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Background. Clinical comprehensive decision-making of diabetic ulcers includes curative effect evaluation and curative effect
prediction. Nevertheless, there are few studies on the prediction of diabetic ulcers. Methods. Set pair analysis (SPA) was used to
assess the curative effect evaluation, and therapeutic effect was evaluated by connection degree (CD). +e higher-order Markov
chain-SPA curative effect prediction model was established to predict the future curative effect development.+e predicted results
with higher-order Markov chain-SPA and traditional first-order Markov-SPA model were compared with the actual results of the
patients to verify the effectiveness of prediction. Results. +e connection degree of index levels I and II of 15 patients with diabetic
ulcers after traditional Chinese medicine (TCM) treatment increased with time, while that of index levels IV and V decreased,
indicating that the curative effect tends to improve. +e higher-order Markov chain-SPA model was used to predict the curative
effect. +e results showed that the relative errors were fewer than the traditional first-order Markov-SPA model. Conclusions. +e
present study suggests that a method of SPA combined with higher-order Markov-SPA is relatively effective and can be applied to
the clinical prediction of diabetic ulcers, which has higher accuracy than traditional first-order curative effect prediction model.

1. Introduction

Medical decision-making has always been the core and key
issue of clinical medicine. +e comprehensive decision-
making includes not only evaluation of the current symp-
toms or indicators of patients but also prediction research of
future therapeutic effects. At present, there are many
methods for medical comprehensive decision-making.
Wang et al. [1] evaluated medical quality by a dynamic
technique for order performance by similarity to ideal so-
lution. Xu et al. [2] used random forest and information gain
algorithm to establish a syndrome classification model that
accords with the dialectical theory of TCM. Nevertheless,

research on the prediction of curative effect has not been
paid enough attention at present.

By the end of 2017, it was estimated that there are 451
million (age: 18–99 years) people with diabetes worldwide.
Furthermore, these figures were expected to increase to 693
million by 2045 [3]. Diabetic ulcer is a common serious
complication of diabetes and also themain cause of disability
in patients [4]. Recently, TCM has become a complementary
and alternative medicine worldwide and has been gradually
used in the treatment of diabetic ulcers. Our prestudy has
reported that Sheng-ji Hua-yu (SJHY) treatment is a se-
quential therapy method that is efficient in the management
of diabetic skin ulcers, making their wound-healing time 2-3
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days less than conventional western medicine group [5, 6].
Mechanism of the actionmight be related to the inhibition of
Activin/Follistatin [7].

With respect to curative effect evaluation, Cloud
Model-Set Pair Analysis (CM-SPA) is demonstrated to an
efficacy assessment for diabetic ulcers with SJHY treatment
[8]. On the basis, it is therefore significant to explore a
curative effect prediction model. Markov chain is designed
to describe dynamic random phenomena that have the
discrepancy of time and state. In the prediction of clinical
efficacy, a prediction model must be chosen which can
handle the transition probability between the states of each
treatment time point. What is more, the basic method of
Markov chain prediction is to use the transition probability
matrix between states to predict the state of events and its
development trend [9]. SPA theory is brought up to make a
comprehensive analysis of certain and uncertain infor-
mation. Its core idea is to construct a set pair for two sets
associated with uncertain systems to analyze the identity,
discrepancy, and contradistinction. +en CD of set pair is
defined to quantitatively describe uncertainties caused by
ambiguity, randomness, and incomplete information [10].
Clinical efficacy evaluation is an uncertain model caused by
individual differences, environmental factors, and other
factors, and the uncertainty will convert accordingly with
the change of state.

+e SPA-Markov method has been used to construct
the prediction model of clinical curative effect. +is
method is composed of SPA and Markov chain that an-
alyze and predict uncertain systems with the character-
istics of dynamics, continuity, and randomness. It has
been widely used in the fields of aviation safety dynamic
assessment [11], information security risk assessment
[12], gas pipeline hazard prediction [13], hydropower
plant production environmental safety behavior evolution
prediction [14], and so on. In addition, Markov model has
many developments, including higher-order Markov
model [15], multivariate Markov model [16], and hidden
Markov chain model [17]. According to the research
report, the traditional first-order Markov chain assumes
that the next future probability structure is only related to
the current state and does not account for its history,
consistent with the First-order non-aftereffect. However,
in clinical practice, the development of symptoms of
patients is in constant metamorphosis that is not com-
pletely determined by the recent state but is related to a
period of treatment. While the traditional first-order
Markov chain has found many applications in prediction
model, it abandons long-term useful information when
describing random phenomena and is relatively rough in
the description of the development and change process of
the system that is easy to lead to the distortion of pre-
diction results in practical application. In order to im-
prove the Markov model closer to the real situation and
get better prediction results, Raftery [18] firstly proposed
the concept of higher-order Markov model to extend the
traditional first-order correlation to higher-order corre-
lation, which includes the more preliminary information
into forecasts of future variables and the more precise

random prediction so that it improves the accuracy of
prediction results [19].

In this paper, a SPA model based on higher-order
Markov chain was applied to efficacy evaluation and
prediction of 15 patients with diabetic ulcers during TCM
treatment. According to the following evaluation and
prediction process (Figure 1), the SPA method was used to
establish the efficacy evaluation model to evaluate the
therapeutic effect. +en the higher-order Markov-SPA
prediction model was established to predict the future
development of curative effect. +e predicted results with
higher-order Markov chain-SPA and traditional first-or-
der Markov-SPA models were compared with the actual
results of the patients to reveal the effectiveness of
prediction.

2. Methods

2.1. SPA. SPA is one of the contact mathematics methods
proposed by Zhao and Xuan [10], which deals with uncertain
state and trend of the system in many practical problems.
“Identity,” “discrepancy,” and “contradistinction” are used
to describe their relations to each other and constructed into
a certain-uncertain system.

In a given system, two sets A and B with certain relations
form a set pair H (A, B). Assuming that the set has N
characteristics, where S is the number of features shared in
the set pair, P is the opposite number of features, and F is the
number of uncertain features; S+P+ F�N; the CD can be
obtained as follows:

μ �
S

N
+

F

N
i +

P

N
, j � a + bi + cj. (1)

Definition 1. a � S/N, b � F/N, c � p/N represents the de-
gree of “identity,” “discrepancy,” and “contradistinction,” re-
spectively, a + b + c � 1, i denotes the uncertainty coefficient,
i ∈ [−1, 1], and j is the coefficient of opposites, which is
generally defined as −1.+en connection could be expressed as

μ � a + b1i1 + b2i2 + · · · + bnin + cj, (2)

and when n� 3, the CD of the five-element connection
number is defined as

μ � a + b1i1 + b2i2 + b3i3 + cj � a + bi + cj + dk + el. (3)

Each symptom index has a differentweight in the evaluation
of curative effect; the weight of cloud model (CM) was used [8].
+e specific calculation method of the symptom weight was
given in the literature [20]. +e standardized values of each
index were obtained after CM characteristic numbers and the
cloud weight calculation. Ex, En, and He are the CM charac-
teristic numbers corresponding to each symptom index k. Ex is
the expected value of the cloud drop that can represent the
qualitative concept. +en, the weight value of symptom index k
is defined as ωk.

Definition 2. Assume that, at time t, the numbers of
symptoms in the five levels areA (t), B (t),C (t),D (t), E (t), and
A (t) +B (t) +C (t) +D (t) +E (t)�N.+e originalN symptoms
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are reordered and numbered sequentially in the order of A (t),
B (t), C (t), D (t), E (t). +e weight corresponding to the serial
number of each symptom is ωk(t) at time t.

