

**Research** Article

## Network Pharmacology Study on Molecular Mechanisms of Zhishi Xiebai Guizhi Decoction in the Treatment of Coronary Heart Disease

# Jin Gao (),<sup>1</sup> Yujing Pan (),<sup>2</sup> Yuxi Zhao (),<sup>3</sup> Haoyang Li (),<sup>4</sup> Zishuo Mi (),<sup>5</sup> Hao Chen (),<sup>2</sup> and Xiaodong Tan ()<sup>6</sup>

<sup>1</sup>School of Integrated Chinese and Western Medicine, Nanjing 210023, China

<sup>2</sup>School of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing 210023, China

<sup>3</sup>College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China

<sup>4</sup>First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China

<sup>5</sup>School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China

<sup>6</sup>Department of Cardiovascular Medicine, Hospital of Traditional Chinese Medicine of Wuxi City, Wuxi 214000, China

Correspondence should be addressed to Hao Chen; chenhao@njucm.edu.cn and Xiaodong Tan; txd198523@163.com

Received 5 August 2021; Revised 15 October 2021; Accepted 25 November 2021; Published 20 December 2021

Academic Editor: Vahidreza Ostadmohammadi

Copyright © 2021 Jin Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Coronary heart disease is characterized by the formation of arterial plaque. If not taken seriously, it will cause serious consequences such as myocardial infarction and heart failure. Zhishi Xiebai Guizhi Decoction first appeared in "Synopsis of Prescriptions of the Golden Chamber" and is a representative prescription for the treatment of coronary heart disease. This study aims to explain the mechanism of Zhishi Xiebai Guizhi Decoction in the treatment of coronary heart disease through network pharmacology and clinical trials. Methods. We first identified the core compounds of Zhishi Xiebai Guizhi Decoction and their potential targets through TCMSP. Then, We analyzed the molecular targets of Zhishi Xiebai Guizhi Decoction in coronary heart disease with OMIM and GeneCards databases. After the common targets were screened out, we manage to figure out the pathways of these target genes through STRING. Finally, we verify the treatment results in clinical trials. Results. Through network pharmacology analysis, we discovered that several core compounds of Zhishi Xiebai Guizhi Decoction have anti-inflammatory effects and are of great significance to treatment of cardiovascular diseases. The mechanism may be closely related to PPARy, inflammation, TNF signaling pathway, AMPK signaling pathway, and PI3K-Akt signaling pathway. Clinical trials have also proved the key role of inflammation. Conclusions. Zhishi Xiebai Guizhi Decoction may play a role in treating coronary heart disease by activating PPARy. TNF signaling pathway, AMPK signaling pathway, and PI3K-Akt signaling pathway are potential mechanisms as well. The application of network pharmacology can provide a novel method for the research of Chinese herbal medicine. We hope that Zhishi Xiebai Guizhi Decoction will be recognized as a complementary or alternative treatment for coronary heart disease.

### 1. Introduction

Coronary heart disease (CHD) is characterized by formation of arterial plaques which are mainly comprised of lipids, calcium, and inflammatory cells [1]. These plaques narrow the lumen of coronary arteries leading to episodic or persistent angina. Rupture of these plaques results in the appearance of thrombus, which, brought about by cessation of blood flow, causes myocardial infarct and death [2]. CHD is one of the leading causes of death worldwide [3, 4]. The increasing number of CHD patients will lay a heavy economic burden on society [5]. Currently, the drugs commonly used in clinic to treat coronary heart disease are statins, nitrate esters, etc., with which the residual risk of cardiovascular events cannot be completely eliminated after treatment [6, 7]. Given this, many doctors have been seeking alternative medicines to treat CHD. Traditional Chinese medicine (TCM), as a type of alternative drug, displays the merits of low side effects and less irritation to the gastrointestinal tract [8, 9]. It has been demonstrated that TCM works an outstanding clinical effect when treating CHD [10]. Zhishi Xiebai Guizhi Decoction is effective. This prescription contains Aurantii Fructus Immaturus ("ZhiShi" in Chinese, ZS), Allium Azureum Ledeb. ("XieBai" in Chinese, XB), Cinnamomi Ramulus ("GuiZhi" in Chinese, GZ), Trichosanthes Kirilowii Maxim ("GuaLou" in Chinese, GL), and Magnolia Officinalis Rehd Et Wils. ("HouPo" in Chinese, HP). Multidrug compatibility is regarded as the essence of TCM theory [11]. However, due to the complex components and numerous targets involved, fully elucidating its mechanism using traditional methods is challenging. Therefore, it is necessary to reveal the potential mechanism of Zhishi Xiebai Guizhi Decoction in the treatment of CHD at the systemic level.

With the continuous innovation and development of systems biology and computer technology, the network pharmacology has been confirmed as a feasible choice to explicate the substance composition and molecular mechanism of TCM effectively and systemically [12, 13]. In 2008, Hopkins proposed the concept of network pharmacology [14]. Because network pharmacology can provide a full or partial understanding of the principles of network theory and systems biology, it has been considered the next paradigm in drug discovery. In addition, the network pharmacology approach has been used to study "compoundproteins/genes-disease" pathways, which are capable of describing complexities among biological systems, drugs, and diseases from a network perspective, sharing a similar holistic philosophy as TCM [15]. The application of systems biology methods to study the pharmacological effects, mechanism of action, and safety of TCM is of great significance to modern research and development of TCM. Thus, a new interdisciplinary method termed TCM network pharmacology has been proposed, which has initiated a new research paradigm for transforming TCM from an experience-based to evidence-based medicine. Furthermore, with recent advances in molecular biology and genomic technologies, an increasing amount of data has become available [16], for example, TCMSP [17], STRING [18], OMIM [19], and DisGeNET [20].

In this study, we used network pharmacology to predict the potential mechanism of Zhishi Xiebai Guizhi Decoction in the treatment of CHD. The workflow is displayed in Figure 1.

#### 2. Methods

2.1. Screening the Chemical Components of Zhishi Xiebai Guizhi Decoction and Predicting the Component-Targets. The chemical ingredients of Zhishi Xiebai Guizhi Decoction were screened from TCMSP (http://lsp.nwu.edu.cn/ tcmsp.php). Based on a previously reported model, we screened the various compounds in Zhishi Xiebai Guizhi Decoction according to their pharmacokinetic absorption, distribution, metabolism, and excretion, which is known as ADME process. TCMSP database details the ADME parameters of each component, including oral bioavailability (OB), druglikeness (DL), and blood-brain barrier (BBB). Ingredients meeting the demands of both  $OB \ge 30\%$  and  $DL \ge 0.18$  were selected to find the effective components of this prescription [21]. OB represents the oral availability of pharmaceutical ingredients, and DL refers to the similarity between a component and a known drug. Subsequently, the components in the prescription were selected (Table 1).

