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Agents that target metastasis are important to improve treatment efficacy in patients with breast cancer. Tangeretin, a citrus
flavonoid, exhibits antimetastatic effects on breast cancer cells, but its molecular mechanism remains unclear. Tangeretin targets
were retrieved from PubChem, whereas metastatic breast cancer regulatory genes were downloaded from PubMed. In total, 58
genes were identified as potential therapeutic target genes of tangeretin (PTs). GO and KEGG pathway enrichment analyses of PTs
were performed using WebGestalt (WEB-based Gene SeT AnaLysis Toolkit). 'e PPI network was analyzed using STRING-DB
v11.0 and visualized by Cytoscape software. Hub genes were selected on the basis of the highest degree score as calculated by the
CytoHubba plugin. Genetic alterations of the PTs were analyzed using cBioPortal.'e prognostic values of the PTs were evaluated
with the Kaplan–Meier plot.'e expression of PTs across breast cancer samples was confirmed using GEPIA.'e reliability of the
PTs in metastatic breast cancer cells was validated using ONCOMINE. Molecular docking was performed to foresee the binding
sites of tangeretin with PIK3Cα, MMP9, PTGS2, COX-2, and IKK. GO analysis showed that PTs participate in the biological
process of stimulus response, are the cellular components of the nucleus and the membrane, and play molecular roles in enzyme
regulation. KEGG pathway enrichment analysis revealed that PTs regulate the PI3K/Akt pathway. Genetic alterations for each
target gene were MTOR (3%), NOTCH1 (4%), TP53 (42%), MMP9 (4%), NFKB1 (3%), PIK3CA (32%), PTGS2 (15%), and RELA
(5%). 'e Kaplan–Meier plot showed that patients with low mRNA expression levels of MTOR, TP53, MMP9, NFKB1, PTGS2,
and RELA and high expression of PIK3CA had a significantly better prognosis than their counterparts. Further validation of gene
expression by using GEPIA revealed that the mRNA expression ofMMP9 was significantly higher in breast cancer tissues than in
normal tissues, whereas the mRNA expression of PTGS2 showed the opposite. Analysis with ONCOMINE demonstrated that the
mRNA expression levels of MMP9 and NFKB1 were significantly higher in metastatic breast cancer cells than in normal tissues.
'e results of molecular docking analyses revealed the advantage of tangeretin as an inhibitor of PIK3CA, MMP9, PTGS2, and
IKK. Tangeretin inhibits metastasis in breast cancer cells by targeting TP53, PTGS2,MMP9, and PIK3CA and regulating the PI3K/
Akt signaling pathway. Further investigation is needed to validate the results of this study.

1. Introduction

Breast cancer is a common cause of death among women
worldwide [1]. Breast cancer was initially considered a local
disease, but it can metastasize to lymph nodes and other
organs in the body, which is fatal to patients [2]. In breast
cancer patients, metastases are still the leading cause of
morbidity [3]. Understanding the molecular mechanisms

underlying metastasis is important to improve the clinical
management of breast cancer [4]. Accordingly, molecular
therapeutic agents that target metastasis must be developed
to enhance the effectiveness of breast cancer therapy [5].

Tangeretin, a citrus flavonoid (Figure 1(a)), may be
developed as a specific molecular-targeted anticancer agent
because of its antimetastatic effects [6] on cancer cells [7–9].
Specifically, this compound inhibits metastases of skin,
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breast, and gastric cancer cells. Tangeretin hampers the
invasion of MO4 mouse cells into the embryonic chick heart
[10]. It also inhibits lung metastasis in melanoma B16F10
cell xenografts [11] and metastasis in 7,12-dimethylbenz (α)

anthracene-induced rat breast cancer [12]. Moreover, tan-
geretin alleviates epithelial-mesenchymal transition (EMT),
invasion, and migration in gastric cancer cells by down-
regulating Notch-1, Jagged1/2, Hey-1, and Hes-1 [13].
Nonetheless, the molecular target of tangeretin for the
metastatic inhibition of breast cancer remains unknown.

