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0is study aims to explore the possible homologous mechanism of 7 frequently-used herbs for heat-clearing and detoxification in
traditional Chinese medicine (HDTCM) for treating Alzheimer’s disease (AD), one of the most common types of dementia, based
on network pharmacology. Herbs that satisfied the criteria of containing chlorogenic acid, relating to AD and aligning with
HDTCM, were simultaneously collected to determine whether they have anti-AD effect based on a survey of the literature. Herb-
ingredient-target-disease networks were constructed by collecting information from the TCMSP and GeneCards public databases.
0e common targets of the herbs and ADwere identified for conducting a Gene Ontology (GO) analyses and a Reactome pathway
enrichment analysis. 0e results showed that PTGS1, IL-6, CASP3, and VEGFA were the predicted key gene targets. 0e IL-4 and
IL-13 signaling pathway, the ESR-mediated signaling pathway, and the extranuclear estrogen signaling pathway were the sig-
nificant pathways associated with the 7 herbs. 0is study revealed that the analogous anti-AD mechanism of the 7 herbs of
HDTCMmay be associated with anti-inflammation, which is a common effect of the chlorogenic acid and quercetin components.

1. Introduction

Alzheimer’s disease (AD), one of the most common neu-
rodegenerative diseases in people over 65 years old, is
characterized by neurofibrillary tangles, senile plaques,
neuronal loss, and cognitive decline [1–3]. According to a
report, the number of people diagnosed with AD will be no
less than 130 million by 2050 [4]. However, the mechanism
of AD remains unclear. More than 200 clinical trials for AD
around the world have been terminated because of inef-
fective treatment, and of the few remaining treatments, none
can completely prevent the progression of AD [5]. 0us,
searching for new AD drug resources, such as traditional
Chinese medicine (TCM) and natural products, is of par-
ticular importance [6].

TCM, especially the herbs and formulae, has been used
for more than a few thousand years in China and other
Southeast Asian countries to prevent or cure all kinds of
diseases, including neurodegenerative diseases [7, 8]. Based
on TCM theory, ameliorating the syndrome of hyperactivity

of heart-liver fire, a typical syndrome of AD, by using heat-
clearing and detoxifying traditional Chinese medicine
(HDTCM) is beneficial to retard the pathological progres-
sion of AD. For example, Huanglian-Jie-Du-Tang, a de-
coction that is composed of HDTCM relevant herbs such as
Coptis chinensis, Cortex Phellodendri, and Scutellaria bai-
calensis, is used for clearing heat, purging pathogenic fire,
and reducing amyloid-β accumulation during the treatment
of AD [9]. In addition, a large number of modern phar-
macological studies on natural ingredients isolated from
HDTCM sources (such as geniposide [10], andrographolide
[11], and berberine [12]) and their effects on AD have been
performed. 0erefore, developing new natural medicines
based on HDTCM brings hope to AD patients.

Chlorogenic acid (CGA), a polyphenol component, is a
widely available component in sources of HDTCM such as
Lonicera japonica [13]. 0e CGA content is used as a quality
control standard for some other herbs of HDTCM and TCM
formulae, such as Yinzhi detoxifying granules and Qing-
rejiedu oral liquid, in China. More importantly, CGA can
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significantly alleviate inflammation and oxidative stress, two
important promoters of AD. In addition, some reports have
indicated that CGA has potential neuroprotective effects.
0erefore, CGA was selected as one of the main components
used for screening candidate herbs.

In this study, 7 herbs were screened for further research.
Currently, research on these herbs in AD treatment is
limited to studies on monomer components or extracts.
Network pharmacology [14, 15] is used to systematically
evaluate the pharmacological effects of drugs with multiple
components and multiple targets by establishing links be-
tween targets, drugs, and diseases based on the principles of
systems biology. Given the characteristics of TCM and
shortcomings of obsolete TCM research methods, network
pharmacology was performed to explore the possible
analogous mechanisms of the 7 herbs of HDTCM on AD.
0e workflow of this study is described in Figure 1.

