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Our previous reports have shown that Inonotus obliquus polysaccharide (IOP) has protective effects against Toxoplasma gondii
(T. gondii) infection in vivo. +e aim of the present research is to explore the in vitro anti-inflammatory effects of IOP and its
mechanism in RAW264.7 macrophages infected by T. gondii. In this study, it is indicated that IOP decreased the excessive
secretion of inflammatory cytokines tumor necrosis factor-α (TNF-α), interferon-c (IFN-c), interleukin-1β (IL-1β), IL-4, and IL-6
in T. gondii-infected RAW264.7 macrophages. IOP effectively suppressed the mRNA expression of these cytokines and che-
mokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α). Moreover, IOP
inhibited the phosphorylation of inhibitor kappa B kinase α/β (IKKα/β), inhibitor κBα (IκBα), p65 in nuclear factor-kappa B (NF-
κB) signaling pathway and p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2) in
mitogen-activated protein kinases (MAPKs) signaling pathway. Meantime, IOP prevented NF-κB p65 and c-Jun translocation
from the cytoplasm to the nucleus. Further, IOP downregulated the protein expression of toll-like receptor 2 (TLR2) and TLR4 in
T. gondii-infected RAW264.7 macrophages. +e above results suggest that IOP can inhibit the inflammatory response infected
with T. gondii via regulating TLR2/TLR4-NF-κB/MAPKs pathways and exerting its anti-T. gondii role in vitro.

1. Introduction

Toxoplasma gondii (T. gondii), as an apicomplexan parasitic
organism in warm-blooded animals and humans [1], can
infect almost all nucleated cells [2]. Toxoplasmosis caused by
T. gondii is one of the most globally harmful zoonotic
diseases with complex epidemiology and multiple mani-
festations, which has a severe impact on the healthy de-
velopment of animal husbandry and livestock products,
increases the risk of human infection, and seriously
threatens human health and public safety [3]. Ordinarily,
T. gondii infection is recessive and asymptomatic in im-
munocompetent hosts [4, 5]. When the host’s immune

function is low or defective, T. gondii proliferates in vivo and
results in systemic inflammatory responses and multiple
organ damage [6–8]. +erefore, the inflammatory response
is not only an important link in host resistance to T. gondii
but also an important cause of host pathological damage.

Toll-like receptors (TLRs) are essential pattern recog-
nition receptors involved in innate immunity and expressed
differentially among immune cells [9]. TLRs can recognize
the glycerophosphoinositide- (GPI-) anchored protein on
the surface of T. gondii and then activate the downstream
nuclear factor-κappaB (NF-κB) and mitogen-activated
protein kinases (MAPKs) signaling pathways, the activation
of signaling pathways further stimulates multiple immune
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cells to produce a large number of inflammatory cytokines
and chemokines, leading to the inflammatory response
[10–12].

Due to the T. gondii’s ability to infect any warm-blood
animal and the complexity of the life cycle of T. gondii, the
ideal vaccine for toxoplasmosis has not been applied in
clinical practice [13]. +e prevention and treatment of
toxoplasmosis depend mainly on sulfonamides (such as
sulfadiazine and pyrimethamine) and macrolides (such as
azithromycin and spiramycin). However, these synthetic
drugs are prone to produce drug resistance and serious
adverse reactions [14]. +erefore, there is growing interest
in deciphering the role of various immunomodulatory
compounds derived from natural products on toxoplas-
mosis; more effective and safer natural products have been
widely concerned [15]. Inonotus obliquus, also known as
Chaga, is a medicinal and edible fungus, which belongs to
the Hymenochaetaceae family from Basidiomycetes and
grows on white birch trees [16]. Inonotus obliquus poly-
saccharide (IOP) is one of the essential active ingredients of
Inonotus obliquus. It possesses various pharmacological
effects such as anti-inflammation, antioxidation, and im-
munity enhancement and has potential protective effects
against a variety of diseases, including cancer, pancreatitis,
diabetes, colitis, hyperlipaemia, and Alzheimer’s disease
[17, 18]. Our series of in vivo studies has also found that
IOP possesses protective effects on liver injury caused by
T. gondii infection [19] and T. gondii-infected impaired
reproductive function in mice [18, 20]. Previous reports in
our laboratory have also shown that IOP can inhibit the
growth and reproduction of T. gondii in vitro and reduce
the parasite load in the mouse spleen [21, 22]. However, the
in vitro anti-T. gondii mechanism of IOP is unclear. To
further explore the in vitro anti-T. gondii effect and the
mechanism of IOP, we studied the in vitro anti-inflam-
matory effects of IOP in T. gondii-infected RAW264.7
macrophages and the immunomodulatory mechanism on
related signaling pathways.