In this study, we used a bioinformatics approach to
obtain tangeretin protein target data from PubChem,
metastatic breast cancer regulatory genes from PubMed, and
potential target genes of tangeretin against metastatic breast
cancer (PT). We performed gene ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment, and protein-protein interaction (PPI) network
analyses and selected hub genes on the basis of the highest
degree score. Selected PTs were further analyzed for their
prognostic values by using Kaplan–Meier survival plots and
GEPIA. Corroboration of the accuracy of the selected PT in
metastatic breast cancer samples was performed using
ONCOMINE. Alterations in the selected genes were

analyzed using the public database cBioPortal. Molecular
docking studies were conducted to identify the interaction
between tangeretin and PT. 'e results of this study em-
phasized the potential of tangeretin as an antimetastatic
agent in breast cancer therapy.

2. Materials and Methods

2.1. Data Collection and Processing. We downloaded 95
tangeretin targets from PubChem (Supplementary Table 1)
and 2263 metastatic breast cancer regulatory genes from
PubMed (Supplementary Table 2). A Venn diagram was
generated using the tangeretin targets from PubChem and
the metastatic breast cancer regulatory genes from
PubMed, which resulted in 58 genes considered potential
therapeutic target genes of tangeretin (PTs) (Figure 1(b),
Supplementary Table 3).

2.2. GO and KEGG Pathway Enrichment Analyses. GO and
KEGG pathway enrichment analyses were performed using
WebGestalt (WEB-based Gene SeT AnaLysis Toolkit) with
p< 0.05 as the cutoff value [14].
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Figure 1: (a) Chemical structure of tangeretin. (b) A Venn diagram between tangeretin targets and regulatory genes of breast cancer
metastasis. (c) GO enrichment, as analyzed by WebGestalt.
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2.3. PPI Network and Selection of Hub Genes. 'e PPI net-
work was analyzed using STRING-DB v11.0 [15] with
confidence scores of >0.7 and visualized by Cytoscape
software [16]. Hub genes were selected on the basis of the
highest degree score as calculated by the CytoHubba plugin
[17].

2.4. Genetic Alteration Analysis of PTs. Genetic alterations of
the PTs were analyzed using cBioPortal [18, 19]. Further
connectivity analysis was performed to PTs by using the
selected breast cancer study, with a cutoff value of p< 0.05.

2.5. Kaplan–Meier Survival Analysis. 'e prognostic values
of the PTs were evaluated with the Kaplan–Meier plot
(http://kmplot.com) by using the breast cancer database.'e
cutoff value was p< 0.05 [20], and the number of samples is
displayed in each curve.

2.6. Validation of PTs in Breast Cancer and Metastatic Breast
Cancer Samples. 'e expression of PTs across breast cancer
samples from TCGA and GTEx projects was confirmed
using GEPIA (http://gepia.cancer-pku.cn), with a cutoff
value of p< 0.05 [21]. 'e reliability of the PTs in metastatic
breast cancer cells was validated by ONCOMINE (https://
www.oncomine.org) [22] using samples from some projects,
including TCGA, a study by Finak et al. [23], a study by
Sorlie et al. [24] and a study by Perou et al. [25].

2.7. Molecular Docking. Molecular docking was performed
to foresee the binding sites of tangeretin with PIK3Cα (PDB
ID: 4OVV), MMP9 (PDB ID: 2OW1), PTGS2 (PDB ID:
5F1A), COX-2 (PDB ID: 6COX), and IKK (PDB ID: 4KIK).
All computational analyses were conducted using Windows
10 with an Intel Core i5-7th Gen processor and 4GB RAM.
'e docking simulation, RMSD calculation, and visualiza-
tion interaction were conducted using MOE 2010 (Licensed
from Faculty of Pharmacy UGM). 'e structure of tan-
geretin was downloaded from PubChem (https://pubchem.
ncbi.nlm.nih.gov) and sought for conformation and mini-
mization by MOE using the energy minimization module.
Docking simulations were performed on the binding side of
the native ligand based on flexible ligand structures and rigid
receptors. 'e London dG and triangle matchers were se-
lected for the score function and placement settings, re-
spectively, in the docking simulation. 'e forcefield method
was used to refine the docking results of 30 settings. Docking
simulation was performed using the default settings. 'e
analysis results will conclude in which conformations
generate the lowest energy when tangeretin binds to the
target protein.