2. Materials and Methods

2.1. Identification of Candidate Herbs. Herbs that satisfied
the following criteria were collected, respectively: (i) con-
tained CGA; (ii) related to AD; and (iii) aligned with
HDTCM. 0e herbs containing CGA were collected from
the Traditional Chinese Medicine Systems Pharmacology
database [16] (TCMSP, http://lsp.nwu.edu.cn/tcmsp.php).
0e herbs relevant to AD were also collected from the
TCMSP database.0e classification criteria of HDTCMwere
based on Chinese Pharmacopoeia 2015 (part I). All the
candidate herbs were analyzed with Venny 2.1.0 (https://
bioinfogp.cnb.csic.es/tools/venny/index.html) to determine
the herbs that met the above criteria simultaneously. Finally,
the literature was reviewed to identify the herbs have anti-
AD pharmacodynamic effects.

2.2. Main Active Ingredient Screening and Target Collection.
It was confirmed that the ADME (absorption, distribution,
metabolism, and excretion) screening model is faster and
more effective than other traditional models [17–19].
0erefore, the main active ingredients of these herbs were
screened in the TCMSP database on the basis of two
pharmacokinetic parameters: oral bioavailability (OB) and
drug-likeness (DL). OB is extensively used to evaluate the
ability of drugs to overcome absorption barriers and enter
the blood circulation system and is determined by calcu-
lating the relationship between the drug and cytochrome
P450s and P-glycoprotein [17, 20]. DL represents the ability
of potential ingredients to become effective drugs by cal-
culating the similarity with a known drug, which is beneficial
to optimize pharmacokinetic properties to affect ADME
[17, 21]. 0e active ingredients were considered viable
according to ADME features with OB≥ 30% and DL≥ 0.18,
two critical value that indicate acceptable oral bioavailability
and drug-likeness as previously described [22]. All targets
(including the validated and predicted targets) related to
these active ingredients were extracted from the TCMSP
database and entered into the UniProt database [23] (http://
www.uniprot.org/) to obtain target-relevant gene names.

2.3. Target Fishing for AD Gene Targets. GeneCards is a
comprehensive compendium of annotative information
about human genes [24]. Significant AD-related genes
were mainly collected from GeneCards (https://www.
genecards.org/) based on a relevance score >10, a
threshold that indicates a significantly high correlation
with AD.

2.4. Network Construction and Analyses. In this study,
network pharmacology was used to explore the interrela-
tionships of the herbs, their ingredients, and targets with
AD, which were represented by nodes and edges. 0e
common targets of AD and the main active ingredients of
the 7 herbs were, respectively, determined by R, a free
software for statistical computing and graphic visualization.
0e shared targets for at least 5 herbs and AD were also
processed by R, and the results were added to STRING [25]
(https://string-db.org/) to construct a protein-protein-in-
teraction (PPI) network. To comprehensively study the
potential mechanism of the 7 kinds of herbs on AD, the
herb-ingredient-target-disease networks and the network of
herb-AD common targets were constructed by using
Cytoscape 3.7.1 [26].

2.5. Gene Ontology and Pathway Enrichment Analyses.
Gene Ontology [27] (GO), a widespread and comprehensive
computational model, provides gene annotations and a
logical framework of gene functions. OmicShare Tools
(https://www.omicshare.com/) was utilized to perform GO
enrichment analyses and thus reveal the functional changes
in these targets in three respects: molecular biological
function (genes that regulate molecular activity), biological
process (biological programs), and cellular components (the
relationship between cellular structure and gene function)
[27]. Reactome [28] (http://reactome.ncpsb.org/), a visual-
ization pathway database that highlights shared parent-child
relationships among pathways to reveal underlying func-
tional processes, was used to determine the potentially
enriched pathways involved in the anti-AD effect of the 7
herbs.