2. Materials and Methods

2.1. Chemicals and Reagents. Sulfadiazine (SD) and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) were purchased from Sigma (St. Louis, MO, USA).
Antifluorescence quenching solution and DAPI staining
solution were purchased from Biyuntian Biotechnology
(Shanghai, China). Fetal bovine serum (FBS) and Dul-
becco’s Modified Eagle’s medium (DMEM) were pur-
chased from Gibco (Grand Island, NY, USA). Prime Script
TMRT-PCR Kit was purchased from Takara (Kyoto, Ja-
pan). IL-1β, IL-4, IL-6, TNF-α, and IFN-c ELISA kits were
purchased from BioLegend (San Diego, CA, USA). Pri-
mary antibodies p65, p-p38, and p-IκBα were obtained
from Cell Signaling Technology (Danvers, MA, USA).
Primary antibodies TLR2, TLR4, c-Jun, p38, ERK1/2, JNK,
p-IκKα/β, p-ERK1/2, and p-JNK were purchased from
Abcam (Cambridge, UK). Horseradish peroxidase-con-
jugated secondary antibody was obtained from Santa Cruz
(Santa Cruz, CA, USA).

2.2.Extraction,Purification,andCompositionAnalysis of IOP.
Inonotus obliquus was obtained from Hailanjiang Pharmacy
(Yanji, China). +e extraction, purification, and composi-
tion analysis of IOP were as mentioned in our former de-
scriptions [18–20]. Namely, Inonotus obliquus was dissolved
and protein was excluded with the savage method, followed
by dialysis with running water and distilled water. +e crude
polysaccharide was centrifuged, lyophilized, and further
purified in an anion-exchange DEAE cellulose column. +e
major fraction was further purified on a Sephadex G-200 gel
column, collected, dialyzed, freeze-dried to fine powder, and
stored in an airtight container at 4°C. Monosaccharide
components of IOP were analyzed using the HPLC method.
It was achieved in a Kromasil C18 column, the mobile phase
was methanol and 50mmol/L phosphoric acid buffer, and
the flow rate was 1.0mL/min.

2.3. Culture of Cells and T. gondii. Mouse RAW264.7 mac-
rophages and Vero cells were from Kebai Biotechnology
(Nanjing, China). +e virulent RH strain of T. gondii was
generously donated by the National Research Center for Pro-
tozoan Diseases, School of Agriculture and Veterinary Medi-
cine, Obihiro University (Japan). RAW264.7 macrophages are
used to establish an in vitro model of T. gondii infection, and
Vero cells are used to cultivate T. gondii. Both cells were cul-
tured with DMEM high glucose medium plus 5% heat-inac-
tivated FBS, 1% penicillin-streptomycin under 37°C, and 5%
CO2 conditions. T. gondiiwas inoculated into precultured Vero
cells and continued to culture. When some tachyzoites escaped
fromVero cells, cells and tachyzoites were scraped and placed in
a sterile culture dish, and then the cells were broken with a 5-
micron needle filter and filtered to obtain tachyzoites.

2.4. Detection of RAW264.7 Macrophage Viability by MTT
Method. RAW264.7 macrophage viability was detected by
the MTT method. RAW264.7 macrophages cultured under
standard conditions were adjusted to 4×105 cells/mL and
inoculated in a 96-well plate. Macrophages were treated with
0–400 μg/mL concentrations of IOP diluted with DMEM for
24 h under 5% CO2 and 37°C. 20 μL of MTTsolution at 5mg/
mL concentration was added to each well and the cells were
continually cultured for 4 h. 100 μL DMSO was added to
each well and shook at a low speed for 10min. +e ab-
sorbance was detected at 570 nm by a microplate reader. +e
cell survival rate (%) is calculated as follows: cell survival rate
(%)� (OD value of test group−OD value of zero setting
group)/(OD value of blank group−OD value of zero setting
group)× 100%.