3. Results

3.1. GO and KEGG Pathway Enrichment Analyses.
Metastasis is the main cause of death in patients with breast
cancer. Utilizing the bioinformatics approach, we identified
the PTs and mechanisms of tangeretin in inhibiting

metastatic breast cancer. GO analysis was conducted with
WebGestalt on the basis of three criteria, namely, biological
process, cellular component, and molecular function
(Figure 1(c)). PTs participate in the biological processes of
stimulus response, metabolic process, and cell proliferation.
In addition, PTs are cellular components of the nucleus and
the membrane. PTs also play a molecular role in protein
binding, ion binding, and enzyme regulator activity. Path-
way enrichment by KEGG of the PTs (Supplementary Ta-
ble 3) showed the regulation of ∼106 pathways, including the
PI3K-Akt, breast cancer, and TNF signaling pathways
(Supplementary Table 4), three main pathways that are
regulated by tangeretin in metastasis signaling, based on the
literature study. Several PTs were involved in PI3K-Akt
signaling (e.g., PIK3CA, PRKAA2, RELA, and TP53), the
breast cancer pathway (e.g., AKT1, MTOR, NOTCH1,
PIK3CA, and TP53), and the TNF signaling pathway (e.g.,
MMP9, NFKB1, PIK3CA, PTGS2, and RELA) (Supple-
mentary Table 5).

3.2. Analysis of the PPI Network and Selection of Hub Genes.
A PPI network was constructed from 58 proteins (confi-
dence level of 0.4) consisting of 58 nodes, 409 edges, PPI
enrichment value of <1.10e − 16, and average local clus-
tering coefficient of 0.62 (Figure 2(a)). 'e top 20 highest
degree score genes, also known as hub genes, were identified,
including TP53, AKT1, STAT3, IL6, and MAPK1
(Figure 2(b), Table 1).

3.3. Analysis of Genetic Alterations of Potential Target Genes.
Eight PTs were analyzed using cBioportal to explore their
genomic alterations across breast cancer studies. MTOR,
NOTCH1, PIK3CA, TP53, MMP9, NFKB1, PTGS2, and
RELA were selected from KEGG pathway enrichment
(Supplementary Table 5), whereas TP53, MTOR, MMP9,
RELA, and PTGS2 were selected based on the highest degree
score using CytoHubba.'e study BRCA INSERM 2016 [26]
was selected for further analysis (Figure 3(a)). Genetic al-
terations for each target gene ranged from 3% to 42% of
samples, including MTOR (3%), NOTCH1 (4%), TP53
(42%), MMP9 (4%), NFKB1 (3%), PIK3CA (32%), PTGS2
(15%), and RELA (5%) (Figure 3(b)). Moreover, most gene
alterations belonged to amplification, missense mutation,
and truncating mutation (Figure 3(b)). Further analysis of
mutual exclusivity showed that only one gene pair
(NOTCH1-RELA) exhibited significant co-occurrence
(p< 0.05) in the breast cancer study by the INSERM 2016
project (Table 2), which indicated the pivotal role of
NOTCH1 and RELA under tangeretin treatment.

3.4.Kaplan–Meier SurvivalAnalysis. 'eKaplan–Meier plot
showed that patients with low mRNA expression levels of
MTOR (p � 3.95 × 10− 5) , TP53 (p � 0.00054), MMP9
(p � 0.0065), NFKB1 (p � 3.3 × 10− 16), PTGS2
(p � 0.0019), and RELA (p � 0.00088) had significantly
better overall survival rates than the opposite group (Fig-
ure 4). In addition, patients with a low mRNA level of
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NOTCH1 had better overall survival rates than those with a
high mRNA level of NOTCH1, but the difference was not
significant (p � 0.91). Moreover, patients with a low mRNA
expression of PIK3CA showed significantly worse overall
survival than the opposite group (p � 2 × 10− 7).

3.5. Validation of PTs in Breast Cancer and Metastatic Breast
Cancer Samples. Validation of PTs in TCGA and GTEx
samples using GEPIA demonstrated that the mRNA ex-
pression of MMP9 was significantly higher in breast cancer

tissues than in normal tissues (Figure 5). In addition, the
mRNA expression of PTGS2was significantly lower in breast
cancer tissues than in normal tissues. Furthermore, no
significant difference in the mRNA expression levels of
MTOR, NOTCH1, TP53, NFKB1, PIK3CA, and RELA was
observed between breast cancer and normal tissue samples.
'e validation of target genes by using ONCOMINE showed
that, in samples from a TCGA study, the mRNA level of
MMP9 was significantly higher in metastatic breast cancer
cells than in normal breast cells with p � 2.97 × 10− 16

(Figure 6). In addition, samples from a study by Finak et al.
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Figure 2: (a) Protein-protein interaction network of potential target genes of tangeretin against metastatic breast cancer, analyzed by
STRING. (b) Top 20 hub genes based on the highest degree score, analyzed by CytoHubba.