3. Results

3.1. Candidate Herb Information. 61 herbs containing CGA
and 499 herbs related to AD were collected from the TCMSP
database. Furthermore, 96 herbs for which heat-clearing and
detoxification effects had been clearly identified were found
in the Chinese Pharmacopoeia 2015 (part I). 0en, 12 herbs
that met the above criteria simultaneously emerged
(Table S1). Further research based on the literature review
revealed that only seven out of these twelve herbs had an
anti-AD pharmacodynamic effect (Table 1). Ultimately, as
shown in Figure 2, 7 herbs, namely,Andrographis paniculata
(AP), Coptis chinensis (CC), Cortex Phellodendri amurensis
(CPA), Lonicera japonica (LJ), Houttuynia cordata (HC),
Centella asiatica (CA), and Gardenia jasminoides (GJ), were
chosen for further study.
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3.2. Information on the Main Active Ingredients and Targets.
For each of these herbs, the main active ingredient had an
OB value≥ 30% and a DL value≥ 0.18. Finally, a total of 64

active ingredients in these herbs were identified: 13 in AP, 10
in CC, 17 in CPA, 8 in LJ, 5 in HC, 2 in CA, and 9 in GJ.
Moreover, 64 main active ingredients in the 7 herbs were
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Figure 1: Workflow of this study.

Table 1: Pharmacodynamic effect of anti-AD of 7 herbs.

Latin name Chinese name Pharmacodynamic effect of anti-AD

Andrographis paniculata Chuanxinlian Andrographolide, one of main active component of AP, reduced or eliminated Aβ aggregate
and attenuated Aβ neurotoxicity [11, 29, 30]

Coptis chinensis Huanglian Berberine and polysaccharide from CC could reduce Aβ-induced toxicity and ameliorate
cognitive impairment [12, 31, 32]

Cortex Phellodendri
amurensis Guanhuangbai 0e ethanol extract of CPA has the potential protective effect against neurotoxicity induced by

Aβ [33]
Lonicera japonica Jinyinhua LJ can effectively prevent the cognitive dysfunction induced by Aβ deposition [34]
Houttuynia cordata Yuxingcao HC water extract protects cortical neurons against Aβ-induced toxicity [35]
Centella asiatica Jixuecao CA extract reduces Aβ level and improves neuronal health [36, 37]
Gardenia jasminoides Zhizi GJ extract improves cognitive and memory impairment on Aβ-induced mouse [38]

CGA AD
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LJ
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(0%)

390
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Figure 2: Screening process for 7 herbs.
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associated with 1032 targets: 111 in AP, 222 in CC, 219 in
CPA, 113 in LJ, 119 in HC, 80 in CA, and 168 in GJ
(Tables S2–S8). Simultaneously, 711 significant gene targets
linked to AD were screened out by setting the relevance
score >10 (Table S9).

3.3. Network Construction and Analysis for the Anti-AD
Targets of the 7 Herbs. First, the targets of the main active
ingredients of the 7 herbs were mapped to the targets of AD.
Subsequently, the herb-ingredient-target-disease networks
of the 7 herbs were constructed, respectively. Among these
networks, the yellow triangle nodes represent the herbs, the
green ellipse nodes represent the ingredients, the blue di-
amond nodes represent the targets, the red rectangle nodes
represent the disease, and the edges represent the interac-
tions between each other. Degree, one of the significant
topological parameters, was used to assess the importance of
an ingredient or target in the network; in other words, the
higher the degree, the greater the likelihood that the herb
plays a role in anti-AD effect through the active ingredient or
target.