2.2. Predicting the Target Proteins of the Selected Compounds. All the active ingredients were input into the TCMSP database to obtain their known targets, and the Cytoscape3.8.2 tool was used to draw a network diagram of the compound and the target protein (Figure 2).

The blue nodes represent Zhishi, Xiebai, Guizhi, Gualou, and Houpo. The red nodes represent the compounds shared by Guizhi and Xiebai. The dark purple nodes represent the compounds of Houpo. The orange nodes represent the compounds of Zhishi. The light purple nodes represent the compounds of Xiebai. The pink nodes represent the compounds of Gualou. The yellow nodes represent the compounds of Guizhi. The green nodes represent the targets related to Zhishi Xiebai Guizhi Decoction.

2.3. Seeking Out Disease-Related Targets. With "coronary heart disease" as the keywords, OMIM (https://www.omim. prg/) and GeneCards (https://www.genecards.org/) were used to search and screen the known disease-targets for the subsequent study, and the repeated targets in the search results were discarded. UniProt knowledge base [22, 23] (https://www.uniprot.org/) was used to get the standard targets' names with the organism selected as "Homo sapiens."

2.4. Searching for Common Targets and Key Targets of Zhishi Xiebai Guizhi Decoction and CHD. The common targets of drug and disease were found, and a Venn diagram was drawn (Figure 3).

The obtained intersection target was used as the drug effect target, and Cytoscape3.8.2 was employed to construct the drug effect target-component interaction network (Figure 4). The network was analyzed to get its degree value and get the key drug effect target (Table 2).

The green nodes represent the compounds of Zhishi Xiebai Guizhi Decoction. The blue nodes represent the key targets related to Zhishi Xiebai Guizhi Decoction.

2.5. Construction of the Protein-Protein Interaction Network. Using the STRING (Search Tool for the Retrieval of Interacting Gene/Proteins) database containing known and predicted PPIs [24], we constructed a protein-protein interaction (PPI) network of potential target genes of Zhishi Xiebai Guizhi Decoction in CHD (Figure 5).



FIGURE 1: The whole framework based on an integration strategy of network pharmacology.

2.6. Enrichment Analysis. To identify the biological process and signaling pathways in which the main hub target genes are involved, Database for Annotation, Visualization, and Integrated Discovery (David) were used for pathway enrichment analysis. The target genes of Zhishi Xiebai Guizhi Decoction in CHD were input into David for Gene Ontology (GO) biological process analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. GO biological processes with  $P \le 0.01$  and KEGG pathways with $P \le 0.01$  were considered to be significantly enriched.

2.7. Clinical Index Changes of Zhishi Xiebai Guizhi Decoction in Treating Coronary Heart Disease Patients. A total of 176 patients with coronary heart disease were included in the clinical study. According to the random number table, the enrolled patients were divided into control group (88 cases) and the test group (88 cases). During the treatment, 7 cases were dropped from the two groups, and final effective cases were 81 cases in each group. This study was approved by the Ethics Committee of Wuxi Hospital of Traditional Chinese Medicine and registered in the Chinese Clinical Trial Registration Center (ethics number: 2018022736, registration number: ChiCTR1800019814). Before entering the group, patients and their family members were informed of all the research content and interests, were fully aware of them, and signed an informed consent form on the premise of voluntary participation. The diagnostic criteria for patients with coronary heart disease enrolled in this trial were based on the "2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology [25]," and the most diagnosed patients were patients with stable coronary artery disease. After admission, both groups were given standardized treatment for stable coronary heart disease. The test group was treated with Zhishi Xiebai Guizhi Decoction on the basis of the control group.

Both groups were treated for 2 months and finally got inflammations such as Neutrophil to lymphocyte ratio (NLR), Monocyte of lymphocyte ratio (MLR), Monocyte to highdensity lipoprotein ratio (MHR), and C-reaction protein (CRP) factor level changes, and preliminary exploration of the mechanism of the prescription on the inflammatory response provided a clinical basis for the later confirmation of its molecular mechanism in vitro and in vivo.

#### 3. Results

3.1. Identification of Targets of Zhishi Xiebai Guizhi Decoction and CHD in Various Databases. The database retrieved 139 relevant targets of the active ingredient, and the active ingredient-target interaction network was constructed using Cytoscape 3.8.2 (Figure 2). Through keyword search, 1991 related targets of coronary heart disease were obtained in GeneCards database and OMIM database. The Venny diagram constructs the intersection of active ingredient-target and disease-target. A total of 85 intersection targets are used for subsequent network pharmacological analysis.

3.2. Seeking Key Targets and Built PPI Networks. The obtained intersection target was used as the drug effect target, and Cytoscape 3.8.2 was used to construct the drug effect target-component interaction network (Figure 4). The network was analyzed to get its degree value. The top 20 pharmacodynamic targets with degree value include estrogen receptor (ESR1), androgen receptor (AR), prostaglandin G/H synthase 2(PTGS2), and peroxisome proliferator activated receptor (PPARG) (Table 2).

3.3. Enrichment Analysis by GO and KEGG. According to P value, the important items of BP of GO analysis were regulation of blood pressure, regulation of inflammatory