Table 1: Top 20 hub genes ranked by degree method, analyzed by CytoHubba.

Rank Gene symbol Gene name Score
1 TP53 Cellular tumor antigen p53 40
2 AKT1 RAC-alpha serine/threonine-protein kinase 37
3 IL6 Interleukin-6 33
4 STAT3 Signal transducer and activator of transcription 3 31
4 MAPK1 Mitogen-activated protein kinase 1 31
6 MAPK8 Mitogen-activated protein kinase 8 29
7 JUN Transcription factor AP-1 27
8 CCND1 G1/S-specific cyclin-D1 26
8 CASP3 Caspase-3 26
8 MAPK3 Mitogen-activated protein kinase 3 26
11 VEGFA Vascular endothelial growth factor A 24
12 INS Insulin 23
13 MTOR Serine/threonine-protein kinase mTOR 22
14 MMP9 Matrix metalloproteinase-9 21
15 RELA Transcription factor p65 20
16 BCL2L1 Bcl-2-like protein 1 19
16 CCL2 C-C motif chemokine 2 19
16 MAPK14 Mitogen-activated protein kinase 14 19
16 PTGS2 Prostaglandin G/H synthase 2 19
16 HMOX1 Heme oxygenase 1 19
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Figure 3: (a) Overview of genetic changes inMTOR, NOTCH1, TP53, MMP9, NFKB1, PIK3CA, PTGS2, and RELA across 16 breast cancer
studies, as analyzed by cBioportal. (b) Summary of alterations in MTOR, NOTCH1, TP53, MMP9, NFKB1, PIK3CA, PTGS2, and RELA
across breast cancer patients using a study from Lefebvre et al. [26]

Table 2: Mutual exclusivity analysis of selected genes.

A B Log2 odds ratio p value Tendency
NOTCH1 RELA >3 <0.001 Co-occurrence
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showed that the mRNA level of NFKB1 was significantly
higher in metastatic breast cancer cells than in normal breast
cells (p � 3.66 × 10− 14) [23]. Moreover, the mRNA levels of

MTOR, NOTCH1, TP53, PIK3CA, PTGS2, and RELA were
not different between metastatic breast cancer cells and
normal breast cells.
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Figure 4: Overall survival of patients with breast cancer related to the mRNA levels of MTOR, NOTCH1, TP53, MMP9, NFKB1, PIK3CA,
PTGS2, and RELA, as analyzed by GEPIA. (a) MTOR/FRAP (202288_at). (b) NOTCH1 (218902_at). (c) TP53 (201746_at). (d) MMP9
(203936_s_at). (e) NFKB1 (209239_at). (f ) PIK3CA (204369_at). (g) PTGS2 (204748_at). (h) RELA/NFKB3 (201783_s_at).
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3.6.Molecular Docking. Simulation of molecular docking and
visualization of ligand-protein binding were conducted with
MOE software.'e protein targets, including PIK3Cα, MMP9,
PTGS2, COX-2, and IKK, were selected on the basis of KEGG
pathway enrichment analysis, hub gene selection, survival
analysis, PTvalidation, and uniqueness as drug targets through
literature research. Native ligands of each protein consist of
PIK3Cα, MMP9, PTGS2, COX-2, and IKK complexes com-
prising ML9 (2-amino-8-[trans-4-(2-hydroxyethoxy)cyclo-
hexyl]-6-(6-methoxypyridin-3-yl)-4-methylpyrido[2,3-d]pyr-
imidin-7(8H)-one), 7 MR ((2R)-2-amino-3,3,3-trifluoro-n-
hydroxy-2-{[(4-phenoxyphenyl) sulfonyl] methyl}prop-
anamide), COH (protoporphyrin IX containing CO), HEM
(protoporphyrin IX containing Fe), and KSA (K-252A).
PIK3Cα andMMP9 showed slightly lower docking scores than
native ligands (ML9 and 7 MR) (Table 3). 'e lower the
docking score, the more potent the binding affinity of the li-
gand, implying that PIK3Cα andMMP9 tend to bend and react
with tangeretin. Furthermore, tangeretin formed arene-H