2.5. Detection of Cytokine Contents by ELISA. RAW264.7
macrophages cultured under standard conditions were
adjusted to 5×105 cells/mL and inoculated in a 24-well plate.
+e cells were infected with 2.5×106/mL of T. gondii
tachyzoites for 4 h (except for the normal group) and treated
with different concentrations of IOP (100, 50, and 25 μg/mL)
for 12 h, the positive group was treated with SD (10 μg/mL),
the normal group was added with the same volume of
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culturemedium, and themodel group was only infected with
tachyzoites. +e supernatant of the cells in each well was
collected, and the contents of cytokine IFN-c, TNF-α, IL-1β,
IL-4, and IL-6 in the supernatant were detected using ELISA
kits. Briefly, mouse capture antibody was coated in a
microwell plate and incubated at 4°C overnight and blocked
with 5% BSA blocking solution at room temperature for 1 h.
Samples from the supernatant of the cells were added
separately and incubated for 2 h, followed by detection
antibody for 1 h and avidin-HRP conjugate for 30min. TMB
chromogenic solution was added and incubated in the dark
for 30min, the reaction was stopped by adding 1MH2SO4,
and the OD value was measured at 450 nm on a microplate
reader. +e contents of cytokines were expressed based on
the appropriate standard curve.

2.6. Detection of Cytokine and Chemokine mRNA Expression
by RT-PCR. RAW264.7 macrophages cultured under
standard conditions were adjusted to 4×106 cells/mL and
inoculated in a 6-well plate. +e cells were infected with
2×107/mL of T. gondii tachyzoites for 4 h (except for the
normal group), and drug treatment was the same as above.
+e cell pellet in each group was collected, the total RNA of
the cells was extracted, and 1 μg of total RNA in each group
was performed for RT-PCR.+e PCR product was subjected
to 1.5% agarose gel electrophoresis and developed with an
E-Gel gel imaging system. +e mRNA expression of cyto-
kines and chemokines was analyzed with Quantity One
Software. +e primer sequences (Table 1) were designed by
Primer Premier 5 (Premier, Canada) and synthesized by
Invitrogen (Shanghai, China). β-Actin was used as an in-
ternal control.

2.7. Detection of Key Protein Expression in TLRs-NF-Κb/
MAPKs Signaling Pathways by Western Blot. RAW264.7
macrophages cultured under standard conditions were
adjusted to 3×106 cells/mL and inoculated in a 25 cm2

culture flask. +e cells were infected with 1.5×107/mL of
T. gondii tachyzoites for 4 h (except for the normal group),
and drug treatment was the same as above. +e cells in each
group were washed with PBS and collected by centrifuga-
tion.+e protein of the cells was extracted using RIPA buffer
containing PMSF and separated by centrifugation, and the
supernatant was aspirated. +e concentration of protein was
detected using the BCA method. Briefly, the standard curve
was established using a serial of dilution of protein standard,
the samples were placed in a 96-well plate, BCA solution was
added and incubated at 37°C for 30min, absorbance was
measured at 562 nm on a microplate reader, and the con-
centration of protein was calculated based on the standard
curve.+e same amount of protein was taken for SDS-PAGE
electrophoresis. +e target protein was transferred into the
PVDF membrane and the PVDF membrane was sealed in
5% skimmed milk for 2 h at room temperature and then
incubated with primary antibodies p-IKKα/β, p-IκBα,
p-p65, p-p38, p38, p-ERK1/2, ERK1/2, p-JNK, JNK, TLR2,
and TLR4 for overnight at 4°C, respectively. +e primary
antibody was washed with Tris-buffered saline/Tween 20

(TBST), and the membrane was incubated with secondary
antibody for 1 h at room temperature. +e membrane was
washed with TBST; the target protein bands were developed
in the WB imaging system with ECL color mixing solution.
+e gray values of the target protein in each group were
analyzed by Quantity One Software.

2.8. Observation of p65 and c-Jun Activation by
Immunocytochemistry. RAW264.7 macrophages cultured
under standard conditions were adjusted to 5×105 cells/mL
and inoculated in a 35mm glass-bottom dish. +e cells were
infected with 2.5×106/mL of T. gondii tachyzoites for 4 h
(except for the normal group), and drug treatment was the
same as above.+e supernatant of the cells in each group was
sucked away and the cells cultured on a glass dish were
gently washed with PBS. +e cells were fixed with 4%
paraformaldehyde for 30min and 0.1% Triton X-100 was
added for 15min at room temperature to increase the
permeability of membrane. +e cells were saturated with
PBS containing 5% BSA for 30min at room temperature and
processed for immunofluorescent staining with primary
antibodies (p65, c-Jun) for 1 h, followed by Cy3-conjugated
fluorescent secondary antibody for 1 h at room temperature.
+e cells were stained with DAPI in the dark for 15min, and
fluorescent signals of p65 and c-Jun activation and trans-
location were observed by fluorescent microscopy.