According to equation (3), the CD of five-element
connection number where symptom weight has been taken
into consideration is calculated:
μ(t) � a(t) + b(t)i + c(t)j + d(t)k + e(t)l

� 

A(t)

k�1
ωk(t) + 

A(t)+B(t)

k�A(t)+1
ωk(t)i + 

A(t)+B(t)+C(t)

k�A(t)+B(t)+1
ωk(t)j

+ 

A(t)+B(t)+C(t)+D(t)

k�A(t)+B(t)+C(t)+1
ωk(t)k + 

A(t)+B(t)+C(t)+D(t)+E(t)

k�A(t)+B(t)+C(t)+D(t)+1
ωk(t)l,

(4)

where 0≤ωk(t)≤ 1, 
N
k�1 ωk(t) � 1.

Definition 3. +e five symptom index levels I to V were
given the scores 9, 7, 5, 3, and 1 (Table 1). Afterwards, the
efficacy score could be defined as

U � 9a(t) + 7b(t) + 5c(t) + 3 d(t) + 1e(t). (5)

Generally speaking, when score of curative effect is high,
curative effect will be better.

2.2. Higher-Order Markov Chain. Markov chain was first
proposed by Russian mathematician A. A. Markov in
1907. +e purpose of the method is to describe dynamic
random phenomena and it has been applied successfully
in many fields of time series analysis and prediction.
However, the traditional first-order Markov model only
considers that the future probability structure is related to
the current state and abandons the older useful

information in describing random phenomena which
course the process development roughly. In order to make
the Markov chain closer to the real situation, Raftery and
Tavare [21] first proposed the concept of higher-order
Markov chain and pointed out that the traditional first-
order correlation can be extended to higher-order cor-
relation. If the time dynamic variable is only related to its
previous continuous n states, it has nothing to do with n
previous states, so this characterization is called n-order
non-aftereffect. In the following series of papers, Raftery
proposed the maximum likelihood method of mixed
transfer distribution (MTD) model. +e parameter esti-
mation of the higher-order Markov model is studied and
the transformation of the higher-order Markov model
from theoretical results to practical application tools is
realized. Based on the research of Raftery, Ching [22]
extended the parameter limitation of higher-order Mar-
kov chain, deduced a more mature higher-order Markov
model that is closer to objective reality, and discussed how
to realize its parameter estimation by optimization
method in 2004. +e higher-order Markov chain method
can be used to deal with more complex practical problems
through these improvements.

+e stochastic process C(1), . . . , C(2), . . . , C(T){ } is
defined as Markov chain of discrete parameters, the state
space Ω � 1, 2, . . . , m{ }, and C(t) � [c1(t), c2(t), . . . , cm(t)]

denotes the probability distribution vector of each state at
time t. For a positive integer n, here we have

C(t + 1) � 
n

r�1
λrC(t + 1 − r)Qr. (6)

+en, C(1), . . . , C(2), . . . , C(T){ } is an n-order Markov
chain, where λr ≥ 0 is a high-order coefficient and

Identification of efficacy evaluation standards

Calculation of index cloud weights

Establishment of multiple connection
degrees of SPA 

Observation of index level changes

Establishment of the higher-order Markov 
chain-SPA prediction model

Dynamic analysis

Figure 1:+e process of curative effect evaluation and prediction.+e process of curative effect evaluation and prediction was carried out by
using the higher-order Markov chain-SPA model.
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n
r�1 λr � 1. +e M-order square matrix Qr can be consid-

ered as r-step state transition probability matrix.
It should be pointed that higher-order Markov chain

describes the distribution of state C (t+ 1) at time t+ 1,
which is related to the previous n time states C (t), C (t− 1),
and C (t+ 1− n) and ignores the more previous states. +e
higher-order Markov chain extends the restriction of only
adjacent dependence in the first-order Markov chain that
makes the model more realistic.

2.3. Higher-Order Markov Chain-SPA Prediction Model

Definition 4. +e number of indexes of curative effect level I
is A (t) at time t. At time t+ 1, there are A (t1) symptoms, the
status of which is still level I, A (t2) symptoms change from
level I to level II,A (t3) symptoms change from level I to level
III, A (t4) symptoms change from level I to level IV, and A
(t5) symptoms change from level I to level V. +e state
transition probability of the symptom index of level I during
time [t, t+ 1] was

QA � p11 p12 p13 p14 p15( , (7)

where p11 � 
A(t1)
k�1 ωk(t)/A(t)

k�1 ωk(t);p12 � 
A(t1)+A(t2)
k�A(t1)+1

ωk(t)/A(t)
k�1 ωk(t);p13 � 

A(t1)+A(t2)+A(t3)
k�A(t1)+A(t2)+1 ωk(t)/ 

A(t)
k�1 ωk(t);

p14 � 
A(t1)+A(t2)+A(t3)+A(t4)
k�A(t1)+A(t2)+A(t3)+1 ωk(t)/A(t)

k�1 ωk(t); and p15 �


A(t1)+A(t2)+A(t3)+A(t4)+A(t5)
k�A(t1)+A(t2)+A(t3)+A(t4)+1 ωk(t)/A(t)

k�1 ωk(t).
Similarly, the state transition probabilities of other

symptom indicators during time [t, t+ 1] are QB, QC, QD,
and QE, respectively, while the transition probability matrix
Q (t+ 1) of the system in [t, t+ 1] is

Q(t + 1) �

p11 p12 p13 p14 p15

p21 p22 p23 p24 p25

p31 p32 p33 p34 p35

p41 p42 p43 p44 p45

p51 p52 p53 p54 p55

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

+e higher-order coefficient λ (t+ 1− r) is equivalent to
the weight of the state transition probability matrix Q
(t+ 1− r). If the state transition probability matrix Q
(t+ 1− r) at time t+ 1− r is more similar to the state tran-
sition probability matrix at other times, the contribution of
the matrix is smaller and the higher-order coefficient λ
(t+ 1− r) is smaller. +erefore, the higher-order coefficient

calculation method can be constructed by using matrix
similarity [23].

Definition 5. +e state transition probability matrices of
t+ 1− r and t+ 1− s at any two times are Q (t+ 1− r) and Q
(t+ 1− s), respectively. +e similarity is

Θ(t+1−r, t+1−s) � cos θ �
〈Q(t + 1 − r), Q(t + 1 − s)〉

‖Q(t + 1 − r)‖‖Q(t + 1 − s)‖
, (9)

where <Q (t+ 1− r), Q (t+ 1− s)>� tr (Q (t+ 1− s)TQ
(t+ 1− r)), tr(·) represents the sum of diagonal elements of a
matrix, and ‖ · ‖ reflects the norm derived from the inner
product of a matrix, which is

‖Q(t + 1 − r)‖ �
�����������������������
〈Q(t + 1 − r), Q(t + 1 − s)〉


, (10)

‖Q(t + 1 − s)‖ �
�����������������������
〈Q(t + 1 − s), Q(t + 1 − r)〉


. (11)

θ is the angle between the two matrices. When θ� 90°
and Θ� 0, it is indicated that the two matrices are not
similar; conversely, if θ� 0° and Θ� 1, the similarity of the
two matrices is high. +e more similar the state transition
probability matrix is, the smaller the higher-order coefficient
λ is defined. +erefore, the similarity matrix of the pairwise
matrix between the matricesQ (t), Q (t− 1), andQ (t+ 1− n)
is shown:

Θ �

1 Θt,t−1 · · · Θt,t+1−n

Θt−1,t 1 · · · Θt−1,t+1−n

⋮ ⋮ ⋱ ⋮

Θt+1−n,t Θt+1−n,t−1 · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

According to the similarity matrix Θ, the similarity
between the matrix Q (t+ 1− r) and other matrices can be
defined as

ct+1−r �
1
n



n

r�1,r≠s
Θt+1−r, t+1−s. (13)

Furthermore, the high-order coefficient is calculated:

λ(t + 1 − r) �
1 − ct+1−r


n
r�1 1 − ct+1−r( 

. (14)

Definition 6. +e curative effect CD of n moments before
time t is defined as follows:

Table 1: Scores of each index level.