between Ile932 and the compound with a bonding distance of
4.07, which was shorter than the arene-H distance of ML9 with
Ile932 (4.22) (Figure 7).'e higher docking score of tangeretin
on PTGS2, COX-2, and IKK indicated lower binding affinity
compared with native ligands (3X). 'is phenomenon can be
ascribed to the fact that only one amino acid, Gln203, inter-
acted with tangeretin on PTGS2 by an arene-H bond (Table 3).
Otherwise, the native ligand of PTGS2 (COH) had four amino
acids, which interacted through arene-H (Gln203, Leu391),
arene-cation (His207), and metal (His214) (Table 3). A similar
phenomenon occurred for 6COX and IKK; the amino acid that
interacted with tangeretin was fewer than the native ligands
(Table 3).

4. Discussion

Metastasis is the main cause of death in patients with breast
cancer. Utilizing a bioinformatics approach, we identified the
PTs and mechanisms of tangeretin in inhibiting metastatic
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Figure 5: mRNA levels of (a)MTOR, (b)NOTCH1, (c) TP53, (d)MMP9, (e)NFKB1, (f ) PIK3CA, (g) PTGS2, and (h) RELA in patients with
breast cancer, as analyzed by GEPIA.
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Figure 6: mRNA levels of (a)MTOR, (b)NOTCH1, (c) TP53, (d)MMP9, (e)NFKB1, (f ) PIK3CA, (g) PTGS2, and (h) RELA in patients with
metastatic breast cancer, as analyzed by ONCOMINE.

Table 3: Molecular docking results of tangeretin against the protein targets of PIK3Cα, MMP9, PTGS2, COX-2, and IKK.

Protein
Ligand native Tangeretin

Docking
score

RMSD
(Å)

Ligand
atom

Amino
acid Binding type Distance Docking

score
Ligand
atom

Amino
acid

Binding
type Distance

PIK3Cα
(4TV3) −12.3229 1.9820

C Ile848 Arene-H 4.81

−13.0943

C Ile932 Arene-H 4.07
C Ile932 Arene-H 4.22 C Trp780 Arene-H 7.51

N Val851
Backbone
donor-
acceptor

4.10 O Lys802 Sidechain
donor 5.20
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Tangeretin

Native ligand (ML9)

PIK3Cα (4TV3)

(a)

Native ligand (7MR)

MMP9 (2OW1) Tangeretin

(b)

Figure 7: Continued.

Table 3: Continued.

Protein
Ligand native Tangeretin

Docking
score

RMSD
(Å)

Ligand
atom

Amino
acid Binding type Distance Docking

score
Ligand
atom

Amino
acid

Binding
type Distance

MMP9
(2OW1) −11.4732 1.7393

C Leu188 Arene-H 5.02

−11.5442

C Arg424 Arene-H 6.41

C Tyr423 Arene-H 4.66 O Tyr423 Backbone
donor 5.82

C Leu418 Arene-H 4.10 C Leu418 Arene-H 4.42

C 7MR502 Arene-arene O Gln402 Sidechain
donor 4.16

PTGS2
(5F1A) −14.8424 1.2559

C Gln203 Arene-H 3.61

−11.8904 C Gln203 Arene-H 4.39C Leu391 Arene-H 6.85
O- His207 Arene-cation 4.37
O His214 Metal contact 5.61