2.9. Statistical Analysis. All values are represented as
means± SD of results from at least three independent ex-
periments. +e differences between the groups were ana-
lyzed by one-way analysis of variance (ANOVA) and
Student’s t-test. All statistical analyses were performed by
SPSS 20.0 statistical analysis software (SPSS, Inc., Chicago,
IL, USA). P-value <0.05 was considered to be statistically
significant.

3. Results

3.1. Chemical Characterization of IOP.
1-Phenyl-3-methyl-5-pyrazolone (PMP) was used as a de-
rivatization reagent; the main chemical components from IOP
were analyzed by the HPLC method. +e monosaccharide
compositions included Mannose (Man), Rhamnose (Rha),
Glucose (Glu), Galactose (Gal), Xylose (Xyl), and Arabinose
(Ara) with molar ratios of 2.2 :1.1 :11.8 : 2.8 : 2.7 :1.0. +e
monosaccharide compositions and the chemical structures of
monosaccharides from IOP are shown in Figure 1.

3.2. Effect of IOP on Cytokine Contents in RAW264.7
Macrophages Infected by T. gondii. +e MTT method was
used to detect the cytotoxicity of IOP on RAW264.7 cells to
determine the safe doses of IOP. As shown in Figure 2(a),
IOP at concentrations from 0 to 100 μg/mL had no signif-
icant effect on the viability of RAW264.7 macrophages.
+us, the concentrations of IOP used in the following ex-
periments were 25, 50, and 100 μg/mL as the low, medium,
and high dose groups of IOP, respectively.

Evidence-Based Complementary and Alternative Medicine 3



0 5 10 15 20 25
Time (min)

30 35 40 45 50

100

m
AU

50 PMP
Man

Rha
GalXyl

Ara

Glu

0

100

50

0

(a)

HO

O
HO OH

OHO

GluMan

HO

HO

O

OH
OH

OH

Gal

HO

HO

O

OH
OH

OH

Xyl

HO

HO

HO OH

O

Ara

HO

HO

HO OH

O

Rha

OH OH

OHOH

O

H2O

(b)

Figure 1: Chemical characterization of IOP. (a) HPLC profile of IOP. (b) Chemical structures of monosaccharides from IOP.

Table 1: +e primer sequences used for RT-PCR.

Genes Forward primer (5′-3′) Reverse primer (5′-3′)
IFN-c CGCTACACACTGCATCTTGG TTCCACTCTATGCCACTTGAG
TNF-α AGAATGAGGCTGGATAAGA AGAGGTTCAGTGATGTAGCG
IL-1β TTCAAGGGGACATTAGGCAG TGTGCTGGTGCTTCATTCAT
IL-4 AACGAGGTCACAGGAGAAGG TGGAAGCCCTACAGACAAGC
IL-6 GCCTTCTTGGGACTGATG CTGGCTTTGTCTTTCTTGTT
MIP-1α CCACTGCCCTTGCTGTTCTT GGCATTCAGTTCCAGGTCAG
MCP-1 AGAGAGCCAGACGGGAGGAA GTAGCAGCAGGTGAGTGGGG
β-Actin CTGTCCCTGTATGCCTCTG ATGTCACGCACGATTTCC
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Figure 2: Effects of IOP on RAW264.7 cell viability and inflammatory cytokine contents in RAW264.7 macrophages infected with T. gondii.
(a) RAW264.7 macrophages were treated with 0–400 μg/mL of IOP for 12 h. +e cell viability was measured by the CCK-8 method. (b–f)
RAW264.7 macrophages were infected with T. gondii and treated with IOP or SD; the contents of inflammatory cytokines were determined
using ELISA assay. Values are expressed as means± SD of three independent experiments. #P< 0.05, ##P< 0.01 vs. normal group;
∗P< 0.05, ∗ ∗P< 0.01 vs. model group.
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+e contents of cytokine TNF-α, IFN-c, IL-1β, IL-4, and
IL-6 in the supernatant of cells were detected using the
ELISA method. As shown in Figures 2(b)–2(f), the contents
of inflammatory cytokines in the model group were in-
creased compared with those in the normal group (P< 0.01).
However, their contents in 25, 50, and 100 μg/mL IOP
groups were decreased compared with the model group
(P< 0.05 or P< 0.01). It indicated that IOP could inhibit the
excessive secretion of inflammatory cytokines caused by
T. gondii infection from RAW264.7 macrophages. SD also
inhibited the secretion of these inflammatory cytokines
(P< 0.05 or P< 0.01).