As shown in Figure 3(a), the AP network consisted of 30
nodes (1 herb, 1 disease, 13 ingredients, and 15 targets). 0is
network revealed that components such as wogonin
(degree� 11), deoxycamptothecine (degree� 9), and quer-
cetin tetramethyl (3′,4′,5,7) ether (degree� 9) were the high-
degree ingredients and that genes such as PTGS1
(degree� 11) and AR (degree� 11) were the high-degree
targets. As shown in Figure 3(b), the CC network consisted
of 77 nodes (1 herb, 1 disease, 10 ingredients, and 65 targets).
0is network revealed that components such as quercetin
(degree� 58) and palmatine (degree� 9) were the high-
degree ingredients and that genes such as PTGS2
(degree� 10), AR (degree� 9), and PTGS1 (degree� 9) were
the high-degree targets. As shown in Figure 3(c), the CPA
network consisted of 58 nodes (1 herb, 1 disease, 17 in-
gredients, and 39 targets). 0is network revealed that
components such as quercetin (degree� 33), wogonin
(degree� 11), and baicalein (degree� 10) were the high-
degree ingredients and that genes such as PTGS1
(degree� 15), AR (degree� 11), and ESR1 (degree� 9) were
the high-degree targets. As shown in Figure 3(d), the LJ
network consisted of 45 nodes (1 herb, 1 disease, 8 ingre-
dients, and 35 targets). 0is network revealed that com-
ponents such as quercetin (degree� 33) and 5-hydroxy-7-
methoxy-2-(3,4,5-trimethoxyphenyl) chromone
(degree� 7) were the high-degree ingredients and that genes
such as PTGS1 (degree� 5) and AR (degree� 5) were the
high-degree targets. As shown in Figure 3(e), the HC net-
work consisted of 40 nodes (1 herb, 1 disease, 5 ingredients,
and 33 targets).0is network revealed that components such
as quercetin (degree� 33) and kaempferol (degree� 15)
were the high-degree ingredients and that genes such as
NR3C2 (degree� 4) and PTGS1 (degree� 3) were the high-
degree targets. As shown in Figure 3(f), the CA network
consisted of 36 nodes (1 herb, 1 disease, 2 ingredients, and 32
targets). 0is network revealed that component quercetin
(degree� 32) was the high-degree ingredients and that genes

such as GSTM1 (degree� 2), PTGS1 (degree� 2), and IGF2
(degree� 2) were the high-degree targets. As shown in
Figure 3(g), the GJ network consisted of 47 nodes (1 herb, 1
disease, 9 ingredients, and 36 targets). 0is network revealed
that components such as quercetin (degree� 33) and
kaempferol (degree� 15) were the high-degree ingredients
and that genes such as PTGS1 (degree� 8) and PPARG
(degree� 6) were the high-degree targets. Information about
the ingredients and targets of the 7 herbs is illustrated in
Table 2.

Based on the network constructs of the 7 herbs, 34 shared
targets (Table S10) for at least 5 herbs and AD were further
analyzed by R to explore analogous mechanisms of anti-AD
and related biological processes among these herbs. As
shown in Figure 3(h), purple represents the shared targets of
5 herbs-AD common targets (such as EGFR, ESR1, ESR2,
and VEGFA), blue represents the shared targets of 6 herbs-
AD common targets (such as ACHE, BCL2, CASP8, and
CAV1), and green represents the shared targets of 7 herbs-
AD common targets (such as AR, CASP3, CASP9, and F7).

3.4. PPI Network Construction and Analysis. 0e data from
thirty-four shared targets were added to STRING to con-
struct a PPI network for exploring the interaction rela-
tionships with each other (Figure 4(a)). 0e degree was
calculated by NetworkAnalyzer in Cytoscape to reflect the
importance of a target in the network. As shown in
Figure 4(b), the darker color indicates a higher degree. 0e
analysis results showed that IL-6 (degree� 29), CASP3
(degree� 26), VEGFA (degree� 24), MYC (degree� 23),
EGFR (degree� 23), ESR1 (degree� 22), and ERBB2
(degree� 21) were the pivotal targets in this network.

3.5. GO and Pathway Enrichment Analyses. We carried out
GO enrichment analyses to further determine the functions
of these shared targets from three aspects. As shown in
Figure 5(a), twenty-six functional terms were enriched in the
biological process category, such as cellular process, meta-
bolic process, response to stimulus, and biological regula-
tion. Fourteen functional terms were enriched in the cellular
components category, such as cell part and organelle part.
Additionally, nine functional terms were enriched in the
molecular function category, such as binding, catalytic ac-
tivity, and molecular function regulator.