COX-2
(6COX) −15.6490 1.0546

O Asn382 Sidechain
donor 5.26

−12.0495

C His386 Arene-H 5.12

O 'r212 Backbone
donor 3.52 O Gln203 Arene-H 4.73

O-< Gln454 Sidechain
donor 5.73 C Leu391 Arene-H 6.40

O His214 Metal contact 5.00

IKK
(4KIK) −14.0211 0.8232

C Ile165 Arene-H 3.89

−10.4698

C Ile165 Arene-H 4.67
C Leu21 Arene-H 3.72 O Leu21 Arene-H 6.94

O Cys99 Backbone
donor 3.66 O Cys99 Backbone

donor 4.00

C Val152 Arene-H 6.07 O Val152 Arene-H 6.05
C Val29 Arene-H 5.80

C Asp103 Arene-H 4.40N Glu97 Backbone
acceptor 6.18
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breast cancer.'is study emphasized the important role of the
PI3K/Akt pathway and related genes (TP53, PTGS2, NFKB1,
and PIK3CA) in the antimetastatic effects of tangeretin on
metastatic breast cancer cells. Here, we discussed the im-
portant roles of those genes and their potential as tangeretin
targets against metastatic breast cancer cells. TP53 encodes
the tumor protein p53, a tumor suppressor gene [27]. Mu-
tations in TP53 occur in human epidermal growth factor
receptor 2-positive [27], estrogen receptor-positive, and
progesterone-positive breast cancer subtypes [28]. In addi-
tion, the TP53 gene is mutated in 80% of patients with triple-
negative breast cancer [29]. Loss of p53 or gain of mutant p53
promotes tumor progression and metastasis [30]. In addition,
loss of p53 induces metastasis via activation of Wnt signaling
[31]. Moreover, the mutation in TP53 can promote immu-
nogenic activity in breast cancer [32].

Tangeretin regulates p53 expression. Tangeretin in-
creases p53 expression in AGS human gastric cancer cells
[33]. In addition, tangeretin treatment induces the upre-
gulation of p53 and inhibits metastasis in 7,12-dimethylbenz
(α) anthracene-induced rat breast tumors [12]. However,
the study of TP53 mutation, metastasis, and tangeretin
treatment remains elusive.

MMP9 encodes matrix metalloproteinase 9 (MMP9), a
protease that cleaves the extracellular matrix and is involved

in angiogenesis, invasion, and metastasis [34]. MMP9 is
dominantly synthesized by tumor cells [35]. MMP9 is
upregulated in breast cancer cells compared with normal
tissue and is correlated with metastasis and recurrence in
breast cancer [36]. 'us, inhibition of MMP activity is an
effective way of preventing metastasis in patients with breast
cancer [37]. A previous study demonstrated that tangeretin
inhibits metastasis in rat mammary carcinoma induced by
7,12-dimethylbenz (α) anthracene by downregulating
MMP2, MMP9, and VEGF [12]. In addition, tangeretin
inhibits the expression and activity of MMP9 in rats with
pilocarpine-induced seizures [38]. Future studies of the
effect of tangeretin on MMP9 activity in metastatic breast
cancer are warranted.

PTGS2 encodes prostaglandin-endoperoxide synthase 2,
also known as cyclooxygenase-2 (COX-2), which partici-
pates in prostaglandin synthesis, regulates inflammation,
and promotes cancer progression, invasion, and migration
[39,40]. COX-2 is expressed in 40% of human metastatic
breast cancers. [41]. A previous study showed that tangeretin
inhibits COX-2 expression induced by IL-1beta in A549 lung
cancer cells by inhibiting NF-kB, p38MAPK, JNK, and PI3K
signaling [42]. Moreover, tangeretin inhibits UVB-induced
COX-2 expression by inhibiting MAPK activation and re-
active oxygen species elevation [43]. Recently, an in silico

Native ligand (COH)

Tangeretin
PTGS2 (5F1A)

(c)

Native ligand (HEM)

Tangeretin
COX-2 (6COX) 

(d)

Native ligand (KSA)

Tangeretin
IKK (4KIK)

(e)

Figure 7: Visualization of ligand interaction to PIK3Cα, MMP9, PTGS2, and IKK using MOE.
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study demonstrated that tangeretin can inhibit C0X-2 [44].
Nevertheless, the effects of tangeretin on COX-2 activity and
expression in metastatic breast cancer cells need further
exploration.

NFKB1 encodes the nuclear factor of kappa light poly-
peptide gene enhancer in B-cells 1, a member subunit of
NKFB [45]. NFKB1 forms various dimeric complexes with
other subunits to activate NFkB signaling that regulates
several biological processes, including inflammation, se-
nescence, apoptosis, cell survival, and cancer progression
[45]. NFKB1 plays a role in cancer progression and is a
potential target for cancer therapy [46]. NFkB signaling is
important in the invasiveness of inflammatory breast cancer
[47], as well as in chemoresistance mechanisms and invasive
breast cancer [48]. Moreover, NFKB1/RELA induces breast
cancer progression by upregulating ETS1 [49]. A previous
study showed that tangeretin treatment reduces the phos-
phorylation of IκB-α and IKK-β, as well as the nuclear
translocation of the p65 subunit of NF-κB in lipopolysac-
charide-stimulated microglial cells [50]. Hence, the inhibi-
tory effect of tangeretin on invasion and metastasis by
targeting NFkB signaling needs to be explored in future
studies.