3.3. Effect of IOP on Cytokine and Chemokine mRNA
Expression in RAW264.7 Macrophages Infected by
T. gondii. +e cytokine and chemokine mRNA expression
was detected by RT-PCR and quantitatively analyzed. As
shown in Figure 3(a), the mRNA expression levels of cy-
tokines TNF-α, IFN-c, IL-1β, IL-4, and IL-6 in the model
group were increased compared with those in the normal
group (P< 0.01). However, the mRNA expression levels of
these cytokines in 25, 50, and 100 μg/mL IOP groups were
decreased compared with the model group (P< 0.05 or
P< 0.01). As shown in Figure 3(b), the mRNA expression
levels of chemokines MCP-1 and MIP-1α in the model
group were increased compared with those in the normal
group (P< 0.01). However, the mRNA expression levels of
chemokines MCP-1 and MIP-1α in 25, 50, and 100 μg/mL
IOP groups were decreased compared with those in the
model group (P< 0.05 or P< 0.01). SD also decreased the
mRNA expression levels of these cytokines and chemokines
(P< 0.05 or P< 0.01).

3.4. Regulation of IOP on NF-Κb and MAPKs Signaling
Pathways in RAW264.7 Macrophages Infected by T. gondii.
+e phosphorylated levels of key proteins in NF-κB and
MAPKs signaling pathways were detected by Western blot.
As shown in Figures 4(a) and 4(c), the levels of p-IKKα/β,
p-IκBα, p-p65 of NF-κB signaling pathway and p-p38,
p-JNK, and p-ERK1/2 of MAPKs signaling pathway in
model group were increased compared with those in the
normal group (P< 0.01), while the expressions of these
proteins in 25, 50, and 100 μg/mL IOP groups and SD group
were decreased compared with the model group (P< 0.05 or
P< 0.01).+ese evidenced that IOP and SD could inhibit key
protein IKKα/β, IκBα and p65 phosphorylation of NF-κB
signaling pathway and p38, and JNK and ERK1/2 phos-
phorylation of MAPKs signaling pathway in T. gondii-in-
fected RAW264.7 macrophages.

3.5. Effect of IOP on NF-Κb p65 and c-Jun Activation in
RAW264.7 Macrophages Infected by T. gondii. +e effect of
IOP on p65 and c-Jun activation was further evaluated by
immunocytochemistry staining in T. gondii-infected
RAW264.7 macrophages. As shown in Figures 4(b) and 4(d),
p65 and c-Jun were mainly distributed in the cytoplasmic
compartment in normal groups, c-Jun and p65 were

activated, and most of them were translocated from cyto-
plasm to nucleus in model groups. However, the activation
and nuclear translocation of p65 and c-Jun induced by
T. gondii infection could be inhibited in 25, 50, and 100 μg/
mL IOP groups and SD group.

3.6. Effect of IOP on TLR2 and TLR4 Protein Expression in
RAW264.7 Macrophages Infected by T. gondii. +e protein
expression of TLR2 and TLR4 was determined by Western
blot. As shown in Figure 5, the expression levels of TLR2 and
TLR4 in the model group were upregulated compared with
those in the normal group (P< 0.01). However, the levels of
TLR2 in 25, 50, and 100 μg/mL IOP groups were down-
regulated compared with those in the model group
(P< 0.01); the expression levels of TLR4 in 25, 50 and
100 μg/mL IOP groups and SD group were downregulated
compared with those in the model group (P< 0.05 or
P< 0.01). +ese showed that IOP and SD could down-
regulate the overexpression of TLR2 and TLR4 in RAW264.7
macrophages infected with T. gondii.