0e pathways analysis results revealed that 33 of 34
targets were found in the Reactome database, through which
319 pathways were identified (Figure 5(b)). 0e enriched
pathways with a P value≤ 0.05 were mainly concentrated in
three categories: the immune system (26/33), signal trans-
duction (29/33), and gene expression (transcription) (22/
33). Moreover, 5 remarkable leading pathways with a P

value≤ 0.001 are described in Table 3, as corrected by the
false discovery rate (FDR), including the IL-4 and IL-13
signaling pathways; the ESR-mediated signaling pathway;
the pathways of TFAP2 (AP-2) family regulating tran-
scription of growth factors and their receptors; the extra-
nuclear estrogen signaling pathway; and the nuclear
receptors signaling pathway.
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4. Discussion

AD is a typical neurodegenerative disease that seriously
threatens human health worldwide. It is important to find
new therapeutic drugs and treatment strategies for AD. In
the past few decades, TCM has shown neuroprotective
potential for treating AD owing to the synergistic effects
of its multiple ingredients and targets [39]. HDTCM, one
of the important components of TCM, has also been

proven to be effective in the treatment of AD. 0us,
HDTCM is expected to open a new avenue for developing
drugs for the treatment of AD. Although the anti-AD
efficacy of some herbs of HDTCM was confirmed, the
specific mechanism had not been elucidated. Accord-
ingly, network pharmacology was used to study the
analogous mechanism of the 7 herbs of HDTCM on AD,
which will improve the utilization and development of
HDTCM.
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Figure 3: Network construction for anti-AD targets of 7 herbs. 0e herb-ingredient-target-disease networks of (a) AP, (b) CC, (c) CPA, (d)
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In our study, 7 herbs were ultimately screened for the
network pharmacology analysis. A total of 64 active in-
gredients, 13 in AP, 10 in CC, 17 in CPA, 8 in LJ, 5 in HC, 2
in CA, and 9 in GJ, associated with 1032 targets, 111 in AP,
222 in CC, 219 in CPA, 113 in LJ, 119 in HC, 80 in CA, and
168 in GJ, were collected to construct herb-ingredient-tar-
get-disease networks. It was found that PTGS1 (Prosta-
glandin Endoperoxide Synthase 1) was the high-degree
target in each of the networks. 0e results of one analysis
showed that PTGS1 is associated with arachidonic acid-

induced inflammation [40]. Moreover, researchers have
confirmed that the arachidonic acid metabolism pathway
mediates the development of AD [41] and Aβ plaques
generation [42], and the upregulation of arachidonic acid
has also been observed in an AD model [43].

Furthermore, by analyzing the PPI network constructed
with 34 shared targets that were regulated by these herbs, we
found that IL-6 (interleukin-6), CASP3 (caspase-3), and
VEGFA (vascular endothelial growth factor) were the key
gene targets with the highest calculated degree. In one study,

Table 2: Information about ingredients and targets of 7 herbs.

Herbs Numbers of active
ingredients

Numbers of
targets
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targets High-degree ingredients High-degree
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Figure 5: GO and pathway enrichment analysis. (a) GO analysis results of 34 common targets. (b) Reactome pathways analysis results of 34
common targets.
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scientists reported that the level of IL-6, an inflammatory
factor closely related to inflammation, in AD patients was
significantly elevated [44]. Investigators have also found that
downgrading the expression of CASP3 could reduce the
inflammation induced by LPS in astrocytes associated with
neurotic plaques in AD [45, 46]. In addition, one study
found that VEGFA, an instigator of inflammation, was
involved in the therapeutic regulatory network of AD and
had a neuroprotective function [47].