PIK3CA encodes phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit alpha (PIK3CA), also known as
p110α, a member of the phosphoinositide 3-kinase (PI3K)
family [51]. 'e PI3K signaling pathway is involved in the
biological processes of cellular proliferation, apoptosis,
survival, motility, and metastasis [52,53]. Mutation in
PIK3CA is present in most solid tumors [54] and is found in
12%–15% of patients with breast cancers [55]. A recent study
has shown that mutation in PIK3CA corresponds to a poor
prognosis in patients with hormone receptor-positive
metastatic breast cancer but a good prognosis in patients
with triple-negative breast cancer [56].

Tangeretin inhibits the PI3K signaling pathway. Tan-
geretin enhances the sensitivity of human ovarian cancer
cells to cisplatin by downregulating the PI3K/Akt signaling
pathway [57]. Tangeretin also inhibits the proliferation and
migration of aortic smooth muscle cells by suppressing the
PI3K/AKT signaling pathway [58]. Another study showed
that tangeretin poses potent neuroprotective activity by
triggering the PI3K/Akt signaling pathway in pilocarpine-
induced seizures rats [38]. Tangeretin also inhibits PI3K and
Notch signaling in neonatal asthmatic mice [59]. Moreover,
tangeretin inhibits EMT in PC-3 prostate cancer cells by
downregulating the PI3K/Akt/mTOR pathway [60]. How-
ever, the effects of tangeretin on PI3K signaling and PIK3CA
mutation on metastatic breast cancer cells need to be
clarified in future studies.

KEGG pathway enrichment analysis indicated that PTs
regulate the PI3K/Akt signaling pathway. In this study, we
discussed the cross-talk between PTs in the regulation of the
PI3K/Akt pathway. COX2 promotes cell survival by acti-
vating the PI3K/Akt pathway in human lung cancer cells
[61]. Inhibition of COX2 blocks PI3K/AKT kinase activity in
ovarian cancer [62] and hepatocellular carcinoma cells [63].
In addition, PI3K/Akt kinase activity induces COX2 ex-
pression in lipopolysaccharide-induced murine

adrenocortical cells [64]. Furthermore, COX2 and PI3K are
associated with the progression of colon cancer [65].

'e PI3K/Akt and mTOR signaling pathways are es-
sential for maintaining the proliferation and survival of
cancer cells [66]. A recent study has shown that activation of
PI3K/AKT/mTOR signaling increases hepatocellular carci-
noma resistance to radiotherapy [67]. On the one hand,
activation of the PI3K/Akt pathway leads to the transcrip-
tional activity of NFκB [68]. On the other hand, NFκB
activity is important for oncogenic transformation induced
by PI3K/Akt signaling [68]. Mutations in PI3K signaling
regulators, including PIK3CA, lead to cytokine expression
upon growth factor deprivation in an NFκB-dependent
manner [69]. Furthermore, PI3K/Akt/JNK/NFκB signaling
plays a pivotal role in the expression of MMP-9 and en-
largement in human limbal epithelial cells [70].

Activation of the PI3K/PTEN/AKT/mTOR pathway
promotes invasion andmetastasis by increasing the expression
of MMP9 in hepatocellular carcinoma cells [71] and human
breast cancer cells [72]. Furthermore, inhibition of Notch1
signaling reduces the proliferation, migration, and invasion of
human breast cancer cells by decreasing PI3K/Akt activity (Li
et al.). p53 participates in the regulation of cell survival by
blocking the PI3K/AKTsignaling pathway in cancer cells [73].
Moreover, activating mutations in PIK3CA promote the
stimulation of p53 signaling [74]. A previous study showed
that PI3K/Akt promotes p53 translation in cancer develop-
ment [75]. Inhibition of PI3K/Akt signaling leads to p53
upregulation in leukemic cancer cells [76]. A recent study
reported p53 upregulation due to PI3K/Akt signaling inhi-
bition in EMT inhibition in liver cancer cells [77].