Index levels Asymptomatic (I) Lighter (II) Moderate (III) Heavier (IV) Severe (V)
Score 9 7 5 3 1
+e value corresponding to each index level is used to calculate the curative effect score. +e larger the value is, the better the curative effect is.
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μ(t) � a(t) + b(t)i + c(t)j + d(t)k + e(t)l,

μ(t − 1) � a(t − 1) + b(t − 1)i + c(t − 1)j + d(t − 1)k + e(t − 1)l,

⋮

μ(t + 1 − r) � a(t + 1 − r) + b(t + 1 − r)i + c(t + 1 − r)j + d(t + 1 − r)k + e(t + 1 − r)l,

⋮

μ(t + 1 − r) � a(t + 1 − r) + b(t + 1 − r)i + c(t + 1 − r)j + d(t + 1 − r)k + e(t + 1 − r)l.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

CD of curative effect at time t+ 1 can be predicted
according to equation:

μ(t + 1) � a(t + 1) + b(t + 1)i + c(t + 1)j

+ d(t + 1)k + e(t + 1)l

� 

n

r�1
[λ(t + 1 − r)μ(t + 1 − r)Q(t + 1 − r)][1, i, j, k, l]

T
,

(16)

where t� 1, 2,. . ., T; Q (t+ 1− r) is the transition probability
matrix at time t+ 1− r; λ (t≤ 1− r) is the higher-order co-
efficient, and 

n
r�1 λ(t + 1 − r) � 1.

2.4. Case Analysis. According to the previous clinical ob-
servation, ten indexes were identified as the main indica-
tors that affect prognosis of diabetic ulcers [8, 24]. Each
course of treatment lasted seven to fourteen days that a
total of four treatment time points were observed. Refer-
ring to the previous literature of SPA model [25] and
Markov model [26], it was found that four examples and
two examples were used to verify the applicability of the
model, respectively. +erefore, 15 patients were included in
this research. Subsequently, the curative effects of 15 pa-
tients of diabetic ulcers treated with SJHY method were
evaluated and predicted by higher-order Markov chain-
SPA and first-order Markov chain-SPA, respectively.
Considering the clinical circumstances of amelioration of
patients’ symptoms, the results were standardized in case
the CD was not equal to 1.

Ten experts were invited to assess the importance of
symptom indexes of diabetic ulcers (Table 2); then, the
qualitative language variables were transformed into
quantitative values by CM. SPA was set as a five-element
model that represented five therapeutic levels of asymp-
tomatic (I), lighter (II), moderate (III), heavier (IV), and
severe (V), respectively. According to the IWGDF/IDSA
classification [27] and referring to literature of diabetic foot
ulcers [28], the evaluation of each therapeutic level (Table 3)
was determined and the curative effect level (Table 4) of each
patient after each course of treatment was obtained.
According to the results, the small sample data were
compared using the t-test or the Wilcoxon rank-sum test, as
appropriate. Two-tailed p values < 0.05 were considered
statistically significant. All calculations were carried out by
SPSS (version 21.0) software package.

3. Results

+e value of cloud weight (Table 5) corresponding to each
symptom index k was calculated by the cloud model and
tested by the confusion degree test, where the confusion
value is less than 1. +e corresponding image of each
symptom was cloud instead of fog (Figure 2) which could be
used as the weight of the curative effect index.

+e CD of 15 patients at each time (Table 6) could be
calculated by equation (4) and the curative efficacy score U
(Table 7) could be calculated by equation (5). Because the
fourth cycle is predicted by the curative effect of the first
three cycles, the higher-order coefficient is set as three. +e
state transition matrix and higher-order coefficient of each
treatment course of 15 patients are calculated by equations
(7)–(14).

+e state transfer matrix of a 68-year male patient
(patient a) in each treatment course was defined as
follows:

Q(t1) �

0 0 0 0 0

0 1 0 0 0

0.62 0.38 0 0 0

0 0.35 0.65 0 0

0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

1 0 0 0 0

0.64 0.36 0 0 0

0 1 0 0 0

0 0.30 0.70 1 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

1 0 0 0 0

0.55 0.45 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(17)

His higher-order coefficients of each treatment course
were λt1� 0.46, λt2� 0.25, and λt3� 0.29.

+e state transfer matrix of a 66-year female patient
(patient b) in each treatment course was shown as
follows:
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Q(t1) �

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0.48 0.52 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

1 0 0 0 0
0.71 0.29 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

0.76 0.24 0 0 0
0.39 0.61 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)

Her higher-order coefficients of each treatment course
were λt1� 0.39, λt2� 0.24, and λt3� 0.37.

+e state transfer matrix of a 66-year male patient
(patient c) in each treatment course was as follows:

Q(t1) �

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

1 0 0 0 0

0 1 0 0 0

0 0.67 0.33 0 0

0 0 1 0.70 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

1 0 0 0 0

0.40 0.60 0 0 0

0 0.70 0.30 0 0

0 0 0 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)

His higher-order coefficients of each treatment course
were λt1� 0.46, λt2� 0.25, and λt3� 0.29.

+e state transfer matrix of a 64-year male patient
(patient d) in each treatment course was defined as
follows:

Q(t1) �

0 0 0 0 0

0.55 0.45 0 0 0

0.29 0.71 0 0 0

0 0 1 0 0

0 0 0.30 0.70 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

1 0 0 0 0

0.61 0.39 0 0 0

0 1 0 0 0

0 0 0.58 0.42 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

1 0 0 0 0

0.26 0.74 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(20)

His higher-order coefficients of each treatment course
were λt1� 0.44, λt2� 0.30, and λt3� 0.26.

+e state transfer matrix of a 57-year male patient
(patient e) in each treatment course was defined as
follows:

Q(t1) �

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

1 0 0 0 0

0.56 0.44 0 0 0

0 0 0.63 0.37 0

0 0 1 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

1 0 0 0 0

0.73 0.27 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

His higher-order coefficients of each treatment course
were λt1� 0.39, λt2� 0.28, and λt3� 0.33.

+e state transfer matrix of a 58-year female patient
(patient f ) in each treatment course was defined as
follows:

Table 2: Experts’ judgment on importance of different symptoms
according to the importance of each symptom.

Linguistic variables level Value range
Very important (8, 10]

Important (6, 8]

Semi-important (4, 6]

Unimportant (2, 4]

Very unimportant (0, 2]

+e experts evaluated the value range of the symptom weight.+e larger the
score is, the more important the corresponding symptom index is in the
curative effect evaluation.

6 Evidence-Based Complementary and Alternative Medicine



Q(t1) �

0 0 0 0 0
1 0 0 0 0
0 0.39 0.61 0 0
0 0 1 0 0
0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

1 0 0 0 0
0.30 0.70 0 0 0
0 0.48 0.52 0 0
0 0 0 0 0
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

Her higher-order coefficients of each treatment course
were λt1� 0.42, λt2� 0.28, and λt3� 0.30.