4. Discussion

Toxoplasmosis is characterized by excessive or imbalanced
inflammation and pathology [23]. T. gondii invades the
organisms and converts them to the rapidly dividing
tachyzoite form, inducing a series of inflammatory re-
sponses, which causes pathological damage to invasive tis-
sues and cells [24]. Host cell invasion is essential for the
pathogenicity of the obligate intracellular protozoan parasite
T. gondii. As important immune cells, macrophages play an
important role in directing the host’s immune response to
infection and also play a pathogenic role in inflammatory
disorders by producing excessive inflammatory mediators
[25]. +erefore, in the present study, mouse RAW264.7
macrophages were used to establish the in vitro model of
T. gondii infection and explore the anti-inflammatory effect
and mechanism of IOP against T. gondii infection in vitro.
Our data revealed that IOP inhibited the inflammatory
response caused by T. gondii infection in RAW264.7 mac-
rophages by suppressing inflammatory cytokines and che-
mokines. Further, we found these effects were mediated by
inhibiting the TLR2/TLR4-NF-κB/MAPKs signaling
pathways.

T. gondii infection is recognized by immune sensors,
leading to the production of cytokines and chemokines
[26]. Cytokines are a class of proteins or small molecular
peptides that can transmit information among cells; they
are considered to be important initiators of the inflam-
matory responses and mediators of the development of
infectious diseases [27]. TNF-α and IL-1β are critical
inflammatory cytokines and play a significant role in
regulating the host’s immune defense against T. gondii
infection [28]. Besides, IFN-c and IL-6 are also important
cytokines in the inflammatory response and show con-
siderable value in the process of T. gondii infection
[29, 30]. IL-4 is a multifunctional cytokine and possesses
a two-way regulation function; it has an antagonistic
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Figure 3: Effects of IOP on the mRNA expression of inflammatory cytokines (a) and chemokines (b) in RAW264.7 macrophages infected
with T. gondii. RAW264.7 macrophages were infected with T. gondii and treated with IOP or SD; the mRNA expression of inflammatory
cytokine TNF-α, IFN-c, IL-1β, IL-4, IL-6, and chemokine MIP-1, MCP-1 was determined by RT-PCR assay. Values are expressed as
means± SD of three independent experiments. ##P< 0.01 vs. normal group; ∗P< 0.05, ∗∗P< 0.01 vs. model group.
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Figure 4: Regulation of IOP on NF-κB (a) and (b) and MAPKs (c) and (d) signaling pathways in RAW264.7 macrophages infected with
T. gondii. (a, c) RAW264.7 macrophages were infected with T. gondii and treated with IOP or SD; the phosphorylated levels of IKKα/β, IκBα,
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T. gondii and treated with IOP or SD; NF-κB p65 and c-Jun activation was observed by immunocytochemistry staining. Blue represents
nucleus; green represents NF-κB p65 and c-Jun. +e image magnification is 400×.
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effect on proinflammatory cytokines in the early stage of
T. gondii acute infection, but the excessive or long-term
accumulation of IL-4 will promote the massive repro-
duction of tachyzoites [31]. In this study, T. gondii in-
fection led to excessive accumulation of IL-4 and
promoted the massive reproduction of tachyzoites, which
aggravated the inflammatory response. +erefore, as the
essential indicator of immune regulation and inflam-
matory response, abnormal production of a particular
cytokine would lead to a perturbation of homeostasis and
may contribute to the pathogenesis of certain autoim-
mune or inflammatory diseases [32]. Our study showed
that IOP could inhibit the excessive secretion and mRNA
expression of cytokines IFN-c, TNF-α, IL-1β, IL-4, and
IL-6 in RAW264.7 macrophages infected by T. gondii.
+ese results are consistent with our reported results in
vivo [19, 20].

Chemokines are a subset of chemotactic polypeptides,
which are critical mediators of both leukocyte activation and
chemotaxis. Chemokines are released by a variety of im-
mune cells in response to infection and attract cell migration
to the site of infection. [33, 34] MCP-1 and MIP-1α are
cysteine-cysteine (CC) chemokine family. +ey function as
major chemoattractant factors for lymphocytes and
monocytes and are involved in controlling T. gondii in-
fection and pathogenesis [35]. It has been shown that the
expressions of MIP-1α and MCP-1 gene transcripts are
upregulated in T. gondii-stimulated macrophages and fi-
broblasts [35, 36]. Our present study also showed that
T. gondii infection remarkably increased chemokine MIP-1α
and MCP-1 mRNA expression, while IOP could suppress
their expression levels in RAW264.7 macrophages infected
by T. gondii.