| MCI001494     Mandenol     41.9962     0.19321       MOL004355     Spinasterol     42.9737     0.75534       MOL00556     Schottenol     7.5534     0.75534       MOL00775     Schottenol     37.4312     0.7567       MOL007171     5.Deltytolarounidol     30.8901     0.7387       MOL007172     C.XOx-dhydrokarounidol     30.8901     0.7387       MOL007175     Karounidol 3-o-berzoate     43.9906     0.49507       MOL007170     Unionenic acid ethyl ester     46.0098     0.1984       MOL0007180     Notesperidin     57.212     30.05017       MOL000735     Ent-epicatechin     48.9594     0.2162       MOL000359     Presisterol     36.9191     0.7512       MOL000353     Stisterol     36.9191     0.7512       MOL000354     Quercetin     46.4333     0.22752       MOL000354     Quercetin     46.4333     0.22752       MOL000354     Quercetin     36.9191     0.75123       MOL000354     Cy.3-(4-Hydroxy-3-methydesphendy)-hydhydhydhydhydhydhydhydhydhydhydhydhydh                                                                                                                                                                                  | Drug | ID          | Components                                                                             | OB%                  | DL          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|----------------------------------------------------------------------------------------|----------------------|-------------|
| MOL002881     Diosnetin     31.1379     0.27442       MOL004355     Spinastrol     42.9797     0.75334       MOL00530     Hydroxygenkvanin     36.467     0.27206       GL     MOL007165     10e-cucurbita-5,24-disme-3,8-ol     44.01594     0.7435       MOL00717     Shothenol     37.3421     0.75067       MOL007175     Karounidiol 3-o-benzoate     43.99061     0.97957       MOL007170     Eacalyptol     6.06276     0.32184       MOL007170     Eacalyptol     6.06276     0.32184       MOL0007180     Vtarnin-c     32.2843     0.0954     0.410276       MOL000073     Ent-eptrachnin     45.9194     0.71023       MOL000073     Ent-eptrachnin     45.9139     0.75123       MOL000073     Ent-estrolin     5.9139     0.75123       MOL000073     Ent-estrolin     5.81019     0.75123       MOL000073     Ent-astrolerin     0.80287     0.22427       MOL000073     Ent-astrolerin     0.801931     0.75123       MOL0000073     Ent-astrolerin                                                                                                                                                                                                             |      | MOL001494   | Mandenol                                                                               | 41.9962              | 0.19321     |
| MOL004355     Spinasterol     42.9792     0.7534       MOL006756     C2206     5.407     0.27206       MOL007165     Schottenol     37.4212     0.75067       GL     MOL007171     S-Dehydrokarounidial     0.022665     0.73387       MOL007175     Karounidial 3 - benzoate     43.99061     0.49055       MOL007175     Karounidial 3 - benzoate     43.99061     0.49055       MOL007170     Karounidial 3 - benzoate     43.99061     0.49055       MOL0007180     Vitanin-e     2.22843     0.69563       MOL0009780     Beta-sitostrol     36.91391     0.75123       MOL000073     Ent-epicatchin     44.9338     0.27424       MOL000074     (+)-catechin     54.82648     0.24164       MOL000073     Ent-epicatchin     56.91391     0.75123       MOL000074     (-)-Taxiolin     60.50622     0.2742       MOL000075     (-)-Taxiolin     60.50622     0.2742       MOL0000760     Quercetin     46.43335     0.27525       MOL0000751     Groumaroyltyramine     55.2888                                                                                                                                                                                          |      | MOL002881   | Diosmetin                                                                              |                      | 0.27442     |
| MOL00530     Hydroxygenkvanin     36.467     0.2206       MOL007165     10e-cucubita-52.4-diane-3β-ol     44.01594     0.74312     0.75087       MOL007172     7-0xo-dihydrokarounidiol     30.22665     0.7703       MOL007172     7-0xo-dihydrokarounidiol     30.22665     0.7703       MOL007172     7-0xo-dihydrokarounidiol     36.85021     0.75387       MOL007179     Linolenic acid ethyl ester     46.10096     0.19694       MOL000570     Encalyptol     60.62476     0.32159       MOL000073     Ent-epicatechin     48.95984     0.2462       MOL000038     Beta-sitosterol     36.91391     0.75123       MOL000038     Beta-sitosterol     36.91391     0.75123       MOL000038     Quercetin     64.64333     0.22675       MOL000038     Quercetin     64.64333     0.22675       MOL000038     Quercetin     64.64333     0.22755       MOL000038     Quercetin     64.64333     0.22755       MOL000038     Quercetin     64.6333     0.27852       MOL0000381     (Z)-3-4(Hy                                                                                                                                                                             | GL   | MOL004355   | Spinasterol                                                                            |                      | 0.75534     |
| MOL006756     Schöttenol     37.4231     0.75067       GL     MOL007175     100-cuccubins-524-dihene-36-d     44.01594     0.7485       MOL007171     5-Dehydrokarounidiol     36.85021     0.75387       MOL007175     Karounidiol     3-bersonate     43.09966     0.49505       MOL007179     Linolenic acid ethyl ester     46.10096     0.14964       MOL007180     Vitamin-e     32.28643     0.64167     0.21198       MOL00073     Ent-epicatechin     48.95984     0.24162       MOL0003590     Ncohesperidin     57.41074     0.27082       MOL000359     Sitosterol     36.91391     0.7512       MOL000376     (+)-catechin     54.82434     0.24164       MOL000378     Ret-epicatechin     60.9392     0.27322       MOL000038     Reta-sitosterol     36.91391     0.75123       MOL000038     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-Hydroxyphenyl) ethyl] acrylamide     118.3477     0.26399       MOL000051     Cumaroyltyramine     59.2939     0.2128       MOL0000631     Cumaroyltyrethynoly-10-hyl acrylamide <td>MOL005530</td> <td colspan="2">Hydroxygenkwanin</td> <td>0.27206</td>                                                            |      | MOL005530   | Hydroxygenkwanin                                                                       |                      | 0.27206     |
| GL     MOL007165     10a cucurbita-5,21-diene-3f-ol     44.01594     0.7433       MOL007171     S-Pohydrokaroundiol     36.85201     0.7333       MOL007175     Karoundiol 3-o-benzoate     43.99061     0.49855       MOL007179     Linolenic acid ethyl ester     46.10096     0.19694       MOL00570     Eucalyptol     60.62476     32.1864     0.69562       MOL00073     Eut-epicatechin     48.95984     0.24162     0.75133       MOL000358     Beta-sitosterol     36.91391     0.75123     0.75123       MOL000359     Sitosterol     36.91391     0.75123     0.75123       MOL000358     Reta-sitosterol     36.91391     0.75123       MOL0000358     Reta-sitosterol <t< td=""><td>MOL006756</td><td>Schottenol</td><td>37.42312</td><td>0.75067</td></t<>                                                                                      |      | MOL006756   | Schottenol                                                                             | 37.42312             | 0.75067     |