+e state transfer matrix of a 66-year male patient
(patient g) in each treatment course was defined as follows:

Q(t1) �

0 0 0 0 0

0.5 0.5 0 0 0

0 0 1 0 0

0 0 0.79 0.21 0

0 0 0.35 0.65 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

1 0 0 0 0

1 0 0 0 0

0 0.56 0.23 0.21 0

0 0 1 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

1 0 0 0 0

0.62 0.38 0 0 0

0 0.65 0.35 0 0

0 0 1 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(23)

His higher-order coefficients of each treatment course
were λt1� 0.45, λt2� 0.30, and λt3� 0.25.

+e state transfer matrix of a 50-year male patient
(patient h) in each treatment course was defined as follows:

Q(t1) �

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0.37 0.63 0 0
0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

1 0 0 0 0
0.66 0.34 0 0 0
0 1 0.58 0.42 0
0 0 0.58 0.42 0
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

1 0 0 0 0
1 0.70 0 0 0
0 0.50 0.50 0 0
0 0 1 0 0
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(24)

His higher-order coefficients of each treatment course
were λt1� 0.43, λt2� 0.34, and λt3� 0.23.

+e state transfer matrix of a 68-year male patient
(patient i) in each treatment course was defined as follows:

Q(t1) �

0 0 0 0 0
1 0 0 0 0

0.48 0.52 0 0 0
0 0 0.79 0.21 0
0 0 0.52 0.48 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

0.68 0.32 0 0 0
1 0 0 0 0

0.29 0.45 0.26 0 0
0 0 0.42 0.58 0
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

1 0 0 0 0
0.71 0.29 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

Table 3: Classification of grade according to severity score for diabetic ulcers.

Index
Grade

I II III IV V
Wound area (K1: cm2) 0-1 1–4 4–9 9–16 >16
Wound depth (K2: cm) 0-1 1-2 2-3 3-4 >4
Exudates color (K3) Transparent Red Yellow Green Black
Exudates volume (K4: layers of gauze wetted) 0–4 5–8 9–12 13–16 >16
Necrotic tissue area (K5: %) 0–20 21–40 41–60 61–80 81–100
New granulation and epithelial tissue color (K6) Bright red Red Light red Pink Pale
New granulation and epithelial tissue area (K7: %) 81–100 61–80 41–60 21–40 0–20
Wound skin temperature (K8) Normal Slightly hot Hot Pretty hot Scorching hot
Wound skin color (K9) Normal Reddish Red Bright red Dark red
Pain (K10: VAS) 0–2 3-4 5-6 7-8 9-10
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Table 4: Index levels at each time point of 15 patients.

Index t0 t1 t2 t3 t4 t0 t1 t2 t3 t4 t0 t1 t2 t3 t4
Patient a Patient b Patient c

K1 IV III II II II IV III II II II III II II II II
K2 IV II II I II V IV III II II IV III II I II
K3 III II I I I IV III II II II II I I I I
K4 III I I I I II I I I I IV III II II II
K5 II II I I I III II II I II II I I I I
K6 IV III II I II IV III II I II IV III II II II
K7 V IV III II II V III II II II V IV III II II
K8 III I I I I III II I I I III II II I I
K9 V IV III II II III II I II II IV III III III III
K10 V IV II II II III II I I I IV III III II II

Patient d Patient e Patient f
K1 IV III II II II IV III II II II III II II II II
K2 III II II II II V IV III II II V IV III III III
K3 II I I I I IV III II I II II I I I I
K4 II II I I I II I I I I IV III II II II
K5 III II I I I III II I I II II I I I I
K6 IV III II I II IV III II I II IV III II II II
K7 V IV III II II IV III III II II V IV III II III
K8 III I I I I II I I I I III III II I I
K9 V III II II II IV III III II II IV III II I II
K10 V IV IV III III III II II I I III III II II II

Patient g Patient h Patient i
K1 V IV III III III IV II II I I IV III II I II
K2 V III III II II III II I I I V III I I I
K3 IV III II II II II I I I I III II I I I
K4 II II I I I III II I I I II I II I I
K5 III III II I I II I I I I III I I I I
K6 IV III IV III III V IV III III III IV III III II II
K7 V IV IV III IV IV III III II II V IV IV III IV
K8 II I I I I II I I I I II I I I I
K9 IV IV III II III IV III IV III III IV IV III II III
K10 IV III II I II V IV IV III IV IV III II II II

Patient j Patient k Patient l
K1 IV III II II II III II I I I V IV III III III
K2 III II I I I III II I I I IV III II I II
K3 II II I I I II II II I I III II I I I
K4 III I I I I II I I I I III I I I I
K5 II II I I I II II II I I II II I I I
K6 IV III II I II III II I I I IV III II II II
K7 V IV III II III IV III III II III V IV III II II
K8 III I II I I III III II I II III I I I I
K9 V IV III III III V IV III II III V III IV III III
K10 V IV II II II III III II II II IV IV III II III

Patient m Patient n Patient o
K1 IV III II II II III II II I I III III II II II
K2 III III II II II IV III IV III III IV IV IV III III
K3 III II I I I IV IV III III III II I I I I
K4 IV III II II II II I I I I IV III II II I
K5 III I I I I III II II I II II I I I I
K6 V IV III III IV IV III III II III IV III II I II
K7 IV III IV III II IV III II II II V IV III II III
K8 V III II II II III II I I I III II II I II
K9 III II II I II IV III III II II IV III III II II
K10 III III II I II III II II I I III III II I I
+e symptom index levels of patients a–o at five time points were obtained by evaluation after every treatment course in the study. Levels I, II, III, IV, and V
were asymptomatic, lighter, moderate, heavier, and severe, respectively.
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Table 5: +e CM characteristic numbers and the cloud weight standardized value of each index.

Index Ex En He
Wound area (K1: cm2) 0.11073 0.0217 0.00486
Wound depth (K2: cm) 0.12116 0.01886 0.00515
Exudates color (K3) 0.10537 0.01384 0.00412
Exudates volume (K4: layers of gauze wetted) 0.0891 0.01365 0.00451
Necrotic tissue area (K5: %) 0.09907 0.01335 0.00348
New granulation and epithelial tissue color (K6) 0.10844 0.01164 0.00255
New granulation and epithelial tissue area (K7: %) 0.10733 0.01166 0.00280
Wound skin temperature (K8) 0.09309 0.01464 0.00168
Wound skin color (K9) 0.08363 0.01205 0.00308
Pain (K10: VAS) 0.08207 0.01385 0.00154
Ex, En, and He were the CM characteristic numbers corresponding to each symptom index k, which were used to calculate cloud weights. Ex, En, and He
denote the expected value, entropy, and hyperentropy, respectively. Ex is the expected value of the cloud drop which can represent the qualitative concept. En
reflects the dispersion degree of cloud drops, which also determines the certainty of cloud drops. He is the entropy of En and reveals the uncertainty
measurement of En which is used to settle confusion degree. ω is defined as the standardized value of cloud weight.
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Figure 2: Continued.
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His higher-order coefficients of each treatment course
were λt1� 0.36, λt2� 0.30, and λt3� 0.34.