TLRs exert a critical role in host defense against various
microbial pathogens and are also key innate receptors for
recognizing ligands expressed by T. gondii [37]. Among
TLRs, TLR2 and TLR4 are involved in host defense against
T. gondii infection through activation [10]. It has been re-
ported that the increased levels of TLR2 and TLR4 may play
an important role during acute T. gondii infection [38]. +e

activation of TLR2 and TLR4 triggers the downstream NF-
κB and MAPKs signaling pathways, which further promotes
the synthesis and secretion of cytokines and chemokines by
activating a variety of transcription factors [10–12]. NF-κB is
typically a heterodimer of RelA (p65) and NF-κB1 (p50). In
resting cells, NF-κB is bound to the inhibitory protein IκB
and retained in an inactive form in the cytoplasm. When
stimulated, IκB is phosphorylated and degraded by IκB
kinase (IKK), and NF-κB is released from IκB and trans-
locates into the nucleus to initiate gene expression. [39, 40]
When T. gondii invades cells, extracellular signals are
transmitted into cells through membrane receptors, which
can activate downstream IKK, induce IκB phosphorylation,
and ultimately promote the nuclear translocation of NF-κB
subunits [41, 42]. Our present study found that key proteins
IKKα/β, IκBα, and p65 in NF-κB signaling pathway were
highly phosphorylated in T. gondii-infected RAW264.7 cells,
while IOP could inhibit IKKα/β, IκBα, and p65 phos-
phorylation and prevent the activation and translocation of
p65 from the cytoplasm into the nucleus. +ese suggested
that IOP inhibited the inflammatory response by blocking
TLRs/NF-κB signaling pathway in RAW264.7 macrophages
infected with T. gondii.

As another important signal transduction pathway, the
MAPKs pathway appears to be involved in the invasion
process of various microorganisms. MAPKs family includes
JNK, ERK1/2, and p38; the activation of JNK, ERK1/2, and
p38 MAPKs occurs during the invasion and proliferation of
T. gondii tachyzoites in HeLa cells. +e increased secretion
and expression of MIP-1α and MCP-1 are also detected in
infected macrophages and appear to occur through the
MAPKs signaling pathway [36]. MAPKs phosphorylation
can be triggered by stimulation, resulting in the increased
expression of p-MAPKs, including p-JNK, p-ERK, or p-p38
[43]. +e ability of T. gondii to trigger specific phosphor-
ylation of ERK1/2, JNK, and p38 MAPKs has been observed
in monocytic cells [12]. JNK acts on the transcriptional
activation domain of c-Jun, and phosphorylated c-Jun is
transferred to the nucleus, where AP-1 activation is induced
and participates in the inflammatory response [44]. Our
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Figure 5: Effects of IOP on TLR2 and TLR4 protein expression in RAW264.7 macrophages infected with T. gondii. RAW264.7 macrophages
were infected with T. gondii and treated with IOP or SD; the protein expression of TLR2 and TLR4 was determined byWestern blot analysis.
Values are expressed as means± SD of three independent experiments. ##P< 0.01 vs. normal group; ∗P< 0.05, ∗∗P< 0.01 vs. model group.
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present study found that ERK1/2, JNK, and p38 kinases were
highly phosphorylated in T. gondii-infected RAW264.7
macrophages, while IOP could inhibit ERK1/2, JNK, and
p38 phosphorylation and prevent the activation and
translocation of transcription factor c-Jun from the cyto-
plasm to the nucleus. +ese suggested that IOP may inhibit
the inflammatory response by blocking TLRs/MAPKs sig-
naling pathway in RAW264.7 macrophages infected with
T. gondii.

In conclusion, our results showed that IOP could inhibit
the overexpression of inflammatory cytokines and chemo-
kines in T. gondii-infected RAW264.7 macrophages. +e
inhibitory effects of IOP were attributed to the inhibition of
TLR2/TLR4-NF-κB/MAPKs signaling pathways (Figure 6).
Taken together, the present study indicates that IOP inhibits
the excessive inflammatory response caused by T. gondii
infection and exerts the in vitro anti-T. gondii effect through
the immunomodulatory mechanism. It provides the theo-
retical basis and evidence for preventing and treating
T. gondii infection with IOP.
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