| MOL007171     5-Debydrokarounidiol     30.2665     0.7387       MOL007175     Cxxxx-ordihydrokaro-unidiol     36.8502     0.7387       MOL007175     Karounidiol 3-o benzoate     43.99061     0.49694       MOL007180     Vitamin-e     32.8643     0.69563       HP     MOL005970     Eucalyptol     60.62476     0.32159       MOL000073     Ent-epicatechin     48.95984     0.24162       MOL0003580     Beta-sitosterol     36.91391     0.7312       MOL000359     Sitosterol     36.91391     0.7312       MOL000352     (+)-catechin     54.84243     0.24164       MOL000352     n-coumarcyltyramine     85.0288     0.20237       MOL0000352     n-coumarcyltyramine     85.0288     0.20237       MOL0000353     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxyphenyl) ethyl] acrylamide     118.3477     0.2034       MOL000054     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxyphenyl) ethyl] acrylamide     18.3477     0.2034       MOL0007640     Macrosterononside e_qt     35.259     0.2124       MOL0007651     Prostaglandin B1                                                                                                                |      | MOL007165   | $10\alpha$ -cucurbita-5,24-diene-3 $\beta$ -ol                                         | 44.01594             | 0.7445      |
| MOL007172     7-0xo-dihydrokaro-unidiol     36.85021     0.73877       MOL007175     Karounidiol 3-o-benzoate     43.9966     0.49965       MOL007170     Linolenic acid ethyl ester     43.9966     0.69663       MDL007180     Vitamin e     32.2843     0.69663       MOL005980     Neohesperidin     57.4074     0.27082       MOL000358     Beta-sitosterol     36.9191     0.75123       MOL000358     Beta-sitosterol     36.9191     0.75123       MOL0000492     (+)-catechin     54.8243     0.24162       MOL000038     Quercetin     46.4333     0.2427       MOL000032     r-coumarolytyramine     85.6288     0.20287       MOL000033     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)N-12/(4-thydroxyphenyl) ethyl] acrylamide     118.3477     0.2399       MOL000031     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)N-12/(4-thydroxyphenyl) ethyl] acrylamide     118.3477     0.2399       MOL000032     Procumarolytyramine     85.228     0.20287       MOL000033     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)N-12/(4-thydroxyphenyl) ethyl] acrylamide     118.3477     0.23929       MOL000053                                                                                    |      | MOL007171   | 5-Dehydrokarounidiol                                                                   | 30.22665             | 0.7703      |
| MOL007175     Karounidiol 3-o-benzoate     43.99061     0.49505       MOL007179     Linolenic acid ethyl ester     46.10969     0.19694       MOL005770     Eucalyptol     60.62476     0.32189       MOL000570     Eucalyptol     60.62476     0.32189       MOL000073     Ent-epicatechin     48.95984     0.24162       MOL000073     Ent-epicatechin     48.95984     0.24164       MOL0001780     Sitosterol     36.91391     0.75123       MOL0000492     (+)-catechin     54.82473     0.24164       MOL0000358     Quercetin     46.43335     0.227342       MOL000038     Quercetin     46.13335     0.2234       MOL000038     Quercetin     46.3335     0.2234       MOL000038     Reta-sitosterol     36.91391     0.75123       MOL000038     CQuaratorylyramine     112.9016     0.20234       MOL0000631     Coumaroylyramine     112.9016     0.20234       MOL000631     Coumaroylyramine     12.9016     0.20234       MOL0007561     Prostaglandin B1     40.2077                                                                                                                                                                                           |      | MOL007172   | 7-Oxo-dihydrokaro-unidiol                                                              | 36.85021             | 0.75387     |
| MOL007179     Linolenic acid ethyl ester     46.10096     0.19694       MOL005780     Vitamin-e     32.2864     0.69554       MP     MOL005980     Neobesperidin     57.44074     0.27085       MOL00073     Ent-epicatechin     48.95984     0.24105       MOL000358     Beta-sitosterol     36.91391     0.75123       MOL000492     (+)-catechin     54.82043     0.28164       MOL000358     Beta-sitosterol     36.91391     0.75123       MOL000492     (+)-catechin     54.82043     0.28164       MOL000358     Reta-sitosterol     36.91391     0.75123       MOL000358     Reta-sitosterol     36.91391     0.75123       MOL000483     (Z)-3-(4-Hydroxy-phenyl)-N-12-(4-hydroxyphenyl) ethyl] acrylanide     118.3477     0.2034       MOL000631     Coumaroyltyramine     40.30209     0.27252       MOL000631     Coumaroyltyramine     40.30209     0.27252       MOL000750     PGA (sup 1)     43.98251     0.25437       MOL0007650     PGA (sup 1)     40.2077     0.25344       MOL0007650 <td>MOL007175</td> <td>Karounidiol 3-o-benzoate</td> <td>43.99061</td> <td>0.49505</td>                                                                           |      | MOL007175   | Karounidiol 3-o-benzoate                                                               | 43.99061             | 0.49505     |
| MOL1007180     Vitamin-e     32.28643     0.69563       HP     MOL005970     Eucalyptol     60.62476     0.32159       MOL000073     Ent-epicatechin     48.95984     0.24162       MOL0000358     Beta-sitosterol     36.91391     0.7512       MOL000359     Sitosterol     36.91391     0.7512       MOL000173     (+)-taxtrôlin     60.62476     0.22165       MOL000032     (+)-catechin     54.82643     0.21164       MOL000033     Rocumaroyltyramine     85.62883     0.20287       MOL000033     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-12-(4-hydroxyphenyl) ethyl] acrylanide     118.3477     0.26399       MOL000053     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-12-(4-hydroxyphenyl) ethyl] acrylanide     118.3477     0.26399       MOL000531     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-12-(4-hydroxyphenyl) ethyl] acrylanide     118.3477     0.20399       MOL000531     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-12-(4-hydroxyphenyl) ethyl] acrylanide     118.3477     0.26399       MOL000531     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-12-(4-hydroxyphenyl) ethyl] acrylanide     118.3477     0.26399       MOL0001975     (Z)                                   |      | MOL007179   | Linolenic acid ethyl ester                                                             |                      | 0.19694     |