+e state transfer matrix of a 61-year female patient
(patient j) in each treatment course was defined as
follows:

Q(t1) �

0 0 0 0 0

0 1 0 0 0

0.60 0.40 0 0 0

0 0 1 0 0

0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

0.50 0.50 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0.3 0.7 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

1 0 0 0 0

0.51 0.49 0 0 0

0 0.58 0.42 0 0

0 0 0 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(26)

Her higher-order coefficients of each treatment course
were λt1� 0.40, λt2� 0.29, and λt3� 0.31.

+e state transfer matrix of a 43-year male patient
(patient k) in each treatment course was defined as follows:

Q(t1) �

0 0 0 0 0

0.30 0.70 0 0 0

0 0.67 0.33 0 0

0 0 1 0 0

0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

1 0 0 0 0

0.62 0.38 0 0 0

0 0.61 0.39 0 0

0 0 1 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

1 0 0 0 0

0.79 0.21 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(27)

His higher-order coefficients of each treatment course
were λt1� 0.40, λt2� 0.24, and λt3� 0.36.

+e state transfer matrix of a 58-year male patient
(patient l) in each treatment course was defined as
follows:
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Figure 2: Cloud images of the index weight. (a–j) +e cloud images corresponding to ten symptoms. +e confusion value of each symptom
is less than 1, which is not “fog,” indicating that the evaluation of symptom weight had practical value.
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Q(t1) �

0 0 0 0 0
0 1 0 0 0

0.62 0.38 0 0 0
0 0 0.74 0.26 0
0 0 0.27 0.73 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q(t2) �

1 0 0 0 0
1 0 0 0 0
0 0.74 0 0.26 0
0 0 1 0 0
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q(t3) �

1 0 0 0 0
0.52 0.48 0 0 0
0 0.63 0.37 0 0
0 0 1 0 0
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(28)

His higher-order coefficients of each treatment course
were λt1� 0.46, λt2� 0.30, and λt3� 0.24.

Table 6: Calculation results of CD.

Patient Time I II III IV V

Patient a

t0 0 0.1 0.29 0.34 0.27
t1 0.18 0.33 0.22 0.27 0
t2 0.39 0.42 0.19 0 0
t3 0.62 0.38 0 0 0
t4 0.39 0.61 0 0 0

Patient b

t0 0 0.09 0.35 0.33 0.23
t1 0.09 0.35 0.44 0.12 0
t2 0.34 0.54 0.12 0 0
t3 0.47 0.53 0 0 0
t4 0.26 0.74 0 0 0

Patient c

t0 0 0.21 0.2 0.48 0.11
t1 0.21 0.2 0.48 0.11 0
t2 0.21 0.52 0.27 0 0
t3 0.42 0.5 0.08 0 0
t4 0.3 0.62 0.08 0 0

Patient d

t0 0 0.2 0.31 0.22 0.27
t1 0.2 0.31 0.3 0.19 0
t2 0.39 0.42 0.11 0.08 0
t3 0.5 0.42 0.08 0 0
t4 0.39 0.53 0.08 0 0

Patient e

t0 0 0.18 0.18 0.52 0.12
t1 0.18 0.18 0.52 0.12 0
t2 0.28 0.41 0.31 0 0
t3 0.58 0.42 0 0 0
t4 0.26 0.74 0 0 0

Patient f

t0 0 0.21 0.28 0.28 0.23
t1 0.21 0.11 0.45 0.23 0
t2 0.21 0.56 0.23 0 0
t3 0.38 0.5 0.12 0 0
t4 0.3 0.47 0.23 0 0

Patient g

t0 0 0.18 0.1 0.38 0.34
t1 0.09 0.09 0.52 0.3 0
t2 0.18 0.29 0.31 0.22 0
t3 0.36 0.31 0.33 0 0
t4 0.28 0.31 0.3 0.11 0

Patient h

t0 0 0.3 0.21 0.3 0.19
t1 0.3 0.32 0.19 0.19 0
t2 0.51 0.11 0.22 0.16 0
t3 0.62 0.11 0.27 0 0
t4 0.62 0.11 0.19 0.08 0

Patient i

t0 0 0.18 0.21 0.38 0.23
t1 0.28 0.11 0.42 0.19 0
t2 0.42 0.28 0.19 0.11 0
t3 0.62 0.27 0.11 0 0
t4 0.51 0.3 0.08 0.11 0

Patient j

t0 0 0.21 0.3 0.22 0.27
t1 0.18 0.33 0.22 0.27 0
t2 0.42 0.39 0.19 0 0
t3 0.62 0.3 0.08 0 0
t4 0.51 0.3 0.19 0 0

Patient k

t0 0 0.3 0.51 0.11 0.08
t1 0.09 0.55 0.28 0.08 0
t2 0.43 0.38 0.19 0 0
t3 0.73 0.27 0 0 0
t4 0.64 0.17 0.19 0 0

Patient l

t0 0 0.1 0.29 0.31 0.3
t1 0.18 0.21 0.31 0.3 0
t2 0.39 0.23 0.3 0.08 0
t3 0.51 0.3 0.19 0 0
t4 0.39 0.34 0.27 0 0

Table 6: Continued.

Patient Time I II III IV V

Patient m

t0 0 0 0.49 0.31 0.2
t1 0.1 0.19 0.6 0.11 0
t2 0.21 0.57 0.11 0.11 0
t3 0.37 0.41 0.22 0 0
t4 0.21 0.68 0 0.11 0

Patient n

t0 0 0.09 0.38 0.53 0
t1 0.09 0.38 0.42 0.11 0
t2 0.18 0.4 0.3 0.12 0
t3 0.47 0.3 0.23 0 0
t4 0.37 0.29 0.34 0 0

Patient o

t0 0 0.21 0.28 0.4 0.11
t1 0.21 0.09 0.47 0.23 0
t2 0.21 0.48 0.19 0.12 0
t3 0.49 0.39 0.12 0 0
t4 0.38 0.39 0.23 0 0

+e connection degree components of each index level of patients a–o were
listed separately at the five time points in the study. I, II, III, IV, and V
represent five index levels of asymptomatic, lighter, moderate, heavier, and
severe, respectively.

Table 7: Calculation results of efficacy scores (U).

Patient t0 t1 t2 t3 t4
Patient a 3.44 5.84 7.4 8.24 7.78
Patient b 3.6 5.82 7.44 7.94 7.52
Patient c 4.02 6.02 6.88 7.68 7.44
Patient d 3.88 6.04 7.24 7.84 7.62
Patient e 3.84 5.84 6.94 8.16 7.52
Patient f 3.94 5.6 6.96 7.52 7.14
Patient g 3.24 4.94 5.86 7.06 6.52
Patient h 4.24 6.46 6.94 7.7 7.54
Patient i 3.68 5.96 7.02 8.02 7.42
Patient j 3.9 5.84 7.46 8.08 7.64
Patient k 5.06 6.3 7.48 8.46 7.9
Patient l 3.38 5.54 6.86 7.64 7.24
Patient m 3.58 5.56 6.76 7.3 6.98
Patient n 4.12 5.9 6.28 7.48 7.06
Patient o 4.18 5.56 6.56 7.74 7.3
+e efficacy scores of patients a–o at each time point were calculated by
using equation (5) in the study.
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+e state transfer matrix of a 47-year male patient
(patient m) in each treatment course was defined as
follows:

Q(t1) �

0 0 0 0 0

0 0 0 0 0

0.2 0.39 0.41 0 0

0 0 1 0 0

0 0 0.45 0.55 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

1 0 0 0 0

0.58 0.42 0 0 0

0 0.82 0 0.18 0

0 0 1 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

1 0 0 0 0

0.28 0.72 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(29)

His higher-order coefficients of each treatment course
were λt1� 0.38, λt2� 0.31, and λt3� 0.31.