In this study, molecular docking analysis emphasized the
potential target of tangeretin in inhibiting metastatic breast
cancer cells. Tangeretin was shown to inhibit PIK3CA,
MMP9, COX2, and IKK. One of the unique targets for
cancer drug discovery is PIK3Cα because of the high
prevalence of its mutations in various human tumors and the
progression in the development of personalized cancer
medicines [78]. 'e docking results on PIK3CA showed that
the docking score of tangeretin was slightly lower than that
of the native ligand ML9 ((2-amino-8-[trans-4-(2-hydrox-
yethoxy) cyclohexyl]-6-(6-methoxypyridin-3-yl)-4-methyl-
pyrido [2,3-d]pyrimidin-7(8H)-one)). A low docking score
represents a potent affinity of binding of the ligand,
indicating that PIK3Cα tends to bend and react with
tangeretin instead of the native ligand.'e docking results of
tangeretin on PIK3CA formed arene-H between Ile932 and
the compound with a bonding distance of 4.07, which was
shorter than the arene-H distance of ML9 with Ile932 (4.22)
(Table 3). Furthermore, tangeretin has donor sidechains,
whereas native ligands have donor-acceptor backbones.
Hence, this donor sidechain is useful in increasing tangeretin
binding to PIK3CA. 'e docking results on MMP9 showed
that the docking score of tangeretin was lower than that of
the native ligand 7 MR ((2R)-2-amino-3,3,3-trifluoro-n-
hydroxy-2-{[(4-phenoxyphenyl) sulfonyl] methyl}prop-
anamide)).'is result is due to the differences in bond types.
Specifically, the native ligand has a type of arene-arene bond,
whereas tangeretin has backbone and sidechain donors. 'is
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result is in line with the findings of Roshini et al. that
tangeretin, when combined with zinc oxide (Tan-ZnOQDs),
can downregulate the expression of metastasis markers, such
as MMP2, MMP9, and VEGF [79]. Tangeretin showed a
higher docking score than native ligands on PTGS2, COX-2,
and IKK, suggesting that tangeretin has a lower binding
affinity than the native ligands COH (protoporphyrin IX
containing CO), HEM (protoporphyrin IX containing Fe),
and KSA (K-252A) (Table 3).

Molecular docking results on PTGS2 showed that only
one amino acid, Gln203, interacted with tangeretin by an
arene-H bond (Table 3). Otherwise, the native ligand of
PTGS2 (COH) had four amino acids, which are interacted by
arene-H (Gln203, Leu391), arene-cation (His207), and metal
contact (His214) (Table 3). 'e results of molecular docking
on COX2 showed a lower docking score of tangeretin than
native ligands because fewer amino acids on 6COX inter-
acted with tangeretin than native ligands.

'e IKK complex plays a pivotal role in NFkB signaling
and is an important target for cancer therapy [80, 81].
Molecular docking results on IKK with the PDB code 4KIK
showed that the docking scores of tangeretin were lower
than those of native ligands because of the lack of one type
of bonding, namely, backbone acceptor. However, tan-
geretin still inhibited COX2 and IKK activities. 'ese re-
sults are supported by the previous finding of Chen et al.
that tangeretin inhibits IL-1β-induced COX-2 protein
expression by suppressing COX-2 gene expression [42].
Another study also showed that tangeretin significantly
inhibits the activation of IKK-β induced by LPS [50]. Al-
together, although the binding affinity of tangeretin is not
much more robust than native ligands, it still has the
potency to inhibit PTGS2, COX2, and IKK activities.
Collectively, the PI3K/Akt signaling pathway is important
for the regulation of metastatic breast cancer and is a
potential target of tangeretin in inhibiting metastasis.
However, whether the inhibitory effect of tangeretin on
PI3K/Akt signaling is related to metastatic breast cancer
requires further exploration.

5. Conclusions

Tangeretin inhibits metastasis in breast cancer cells by
targeting TP53, PTGS2, MMP9, and PIK3CA. Molecular
docking studies revealed the potential of tangeretin as an
inhibitor of MMP9 and PTGS2. Furthermore, PI3K/Akt
signaling is a potential target of tangeretin in inhibiting
breast cancer metastasis. Future in vitro and in vivo in-
vestigations are needed to validate the results of this study.
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