| HP     MOL005970     Eucalyptol     60.62476     0.32159       MOL005980     Neohesperidin     57.44074     0.27085       MOL000358     Ent-epicatechin     48.95984     0.24162       MOL000359     Sitosterol     36.9139     0.75123       MOL0000492     (+)-catechin     54.82643     0.24164       MOL000330     (-)-Taxifolin     60.5622     0.27342       MOL000038     Quercetin     45.335     0.75723       MOL000318     Reta-sitosterol     36.9139     0.75123       MOL0000481     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxyphenyl) ethyl] acrylamide     118.3477     70.5123       MOL000053     Coumaroyltyramine     45.62883     0.20234       MOL000054     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxyphenyl) ethyl] acrylamide     118.3477     70.31209       MOL00053     Coumaroyltyramine     40.38964     0.85102       MOL000540     Macrosterononside e_qt     35.259     0.87216       MOL007551     Prostaglandin B1     40.2077     25344       MOL000750     PGA (sup 1)     43.98510                                                                                                                                       |      | MOL007180   | Vitamin-e                                                                              |                      | 0.69563     |
| III     MOL0005980     Neohesperidin     57.44074     0.27085       MOL000073     Ent-epicatechin     48.95984     0.24165       MOL0000358     Beta-sitosterol     36.91391     0.75123       MOL0000492     (+)-catechin     54.82643     0.24164       MOL0000330     Quercetin     64.43355     0.27342       MOL0000332     n-coumarolytrymine     85.62883     0.20287       MOL0000338     Beta-sitosterol     36.91391     0.75123       MOL0000331     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxyhenyl)] ethyl] acrylamide     118.3477     0.20394       MOL0000631     Coumaroyltyramine     112.9016     0.20234       MOL00007540     Marcrosteronoside e_qt     35.259     0.87216       MOL000750     PGA (sup 1)     43.98251     0.25437       MOL0007640     Macrosteronoside e_qt     71.0886     0.2034       MOL0007650     PGA (sup 1)     43.98251     0.25437       MOL007651     Prostaglandin B1     40.20777     0.25344       MOL007650     PGA (sup 1)     43.98251     0.23452                                                                                                                                                           | ЦD   | MOL005970   | Eucalyptol                                                                             | 60.62476             | 0.32159     |
| MOL000073     Ent-epicatechin     48.95984     0.2416.       MOL000358     Beta-sitosterol     36.91391     0.7512       MOL000492     (+)-catechin     54.82643     0.2416       MOL000359     Quercetin     46.4335     0.27525       MOL000332     n-coumaroyltyramine     85.62883     0.20237       MOL000358     (2)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2.(4-hydroxyphenyl) ethyl] acrylamide     118.3477     0.2039       MOL000137     Coumaroyltyramine     112.2016     0.20234       MOL000138     (2)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2.(4-hydroxyphenyl) ethyl] acrylamide     118.3477     0.2039       MOL000137     Sitosteryl acetate     40.38964     0.82102       MOL0002341     Hesperetin     70.31209     0.22234       MOL000760     PGA (sup 1)     43.98251     0.24344       MOL000761     Prostaglandin B1     40.02777     0.2334       MOL0007651     Prostaglandin B1     40.20777     0.2334       MOL0001803     Sinenestin     50.5685     0.4454       MOL0001804     Sinenestin     50.5685     0.4454 <td>111</td> <td>MOL005980</td> <td>Neohesperidin</td> <td>57.44074</td> <td>0.27085</td>                                         | 111  | MOL005980   | Neohesperidin                                                                          | 57.44074             | 0.27085     |
| MOL000358     Beta-sitosterol     36,9139     07,512       MOL000359     Sitosterol     36,9139     0,7512       MOL000736     (-)-Taxifolin     60,5062     0,27342       MOL000352     (-)-Taxifolin     60,5062     0,27342       MOL000332     n-coumaroyltyramine     86,6283     0,20237       MOL000433     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxyphenyl) ethyl] acrylamide     118,3477     0,2034       MOL000431     Coumaroyltyramine     112,9016     0,20234       MOL000432     Naringenin     50,2399     0,21252       MOL000432     Naringenin     50,2399     0,21252       MOL007640     Macrostemonoide e_qt     35,9559     0,87216       MOL007650     PGA (sup 1)     43,98251     0,2534       MOL0007650     Prostaglandin B1     40,20777     0,2534       MOL0007650     Prostaglandin B1     40,20777     0,2534       MOL000768     Neohesperidin_qt     71,1688     0,22355       MOL001798     Neohesperidin_qt     71,6886     0,22355       MOL000160     5,7-Dihy                                                                                                                                                                |      | MOL000073   | Ent-epicatechin                                                                        | 48.95984             | 0.24162     |
| GZ     MOL000359     Sitosterol     36.91391     0.7512       MOL000492     (+)-catechin     54.82643     0.24164       MOL000736     (-)-Taxifolin     60.50622     0.27342       MOL000038     Quercetin     46.43335     0.27352       MOL000332     n-coumaroyltyramine     85.62838     0.20287       MOL0000518     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxyphenyl) ethyl] acrylamide     118.3477     0.26339       MOL000631     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxyphenyl) ethyl] acrylamide     118.3016     0.20234       XB     MOL001973     Sitosteryl acetate     40.38964     0.85102       MOL002341     Hesperetin     70.31209     0.27252       MOL007650     PGA (sup 1)     33.98251     0.25437       MOL007651     Prostaglandin B1     40.20777     0.25384       MOL001798     Neohesperidin_qt     71.16886     0.22355       MOL001798     Neohesperidin_qt     41.5043     0.24364       MOL001798     Neohesperidin_qt     41.5043     0.24364       MOL0002914     Eriodyctiol (flavanoe)                                                                                                                              |      | MOL000358   | Beta-sitosterol                                                                        | 36.91391             | 0.75123     |
| MOL000492     (+)-catechin     54.82643     0.24164       MOL001736     (-)-Taxifolin     60.5062     0.27342       MOL000038     Quercetin     46.4335     0.27525       MOL0000358     Beta-sitosterol     36.9139     0.75123       MOL0000483     (Z)-3-(4-Hydroxy-3-methoxy-phenyl-N-12-(4-Hydroxyphenyl) ethyl] acrylamide     118.3477     0.26399       MOL0000431     Coumaroyltyramine     112.9016     0.20234       MOL0002341     Hesperetin     70.31200     0.27252       MOL007640     Macrostemonoside e_qt     35.259     0.87216       MOL007650     PGA (sup 1)     43.98251     0.25437       MOL007651     Prostaglandin B1     40.0277     0.25384       MOL001798     Neohesperidin_qt     71.16886     0.27055       MOL001914     Ammidin     34.5485     0.24552       MOL002944     Eriodyctiol (flavanone)     41.35043     0.24552       MOL002194     Eriodyctiol (flavanone)     41.35043     0.24364       MOL002849     Didymin     38.5519     0.2308       MOL0007879     5                                                                                                                                                                | GΖ   | MOL000359   | Sitosterol                                                                             | 36.91391             | 0.7512      |