+e state transfer matrix of a 55-year male patient
(patient n) in each treatment course was defined as
follows:

Q(t1) �

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0.79 0.21 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

1 0 0 0 0

0.24 0.76 0 0 0

0 0.26 0.45 0.29 0

0 0 1 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

1 0 0 0 0

0.73 0.28 0 0 0

0 0.63 0.37 0 0

0 0 1 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(30)

His higher-order coefficients of each treatment course
were λt1� 0.44, λt2� 0.36, and λt3� 0.20.

+e state transfer matrix of a 69-year female patient
(patient o) in each treatment course was defined as
follows:

Q(t1) �

0 0 0 0 0

1 0 0 0 0

0 0.32 0.68 0 0

0 0 0.70 0.30 0

0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t2) �

1 0 0 0 0

0 1 0 0 0

0 0.83 0.17 0 0

0 0 0.48 0.52 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q(t3) �

1 0 0 0 0

0.58 0.42 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(31)

Her higher-order coefficients of each treatment course
were λt1� 0.43, λt2� 0.32, and λt3� 0.25.

+e state transition matrix and the higher-order coef-
ficient were substituted into equation (16) to obtain the
predicted CD at time t4 (Table 8). In order to verify the
accuracy of the prediction of the higher-order Markov
chain-SPA model, the traditional first-order Markov chain-
SPAmodel [11] was used to predict the connection degree of
t4 (Table 8).

+e CD of 15 patients at each time (Table 6) was used to
compare the efficacy of each patient in order to better
evaluate the curative effect. At the time t4, the corresponding
CD of 15 patients were μ (t4)� 0.39 + 0.61i, μ (t4)� 0.26 +
0.74i, μ (t4)� 0.30 + 0.62i+ 0.08j, μ (t4)� 0.39 + 0.53i+ 0.08j,
μ (t4)� 0.26 + 0.74i and μ (t4)� 0.30 + 0.47i+ 0.23j, μ (t4)�

0.28 + 0.31i+ 0.3j+ 0.11k, μ (t4)� 0.62 + 0.11i+ 0.19j+ 0.08k,
μ (t4)� 0.51 + 0.30i+ 0.08j+ 0.11k, μ (t4)� 0.51 + 0.30i+
0.19j, μ (t4)� 0.64 + 0.17i+ 0.19j, μ (t4)� 0.39 + 0.34i+ 0.27j,
μ (t4)� 0.21 + 0.68i+ 0.11k, μ (t4)� 0.37 + 0.29i+ 0.34j, and
μ (t4)� 0.38 + 0.39i+ 0.23j, respectively. According to the
maximum connection degree principle, the levels of curative
effect of 15 patients were I and II. In the t3-t4 treatment
course, there were no significant changes and even slight
reduction of calculation results of effect scores (U), which
proposed that the healing of diabetic ulcer has a certain
difficulty. However, the overall curative efficacy score of 15
patients tended to increase (Figure 3), showing that the
treatment was therapeutic and the condition has been
improved.

According to Table 8, the connection numbers of time t4
predicted by the higher-order Markov chain-SPA model
were μ′ (t4)� 0.44 + 0.38i+ 0.11j+ 0.08k, μ′ (t4)�

0.30 + 0.46i+ 0.19j+ 0.04k, μ′ (t4)� 0.30 + 0.42i+ 0.25j+
0.03k, μ′ (t4)� 0.39 + 0.39i+ 0.15j+ 0.07k, μ′ (t4)� 0.36 +
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Table 8: +e connection degree (CD) of predicted and actual and corresponding efficacy scores (U).

Patient Results +e five-element connection degree Efficacy scores (U) Relative error (%)

Patient a

Actual results μ (t4)� 0.39 + 0.61i 7.78
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.44 + 0.38i+ 0.11j+ 0.08k 7.34 5.99

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.38 + 0.36i+ 0.05j+ 0.02k+ 0.19l 6.44 17.22

Patient b

Actual results μ (t4)� 0.26 + 0.74i 7.52
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.30 + 0.46i+ 0.19j+ 0.04k 7.03 6.97

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.45 + 0.33i+ 0.07j+ 0.01k+ 0.14l 6.91 8.11

Patient c

Actual results μ (t4)� 0.30 + 0.62i+ 0.08j 7.44
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.30 + 0.42i+ 0.25j+ 0.03k 6.96 6.90

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.45 + 0.33i+ 0.07j+0 .01k+ 0.14l 6.88 7.53

Patient d

Actual results μ (t4)� 0.39 + 0.53i+ 0.08j 7.62
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.39 + 0.39i+ 0.15j+ 0.07k 7.20 5.83

Predicted results of traditional Markov
chain-spa

μ″ (t4)�

0.38 + 0.39i+ 0.04j+ 0.02k+ 0.17l 6.58 13.65

Patient e

Actual results μ (t4)� 0.26 + 0.74i 7.52
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.36 + 0.34i+ 0.26j+ 0.04k 7.06 6.52

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.42 + 0.34i+ 0.09j+ 0.01k+ 0.14l 6.78 9.84

Patient f

Actual results μ (t4)� 0.30 + 0.47i+ 0.23j 7.14
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.28 + 0.40i+ 0.25j+ 0.07k 6.78 5.15

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.32 + 0.40i+ 0.12j+ 0.02k+ 0.19l 6.53 8.54

Patient g

Actual results μ (t4)� 0.28 + 0.31i+ 0.3j+ 0.11k 6.52
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.24 + 0.25i+ 0.37j+ v0.14k 6.17 5.33

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.29 + 0.19i+ 0.34j+ 0.08k+ 0.11l 5.97 8.50

Patient h

Actual results μ (t4)� 0.62 + 0.11i+ 0.19j+ 0.08k 7.54
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.51 + 0.16i+ 0.23j+ 0.10k 7.16 5.03

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.44 + 0.15i+ 0.19j+ 0.06k+ 0.16l 6.29 16.62

Patient i

Actual results μ (t4)� 0.51 + 0.30i+ 0.08j+ 0.11k 7.42
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.45 + 0.22i+ 0.24j+ 0.10k 7.03 5.27

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.46 + 0.19i+ 0.14j+ 0.05k+ 0.15l 6.53 12.01

Patient j

Actual results μ (t4)� 0.51 + 0.30i+ 0.19j 7.64
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.42 + 0.34i+ 0.16j+ 0.08k 7.20 5.72

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.37 + 0.35i+ 0.08j+ 0.02k+ 0.18l 6.39 16.35

Patient k

Actual results μ (t4)� 0.64 + 0.17i+ 0.19j 7.90
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.43 + 0.40i+ 0.15j+ 0.03k 7.46 5.61

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.44 + 0.32i+ 0.08j+ 0.01k+ 0.15l 6.80 13.89
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0.34i+ 0.26j+ 0.04k and μ′ (t4)� 0.28 + 0.40i+ 0.25j+ 0.07k,
μ′ (t4)� 0.24 + 0.25i+ 0.37j+ 0.14k, μ′ (t4)� 0.51 + 0.16i+
0.23j+ 0.10k, μ′ (t4)� 0.45 + 0.22i+ 0.24j+ 0.10k, μ′ (t4)�

0.42 + 0.34i+ 0.16j+ 0.08k, μ′ (t4)� 0.43 + 0.40i+ 0.15j+
0.03k, μ′ (t4)� 0.40 + 0.26i+ 0.25j+ 0.09k, μ′ (t4)� 0.24 +
0.39i+ 0.30j+ 0.07k, μ′ (t4)� 0.29 + 0.35i+ 0.29j+ 0.07k, and
μ′ (t4)� 0.33 + 0.34i+ 0.23j+ 0.10k. +e curative efficacy
scores were 7.34, 7.03, 6.96, 7.20, 7.06, 6.78, 6.17, 7.16, 7.03,
7.20, 7.46, 6.91, 6.60, 6.73, and 6.83, respectively, and the
actual efficacy scores were 7.78, 7.52, 7.44, 7.62, 7.52, 7.14,
6.52, 7.54, 7.42, 7.64, 7.90, 7.24, 6.98, 7.06, and 7.30. +e
corresponding relative errors of prediction were 5.99%,
6.97%, 6.90%, 5.83%, 6.52%, 5.15%, 5.33%, 5.03%, 5.27%,
5.72%, 5.61%, 4.53%, 5.44%, 4.71%, and 6.51%, indicating
that the higher-order Markov chain-SPA curative effect
prediction method is effective and can be applied to clinical
practice. +e connection degrees of time t4 predicted by the
first-order Markov chain-SPA model were μ″ (t4)� 0.38 +
0.36i+ 0.05j+ 0.02k+ 0.19l, μ″ (t4)� 0.45 + 0.33i+ 0.07j+
0.01k+ 0.14l, μ″ (t4)� 0.45 + 0.33i+ 0.07j+ 0.01k+ 0.14l, μ″
(t4)� 0.38 + 0.39i+ 0.04j+ 0.02k+ 0.17l, μ″ (t4)� 0.42 +
0.34i+ 0.09j+ 0.01k+ 0.14l, μ″ (t4)� 0.32 + 0.40i+ 0.12j+
0.02k+ 0.19l, μ″ (t4)� 0.29 + 0.19i+ 0.34j+ 0.08k+ 0.11l, μ″
(t4)� 0.44 + 0.15i+ 0.19j+ 0.06k+ 0.16l, μ″ (t4)� 0.46 +
0.19i+ 0.14j+ 0.05k+ 0.15l, μ″ (t4)� 0.37 + 0.35i+ 0.08j+
0.02k+ 0.18l, μ″ (t4)� 0.44 + 0.32i+ 0.08j+ 0.01k+ 0.15l, μ″
(t4)� 0.37 + 0.28i+ 0.16j+ 0.05k+ 0.14l, μ″ (t4)� 0.24 +
0.25i+ 0.27j+ 0.02k+ 0.21l, μ″ (t4)� 0.34 + 0.31i+ 0.23j+
0.04k+ 0.07l, and μ″ (t4)� 0.34 + 0.33i+ 0.18j+ 0.05k+ 0.10l.
+e curative efficacy scores were 6.44, 6.91, 6.88, 6.58, 6.78,
6.53, 5.97, 6.29, 6.53, 6.39, 6.80, 6.39, 5.60, 6.60, and 6.51, and
the corresponding relative errors were 17.22%, 8.11%, 7.53%,
13.65%, 9.84%, 8.54% 8.50%, 16.62%, 12.01%, 16.35%,

13.89%, 11.78%, 19.79%, 6.53%, and 10.80%. +e results of
the t-test analysis showed that data were normally distrib-
uted within the difference between two groups at the sig-
nificant level of 0.05. +e paired t-test resulted in p< 0.05;
the difference was statistically significant (Table 9). We could
draw the conclusion that there was a difference on relative
error between the groups of high-order Markov chain-SPA
and the traditional Markov chain-SPA model (p< 0.05),
where the high-order Markov chain-SPA curative effect
prediction model is more accurate than the first-order
Markov chain-SPA model.

4. Discussion

Medical decision-making composed of curative effect
analysis and prediction is of significance for clinical research.
It should be noted that studies mainly put emphasis on
evaluating the current curative effect that pays less attention
to predicting the change and trend of future curative effect.
Based on Markov chain and SPA method, this paper applied
a higher-order Markov chain-SPA model for the study of
curative effect prediction. At present, SPA and the Markov
chain were used in many fields of evaluation and prediction
research. For instance, study reported that Bao and Zhang
[29] adopted SPA to evaluate the emergency response ca-
pacity of large airports so that factors and mechanism of
airport vulnerability and emergency response capacity on
airport flexibility have been made sure of to improve the
resilience of airports. Wang et al. [25] used rank set pair
analysis (RSPA) combined with wavelet denoising (WD) to
establish hydrometeorological time series prediction model
for disaster reduction of drought and flood. +e model was
compared with the method of conventional Autoregressive

Table 8: Continued.

Patient Results +e five-element connection degree Efficacy scores (U) Relative error (%)

Patient l

Actual results μ (t4)� 0.39 + 0.34i+ 0.27j 7.24
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.40 + 0.26i+ 0.25j+ 0.09k 6.91 4.53

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.37 + 0.28i+ 0.16j+ 0.05k+ 0.14l 6.39 11.78

Patient
m

Actual results μ (t4)� 0.21 + 0.68i+ 0.11k 6.98
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.24 + 0.39i+ 0.30j+ 0.07k 6.60 5.44

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.24 + 0.25i+ 0.27j+ 0.02k+ 0.21l 5.60 19.79

Patient n

Actual results μ (t4)� 0.37 + 0.29i+ 0.34j 7.06
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.29 + 0.35i+ 0.29j+ 0.07k 6.73 4.71

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.34 + 0.31i+ 0.23j+ 0.04k+ 0.07l 6.60 6.53

Patient o

Actual results μ (t4)� 0.38 + 0.39i+ 0.23j 7.30
Predicted results of higher-order Markov

chain-SPA μ′ (t4)� 0.33 + 0.34i+ 0.23j+ 0.10k 6.83 6.51

Predicted results of traditional Markov
chain-SPA

μ″ (t4)�

0.34 + 0.33i+ 0.18j+ 0.05k+ 0.10l 6.51 10.80

+e connection degrees predicted by higher-order Markov chain-SPAmodel and efficacy scores at time t4 were compared with the actual connection degrees
and the connection degrees predicted by the traditional first-orderMarkov chain-SPAmodel.+e relative error is the proportion of the difference between the
predicted value and the actual value in the predicted value.
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Figure 3: Continued.

Evidence-Based Complementary and Alternative Medicine 15



Integrated Moving Average (ARIMA), Artificial Neural
Networks (ANNs), and RSPA alone where the error of WD-
RSPAmodel was relatively less. Kelly et al. [30] constructed a
Markov chain/cellular automata (CA-Markov) model for
predicting land use/land cover changes in environments
predisposed to desertification. It was found that CA-Markov
model could effectively estimate the total land area most
easily affected by desertification process. Du et al. [31]
proposed a continuous time series Markov model (CTS-
MM) for real-time position prediction. +e results showed
that the position prediction effect of CTS-MM in accurate
minutes is better compared with the traditional position
prediction model.