Subsequently, the pathway analysis results showed that
34 targets were mainly enriched in pathways such as the IL-4
and IL-13 signaling pathway, the ESR-mediated signaling
pathway, and the extranuclear estrogen signaling pathway. It
was previously found that the IL-4 and IL-13 signaling
pathways play a neuromodulating role by regulating the
oxidative stress in AD and other neurodegenerative diseases
[48]. Remarkably, IL-4 and IL-13 can activate microglia, the
pivotal sources of inflammatory factors and oxidative stress
in the brain, to induce Aβ degradation and improve cog-
nitive impairment [49]. As implicated by increasing evi-
dence, the regulation of neuroinflammation, one of the
important incentives of AD, is a vital therapeutic strategy.
Simultaneously, researchers found that the estrogen receptor
can provide a protective anti-inflammatory effect by
inhibiting inflammation in neurodegenerative disorders
such as AD and reducing Aβ deposition in the hippocampus
to improve memory capacity [50, 51].

Taken together, these results indicate that the homologous
anti-AD mechanism of the 7 herbs of HDTCM may play an
impotant anti-neuroinflammatory role. However, there are
some factors affecting the reliability of the results, including the
differences in the databases, ingredient-screening indicators,
and analysis tools. Consequently, specific experimental veri-
fication is an important part of further research.

CGA has multiple biological effects as an antioxidant, an-
tiviral, and anticarcinogenic agent. Moreover, given that CGA
can pass through the blood-brain barrier and play a direct role in
the central nervous system [52], new CGA studies have paid
more attention to its neuroprotective effect. For example, CGA
can exert antiamnesic activity by inhibiting the expression of
acetylcholinesterase and malondialdehyde [53]. In addition,
investigators proved the neuroprotective effects of CGA in rat
cerebellar granule neurons [54]. In another interesting study,
researchers found that CGA combined with selenium nano-
particles inhibited Aβ aggregation [55]. Both of these reports

indicated that CGA had potential neuroprotective effects.
Moreover, based on its anti-inflammatory effects, CGA is likely
to be one of the main active ingredients against AD in the 7
herbs.

5. Conclusion

0is study provides predictive insight into the mechanism of
7 frequently used herbs of HDTCM. 0e possible analogous
anti-AD mechanism of the 7 herbs of HDTCM is related to
anti-inflammation. Finally, we propose a hypothesis sug-
gesting that CGA and quercetin, two main shared active
ingredients, may play an indispensable role in the anti-AD
efficacy of these 7 herbs, which requires verification and
deserves further study.
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Supplementary Materials

Initial screening of 12 herbs (Table S1). 0e information
about ingredients and targets of Andrographis paniculate
(AP), Coptis chinensis (CC), Cortex Phellodendri amurensis
(CPA), Lonicera japonica (LJ), Houttuynia cordata (HC),
Centella asiatica (CA), and Gardenia jasminoides (GJ)

Table 3: Top 5 of significant pathways.

Pathway name P value FDR Key genes

IL-4 and IL-13 signaling 2.44E− 15 7.91E− 13 IL6; VCAM1; CCND1; MYC; BCL2; HIF1A;
ICAM1; VEGFA

ESR-mediated signaling 4.41E− 14 7.14E− 12 CCND1; NOS3; CAV1; MYC; BCL2; HSPB1;
CTSD; ESR1; ESR2; EGFR

TFAP2 (AP-2) family which regulates transcription of growth
factors and their receptors 1.24E− 13 1.16E− 11 ERBB2; ESR1; EGFR; VEGFA

Extranuclear estrogen signaling 1.44E− 13 1.16E− 11 CCND1; NOS3; CAV1; BCL2; HSPB1; ESR1;
ESR2; EGFR

Nuclear receptors signaling 1.16E− 12 7.44E− 11 CCND1; NOS3; CAV1; MYC; BCL2; HSPB1;
CTSD; ESR1; ESR2; EGFR
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(Tables S2–S8). Target information of AD (Table S9). 34
shared targets for at least 5 herbs and AD (Table S10).
(Supplementary Materials)
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