1, and ERK1/2 (Supplemental Figure 2).
HRAS, RAF, RAC1, and ERK1/2, as targets of tumor-tar-
geting agents, are closely related to the prevention and
treatment of tumors [32].

200μm
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CNE1 Control

CNE1 EPS

CNE2 Control

CNE2 EPS

Lysosome Nuclei Merge

Figure 3: Lysosomes profile in CNE1 and CNE2 after 24 h exposure to EPS (1.0mg/mL). Lysosomes (green) staining was done with
LysoTracker Green DND-26, and nuclei (blue) were counterstained with Hoechst 33342 (50 μg/mL) for 15min at 37°C.
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Figure 4: 0e mechanisms of methuosis induction by EPS in NPC cells, as shown by network pharmacology. (a) Construction of the
network map between the active ingredients of EPS and their associated targets. 0e network was constructed with five candidate
compounds and their putative targets, which were constituents of EPS.0e green nodes represent candidate compounds, and the targets are
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To clarify the role of EPS in NPC cells, we conducted the
series of experiments described above. However, our study
has some limitations. First, EPS contains many components
that could not be completely identified. Second, the
downstream target genes require further investigation.

Finally, the drugs that induce methuosis in cells are mainly
laboratory-synthesized monomers. Synthesis of these drugs
is difficult and, thus, low quantities are available. 0ese
molecules are not commercially available, which is the main
reason why we could not use these drugs as positive controls.
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5. Conclusions

In summary, we identified EPS, a product of natural plants,
as a novel allergic inducer that ultimately leads to cell death.
EPS can be used to explore the potential relationship be-
tween methuosis and anti-NPC effects. Our results also
showed that EPS induced the formation of pseudopods, cell
fusion, and accumulation of intracellular vesicles in NPC
cells, leading to excess vacuoles and cell membrane rupture.
Future research will focus on elucidating how EPS regulates
the downstream targets of the transcription factor AP-1 and
analyses of EPS in vivo. 0e plants that yield EPS are rich in
various resources and inexpensive. We hope that further
investigations of this plant and its extract-induced forms of
nonapoptotic cell death will be conducted, providing new
opportunities for cancer treatment.
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