+e SPA combined with Markov chain model has also
been widely applied to prediction analysis successfully in
many fields. For instance, Xie and Guo [11] used SPA
combined with first-order Markov chain to analyze the
influence of human factors in the production process in
order to facilitate the management of human factors and
reduce the risk of human factors in the production process.
It was proved that the prediction model can be used to
evaluate the influence of human factors in the actual pro-
duction process. In the field of information security, Zhang

et al. [12] applied SPA and first-order Markov chain to
establish a smart grid information security risk assessment
model. Compared with the previous smart grid information
security risk assessment system, the influence of subjective
factors was reduced and every link between the components
of the information system was taken into account. In the
field of geological engineering, Liu et al. [32] used SPA
theory combined with fuzzy-Markov theory to predict the
uncertainty coefficient in landslide SPA model. A new SPA-
fuzzy-Markov prediction model for landslide deformation
was proposed. Compared with SPA model, the composite
model was determined to improve the overall prediction
accuracy and was of value in practical geotechnical moni-
toring and analysis. In the field of ecological environment,
Qu et al. [33] constructed an eco-impact index. +e im-
proved SPAmethod was used to evaluate the ecological level
of Changhe watershed; moreover, Markov chain theory was
used to forecast the ecological evolution of the watershed in
2020. +is research provided references for the study of
ecological evolution of small watersheds.

Although Markov chain has been successfully used to
predict the natural progress of diseases in the field of medicine
such as the progress of retinopathy in patients with type 2

a
b
c

d
e

t0 t1 t2 t3 t4
0

0.2

0.4

0.6

0.8

Co
m

po
ne

nt
s o

f C
D

Patient m

(m)

a
b
c

d
e

t0 t1 t2 t3 t4
0

0.1
0.2
0.3
0.4
0.5
0.6

Co
m

po
ne

nt
s o

f C
D

Patient n

(n)

a
b
c

d
e

t0 t1 t2 t3 t4
0

0.1
0.2
0.3
0.4
0.5
0.6

Co
m

po
ne

nt
s o

f C
D

Patient o

(o)

Pa
tie

nt
 a

Pa
tie

nt
 b

Pa
tie

nt
 c

Pa
tie

nt
 d

Pa
tie

nt
 e

Pa
tie

nt
 f

Pa
tie

nt
 g

Pa
tie

nt
 h

Pa
tie

nt
 i

Pa
tie

nt
 j

Pa
tie

nt
 k

Pa
tie

nt
 l

Pa
tie

nt
 m

Pa
tie

nt
 n

Pa
tie

nt
 o

0
2
4
6
8

10

t4
t2

t0

Efficacy scores (U)

(p)
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diabetes mellitus [34], currently there is no literature on the
application of Markov chain combined with SPA in medical
efficacy evaluation and predictive analysis.

Refractory wound is the most common skin complication
of diabetes and the diabetic ulcers are the main cause of
nontraumatic amputation of lower extremities. Epidemio-
logical studies have shown that the amputation rate of diabetic
feet in countries with a high incidence of diabetes, such as
China, is as high as 19.03% [35]. TCM is effective in the
treatment of diabetic ulcers, which has the advantages of less
scar formation, “nonoperation,” lower cost, and good patient
compliance [5, 6]. SJHY treatment has been applied widely in
the treatment of chronic refractory ulcers. SPA-CM evalua-
tion model was constructed for evaluating the curative effect
of SJHY method in the treatment of diabetic ulcers [8]. On
this basis, the establishment of curative effect prediction
model is the key that we must pay attention to at present.

+is paper suggested a higher-order Markov chain-SPA
curative effect prediction model to evaluate the clinical
curative effect and predicted the future curative effect
through the curative effect state of previous several times.
Clinical efficacy always changes with individual differences,
environmental factors, and so on. +rough the evaluation of
clinical curative effect by establishing the SPAmodel, the CD
is composed of five symptom grades and the proportion of
the five grades can be clearly presented. +e curative efficacy
score (U) is the reflection of the therapeutic effect. +e level
of efficacy of patients can be clearly shown. +e Markov
chain is a commonly used method to describe dynamic
random phenomena that predict the future development of
the system according to transition probability.

With regard to the weight of symptom indexes of cu-
rative effect evaluation, CM was applied [8]. Obviously,
applicability of the prediction model plays a core role in
affecting the accuracy of prediction. +e traditional first-
order Markov chain abandons the long-term useful infor-
mation when describing random phenomena, which makes
it easy to bring out the distortion of prediction results in
practical application. +e curative effect is a sequential
process and the previous curative effect also has an impact
on the current symptoms.+erefore, this paper extended the
traditional first-order Markov chain to higher-order Markov
chain for the sake of constructing a curative effect prediction
model. In the case, curative effect of the fourth course of
treatment was predicted by calculating the curative effect of
the first three courses of treatment. +e relative errors be-
tween the curative efficacy score predicted by the higher-
order model and the actual value were 5.99%, 6.97%, 6.90%,
5.83%, 6.52%, 5.15%, 5.33%, 5.03%, 5.27%, 5.72%, 5.61%,
4.53%, 5.44%, 4.71%, and 6.51%, respectively. However, the

relative errors of the traditional first-order model were
17.22%, 8.11%, 7.53%, 13.65%, 9.84%, 8.54%, 8.50%, 16.62%,
12.01%, 16.35%, 13.89%, 11.78%, 19.79%, 6.53%, and 10.80%
correspondingly, which proves that the higher-order model
can be applied to practice and has high accuracy. It provides
a new way to predict the curative effect of diabetic ulcer and
helps assist clinicians or researchers in making better clinical
decisions or evaluating clinical research programs.

5. Conclusions

To conclude, the study introduced a curative effect pre-
diction model based on Markov chain and SPA. In this
paper, SJHY treatment was applied to treat diabetic ulcer and
the curative effect of the first three courses treatment was
evaluated to predict the curative effect of the fourth treat-
ment course. +e predicted values were compared with the
actual values and the predicted values of the traditional first-
order model. +e following conclusions are obtained:

(1) +is paper introduced a curative effect prediction
model, which used the transfer probability and five-
element connection degree between each symptom
level to construct the higher-order Markov chain-
SPA curative effect prediction model. +e model was
applied to predict the curative effect of diabetic ulcer.
+e relative error between the predicted results and
the actual value is about 5.70%, indicating that the
higher-order efficacy prediction model can be used
in clinical efficacy prediction of diabetic ulcers.

(2) In this paper, CM was used to calculate the weight of
curative effect indexes because of the different impor-
tance of different symptoms in the evaluation of curative
effect. Due to the limitation of the first-order Markov
chain only related to the current and the developed
curative effect related to many states after treatment, the
traditional first-order Markov chain is extended to the
higher-order Markov chain. +e results show that this
method improves the accuracy of the prediction model.

(3) In this paper, CM was used to calculate the constant
weight, which reflects the relative importance of the
index. +e relative error between the prediction result
and the actual value is approximately 5.70%, which is
far lower than traditional first-order Markov chain. In
the future, variable weightmethodwill be used tomake
the index weight change with the state of the curative
effect of the index, which reflects the importance of the
state order of the symptom index. Moreover, we will
evaluate and predict the curative effect for more and
longer time in order to reduce the prediction error and
make the prediction more accurate.

Abbreviations

ANNs: Artificial neural networks
ARIMA: Autoregressive integrated moving average
CA-Markov: Markov chain/cellular automata
CD: Connection degree
CM: Cloud model

Table 9: Comparison of the relative error between two groups of
high-order Markov chain-SPA and the traditional Markov chain-
SPA model.

Groups Means± SD
Higher-order Markov chain-SPA model 0.0570± 0.0073∗
Traditional Markov chain-SPA model 0.1208± 0.0392
∗p< 0.05 compared with the traditional Markov chain-SPA model.
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CTS-MM: Continuous time series Markov model
RSPA: Rank set pair analysis
SJHY: Sheng-ji Hua-yu
SPA: Set pair analysis
TCM: Traditional Chinese medicine
WD: Wavelet denoising.
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