| MOL001736     (-)-Taxifolin     60.50622     0.27342       MOL000038     Quercetin     46.43333     0.7525       MOL000332     n-coumaroyltyramine     85.62883     0.20247       MOL000358     Beta-sitosterol     36.91391     0.75123       MOL000631     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-12-(4-hydroxyphenyl) ethyl] acrylamide     118.3477     0.26399       MOL000631     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-12-(4-hydroxyphenyl) ethyl] acrylamide     10.839747     0.26399       MOL000433     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-12-(4-hydroxyphenyl) ethyl] acrylamide     10.83910     0.20239       MOL000231     Cumaroyltyramine     112.9016     0.202342     0.83102       MOL000328     Naringenin     59.2939     0.21128     0.27252       MOL007640     Macrostemonoside e_qt     35.259     0.87216       MOL007651     Prostaglandin B1     40.20777     0.25343       MOL001798     Neohesperidin_qt     7.1686     0.27085       MOL001803     Sinensetin     50.5565     0.46444       MOL002914     Eriodyctiol (flavanone)     47.3644     0.27226 <td></td> <td>MOL000492</td> <td>(+)-catechin</td> <td>54.82643</td> <td>0.24164</td> |      | MOL000492   | (+)-catechin                                                                           | 54.82643             | 0.24164     |
| MOL00098Quercetin46.433350.27525MOL000358n-coumaroyltyramine85.62880.20287MOL000438(Z)-3-(4-Hydroxy-Beta-sitosterol36.9190.75123MOL000631(Z)-3-(4-Hydroxy-phenyl)-N-[2-(4-hydroxyphenyl) ethyl] acrylamide118.3470.26399MOL001973Coumaroyltyramine112.9010.20234XBMOL001973Sitosteryl acetate40.88960.85102MOL001341Hesperetin70.312090.27252MOL007650PGA (sup 1)43.982510.25437MOL007651Prostaglandi B140.20770.25384MOL007651Prostaglandi B140.20770.25437MOL001941Ammidin36.162630.24555MOL001941Sinensetin50.56680.4434MOL002104Sinensetin50.55680.4434MOL002104Si.7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one47.736440.27226MOL0051005,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one47.736440.27226MOL0058249Didymin38.55190.329890.21128MOL007857Tetramethoxyluteolin43.684760.3709MOL007858MOL007877Sosienesetin50.55140.3948MOL007852Poncirin36.54610.74202MOL003277Sosienesetin-7-rutinoside41.240130.7616MOL013277Sosienesetin-7-rutinoside41.240130.7616MOL013428Poncirin36.34230.24362MOL013428Isosakurane                                                                                                                                   |      | MOL001736   | (–)-Taxifolin                                                                          | 60.50622             | 0.27342     |
| MOL000332     n-coumaroyltyramine     85.62883     0.20287       MOL000433     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)N-[2-(4-hydroxyphenyl) ethyl] acrylamide     118.3477     0.26399       MOL000631     Coumaroyltyramine     112.9016     0.20234       MOL000334     Hesperetin     70.31209     0.27252       MOL002341     Hesperetin     70.31209     0.27252       MOL00750     PGA (sup 1)     43.98251     0.25437       MOL007650     PGA (sup 1)     43.98251     0.25437       MOL007651     Prostaglandin B1     40.20777     0.25384       MOL001798     Neohesperidin_qt     71.1686     0.24755       MOL001798     Neohesperidin_qt     71.1686     0.24755       MOL001803     Sinensetin     50.5565     0.44634       MOL001991     Ammidin     34.54856     0.22355       MOL0019214     Eriodyctiol (flavanone)     41.35043     0.2349       MOL005828     Naringenin     59.2939     0.21128       MOL005849     Didymin     38.8513     0.3309       MOL00787     Tetramethoxyluteolin </td <td></td> <td>MOL000098</td> <td>Quercetin</td> <td>46.43335</td> <td>0.27525</td>                                                                          |      | MOL000098   | Quercetin                                                                              | 46.43335             | 0.27525     |
| MOL000358     Beta-sitosterol     36.91391     0.75123       MOL000433     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxyphenyl) etryl] acrylamide     118.3477     0.20334       XB     MOL000531     Coumaroyltyramine     112.0016     0.20234       XB     MOL001973     Sitosteryl acetate     40.38964     0.85102       MOL004328     Naringenin     59.2939     0.21128       MOL007640     Macrostemonoside e_qt     35.259     0.87216       MOL007650     PGA (sup 1)     43.98251     0.24352       MOL0007651     Prostaglandin B1     40.2077     0.25384       MOL0001798     Neohesperidin_qt     71.1688     0.24552       MOL001303     Sinensetin     50.5568     0.44634       MOL00141     Ammidin     34.5456     0.22355       MOL002510     5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.7564     0.27226       MOL005828     Nobiletin     61.66944     0.51652     0.37009       MOL005829     Fetramethoxyluteolin     36.5619     0.37069       MOL0005820     5,7-Dihydroxy-2-(3-hydroxy                                                                                                                                  |      | MOL000332   | <i>n</i> -coumaroyltyramine                                                            | 85.62883             | 0.20287     |
| MOL000483     (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxyphenyl) ethyl] acrylamide     118.3477     0.26394       MOL000631     Coumaroyltyramine     112.9016     0.20234       MOL001973     Sitosteryl acetate     40.38966     0.85102       MOL002341     Hesperetin     70.31209     0.27252       MOL007640     Marrostermonoside e_qt     35.259     0.87216       MOL007650     PGA (sup 1)     43.98251     0.2534       MOL007651     Prostaglandin B1     40.2077     0.2584       MOL0010798     Neohosperidin_qt     71.16886     0.27055       MOL00191798     Neohesperidin_qt     71.16886     0.27055       MOL002914     Eriodyctiol (flavanone)     41.35043     0.24352       MOL002914     Eriodyctiol (flavanone)     41.35043     0.24356       MOL005100     5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.7364     0.27226       MOL005849     Didymin     36.5139     0.2305     0.24052       MOL005849     Eteramethoxyluteolin     41.626,381-5-[(E)-3-Hydroxyr-2-(3-hydroxy-3-methylol-2,3-dihydrobenzofurara-2     50.5516     0.37069                                                                               |      | MOL000358   | Beta-sitosterol                                                                        | 36.91391             | 0.75123     |
| MOL000631     Coumaroyltyramine     112.9016     0.20234       XB     MOL001973     Sitosteryl acetate     40.38964     0.85102       MOL002341     Hesperetin     70.31209     0.27252       MOL007640     Macrostemonoside e_qt     35.259     0.87216       MOL007650     PGA (sup 1)     43.98251     0.25437       MOL007651     Prostaglandin B1     40.20777     0.25384       MOL001978     Neohesperidin_qt     71.1688     0.27055       MOL001908     Sinensetin     50.55865     0.44534       MOL0019141     Ammidin     34.54856     0.22355       MOL00102914     Eriodyctiol (flavanone)     41.35043     0.24128       MOL005100     5,7-Dihydroxy-4-methoxyphenyl) chroman-4-one     47.73644     0.27226       MOL005100     5,7-Dihydroxy-4-methoxyphenyl) chroman-4-one     47.73644     0.27226       MOL005828     Nabiletin     61.66944     0.51625       MOL007879     Tetramethoxylutcolin     43.68476     0.37009       XB     MOL007879     Tetramethoxylutcolin     43.68476     0.37029                                                                                                                                                        |      | MOL000483   | (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxyphenyl) ethyl] acrylamide            |                      | 0.26399     |
| XBMOL001973Sitosteryl acetate40,389640.85102MOL002341Hesperetin70.312090.27252MOL007640Macrostemonoside e_qt35.2590.21128MOL007650PGA (sup 1)43,982510.25437MOL007650Prostaglandin B10.0207770.25384MOL001798Neohesperidin_qt71.16860.27855MOL001979Neohesperidin_qt71.16860.27855MOL001979Neohesperidin_qt71.16860.27855MOL001979Neohesperidin_qt1.450430.24351MOL001941Ammidin34.548560.22355MOL002914Eriodyctiol (flavanone)41.350430.2436MOL0051005,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one47.736440.27226MOL005828Nobiletin61.669440.37094MOL005829Didymin38.55130.23908MOL005829Yel-(25,3R)-5-[(E)-3-Hydroxyprop-1-enyl]-7-methoxy-3-methylol-2,3-dihydrobenzofuran-2-50.755140.3948MOL013276Poncirin36.546010.4149MOL013277Isosinensetin51.15160.44149MOL0132795,7,4'-Trimethylapigenin39.832720.9363MOL013330Prangenin hydrate43.268470.27363MOL013430Prangenin hydrate72.634010.29428MOL013433Prangenin hydrate63.20760.3136MOL013434Isoponcimarin63.20760.3136MOL013435Poncimarin R63.20760.3136                                                                                                                                                     |      | MOL000631   | Coumaroyltyramine                                                                      |                      | 0.20234     |
| MOL002341     Hesperetin     70.31209     0.27252       MOL007640     Naringenin     59.2939     0.21128       MOL007650     PGA (sup 1)     43.98251     0.25437       MOL007651     Prostaglandin B1     40.20777     0.25384       MOL0017681     Prostaglandin B1     40.20777     0.25384       MOL001798     Neohesperidin_qt     71.1688     0.27655       MOL0011798     Neohesperidin_qt     71.1688     0.27855       MOL001914     Ammidin     35.459     0.23355       MOL0004328     Naringenin     59.2939     0.2128       MOL005100     5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.3644     0.27226       MOL005828     Nobiletin     61.66944     0.3109       MOL005849     Didymin     38.5139     0.23948       MOL007579     Tetramethoxyluteolin     43.68476     0.3709       MOL013276     Poncirin     36.5401     0.7402       MOL013277     Isosinensetin     51.516     0.44149       MOL013320     Obacunone     3.885139     0.29                                                                                                                                                                                          | XB   | MOL001973   | Sitosteryl acetate                                                                     | 40.38964             | 0.85102     |
| MOL004328     Naringenin     59.2939     0.21128       MOL007640     Macrostemonoside e_qt     35.259     0.87216       MOL007650     PGA (sup 1)     43.9821     0.25334       MOL007651     Prostaglandin B1     40.20777     0.25384       MOL001798     Neohesperidin_gt     71.16886     0.24552       MOL001941     Ammidin     34.54856     0.22355       MOL002914     Eriodyctiol (flavanone)     41.35043     0.2436       MOL005828     Naringenin     59.2939     0.21128       MOL005828     Nobiletin     61.66944     0.2152       MOL007879     Tetramethoxyluteolin     43.68476     0.3709       XIS     YI]-2-methoxy-phenol     50.75614     0.3404       MOL007879     4-[(25,3R)-5-[(E)-3-Hydroxy-pro-1-enyl]-7-methoxy-shenol     50.75514     0.3948       MOL013277     Isosinensetin     51.15169     0.4149       MOL013277     5,7,4'-Trimethylapigenin     39.8327     0.2908       MOL013275     5,7,4'-Trimethylapigenin     39.8327     0.29248       MOL013352     Obacunone </td <td></td> <td>MOL002341</td> <td>Hesperetin</td> <td>70.31209</td> <td>0.27252</td>                                                                         |      | MOL002341   | Hesperetin                                                                             | 70.31209             | 0.27252     |
| MOL007640     Macrostemonoside e_qt     35.259     0.87216       MOL007650     PGA (sup 1)     43.98251     0.25437       MOL007651     Prostaglandin B1     40.2077     0.25384       MOL00006     Luteolin     36.16263     0.24552       MOL001798     Neohesperidin_qt     71.16886     0.27085       MOL0019141     Ammidin     34.54856     0.223552       MOL0019214     Eriodyctiol (flavanore)     41.35043     0.2436       MOL001803     Sinensetin     59.2939     0.21128       MOL001810     5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.73644     0.27256       MOL005828     Nobiletin     61.66944     0.51652       MOL007879     Tetramethoxyluteolin     43.68476     0.37009       MOL007879     Tetramethoxyluteolin     50.75514     0.3948       MOL003277     Isosinensetin     51.5159     0.41419       MOL013276     Poncirin     36.5401     0.74202       MOL013279     5,7,4'-Trimethylapigenin     39.83272     0.29636       MOL013352     Obacunore                                                                                                                                                                     |      | MOL004328   | Naringenin                                                                             | 59.2939              | 0.21128     |
| MOL007650     PGA (sup 1)     43.98251     0.25437       MOL007651     Prostaglandin B1     40.20777     0.25384       MOL000006     Luteolin     36.1623     0.24552       MOL001798     Neohesperidin_qt     71.16886     0.27085       MOL001941     Ammidin     34.54856     0.22355       MOL002914     Eriodyctiol (flavanone)     41.35043     0.24362       MOL00328     Naringenin     59.2939     0.21128       MOL005100     5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.73644     0.27326       MOL005828     Nobiletin     61.66944     0.51652       MOL007879     Tetramethoxyluteolin     38.55139     0.23908       MOL007879     Tetramethoxyluteolin     43.68476     0.37009       MOL007879     Tetramethoxyluteolin     36.54601     0.74202       MOL0013276     Poncirin     50.7514     0.3948       MOL013276     Poncirin     36.54601     0.74202       MOL013279     5,7,4' Trimethylapigenin     39.83272     0.29636       MOL013432     Poncirin                                                                                                                                                                          |      | MOL007640   | Macrostemonoside e_qt                                                                  | 35.259               | 0.87216     |
| MOL007651     Prostaglandin B1     40.20777     0.25384       MOL000006     Luteolin     36.16263     0.24552       MOL001798     Neohesperidin_qt     71.16886     0.27085       MOL001901     Sinensetin     50.5685     0.44634       MOL001914     Ammidin     44.54856     0.22355       MOL0019214     Eriodyctiol (flavanone)     41.35043     0.2436       MOL005828     Naringenin     59.2939     0.21128       MOL005828     Nobiletin     61.6944     0.51652       MOL005829     Didymin     38.55139     0.23908       MOL005709     Tetramethoxyluteolin     43.68476     0.37009       XS     MOL009053     4-[(2S,3R)-5-[(E)-3-Hydroxyr-1-enyl]-7-methoxy-3-methylol-2,3-dihydrobenzofuran-2-<br>yl]-2-methoxy-phenol     50.75514     0.3948       MOL013276     Poncirin     36.54601     0.74202       MOL013352     Obacunone     43.28625     0.76724       MOL013430     Prangenin     43.59734     0.29488       MOL013433     Prangenin hydrate     72.63401     0.28463       MOL013433<                                                                                                                                                             |      | MOL007650   | PGA (sup 1)                                                                            | 43.98251             | 0.25437     |
| MOL000006     Luteolin     36.16263     0.24552       MOL001798     Neohesperidin_qt     71.16886     0.27085       MOL001803     Sinensetin     50.5568     0.44634       MOL001941     Ammidin     34.5486     0.22355       MOL001428     Naringenin     59.2939     0.21128       MOL005100     5,7-Dihydroxy-2(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.73644     0.22355       MOL005100     5,7-Dihydroxy-2(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.73644     0.22398       MOL005100     5,7-Dihydroxy-2(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.73644     0.22398       MOL005828     Noblotistin     38.5139     0.23908       MOL005849     Didymin     38.5139     0.3909       MOL007879     Tetramethoxyluteolin     43.68476     0.3709       MOL013276     Poncirin     36.54001     0.74202       MOL013279     5,7,4'/ Trimethylapigenin     39.83272     0.2963       MOL013352     Obacunone     43.28625     0.76724       MOL013433     Prangenin hydrate     72.63401     0.29428                                                                                                                                                |      | MOL007651   | Prostaglandin B1                                                                       | 40.20777             | 0.25384     |
| MOL001798     Neohesperidin_qt     71.16886     0.27085       MOL001803     Sinensetin     50.55685     0.44634       MOL001941     Ammidin     34.54856     0.22355       MOL002914     Eriodyctiol (flavanone)     41.35043     0.2436       MOL005100     5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.73644     0.27226       MOL005828     Nobiletin     61.66944     0.51652       MOL005849     Didymin     38.55139     0.23908       MOL007879     Tetramethoxylucolin     43.68476     0.37009       MOL013276     Poncirin     36.54601     0.74202       MOL013277     Isosinensetin     51.15169     0.44149       MOL013279     5,7,4'-Trimethylapigenin     39.83272     0.29428       MOL013279     S,7,4'-Trimethylapigenin     39.83272     0.29428       MOL013430     Prangenin hydrate     72.63401     0.28463       MOL013433     Prangenin hydrate     72.63401     0.28463       MOL013433     Prangenin hydrate     72.63401     0.28463       MOL013433     Pran                                                                                                                                                                |      | MOL000006   | Luteolin                                                                               | 36.16263             | 0.24552     |
| MOL001803     Sinensetin     50.55685     0.44634       MOL001941     Ammidin     34.54856     0.22355       MOL002914     Eriodyctiol (flavanone)     41.35043     0.2436       MOL001328     Naringenin     59.2939     0.21128       MOL005100     5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.73644     0.27226       MOL005828     Nobiletin     61.66944     0.51652       MOL007879     Tetramethoxyluteolin     38.55139     0.23908       MOL007879     4-[(2S,3R)-5-[(E)-3-Hydroxyrd-1-emyl]-7-methoxy-3-methylol-2,3-dihydrobenzofuran-2-<br>yl]-2-methoxy-1-emothoxy-3-methylol-2,3-dihydrobenzofuran-2-<br>yl]-2     50.75514     0.3948       MOL0013276     4-[(2S,3R)-5-[(E)-3-Hydroxyrop-1-emyl]-7-methoxy-3-methylol-2,3-dihydrobenzofuran-2-<br>yl]-2-methoxy-phenol     50.75514     0.3948       MOL013277     Isosinensetin     51.15169     0.44149       MOL013279     5,7,4'-Trimethylapigenin     39.83272     0.29636       MOL013428     Isosakuranetin-7-rutinoside     41.24013     0.71616       MOL013430     Prangenin     43.59734     0.29428       MOL013433     Prangenin hydrate     72.63                          |      | MOL001798   | Neohesperidin_qt                                                                       | 71.16886             | 0.27085     |
| MOL001941     Ammidin     34.54856     0.22355       MOL002914     Eriodyctiol (flavanone)     41.35043     0.2436       MOL004328     Naringenin     59.2939     0.21128       MOL005100     5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.73644     0.27226       MOL005828     Nobiletin     61.66944     0.51652       MOL007879     Tetramethoxyluteolin     43.68476     0.37009       MOL013276     Poncirin     43.68476     0.37049       MOL013277     Isosiensetin     51.5169     0.44149       MOL013282     Sor,7,4'-Trimethylapigenin     39.83272     0.29636       MOL013279     5,7,4'-Trimethylapigenin     39.83272     0.29636       MOL013428     Isosakuranetin-7-rutinoside     41.24013     0.7166       MOL013430     Prangenin hydrate     72.63401     0.28863       MOL013435     Poncimarin     63.62093     0.34942       MOL013435     Poncimarin     63.62093     0.34942       MOL013435     Poncimarin     63.62093     0.34942       MOL013436     Isopo                                                                                                                                                                |      | MOL001803   | Sinensetin                                                                             | 50.55685             | 0.44634     |
| MOL002914     Eriodyctiol (flavanone)     41.35043     0.2436       MOL004328     Naringenin     59.2939     0.21128       MOL005100     5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.73644     0.27226       MOL005828     Nobiletin     61.66944     0.51652       MOL007879     Tetramethoxyluteolin     38.55139     0.23908       MOL009053     4-[(2S,3R)-5-[(E)-3-Hydroxyprop-1-enyl]-7-methoxy-3-methylol-2,3-dihydrobenzofuran-2-<br>yl]-2-methoxy-phenol     50.75514     0.3948       MOL013276     Poncirin     36.54601     0.74202       MOL013279     5,7,4'-Trimethylapigenin     39.83272     0.29636       MOL013428     Isosakuranetin-7-rutinoside     41.24013     0.71616       MOL013430     Prangenin     43.59734     0.29428       MOL013433     Prangenin hydrate     72.63401     0.28863       MOL013433     Prangenin hydrate     72.63401     0.28863       MOL013435     Poncimarin     63.2076     0.31316       MOL013437     6-Methoxy aurapten     31.23777     0.3008       MOL0134340     Gitrusin B     40.7971                                                                                                     |      | MOL001941   | Ammidin                                                                                | 34.54856             | 0.22355     |
| MOL004328     Naringenin     59.2939     0.21128       MOL005100     5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.73644     0.27226       MOL005828     Nobiletin     61.66944     0.51652       MOL007879     Didymin     38.55139     0.23908       MOL009053     4-[(2S,3R)-5-[(E)-3-Hydroxyprop-1-enyl]-7-methoxy-3-methylol-2,3-dihydrobenzofuran-2-<br>yl]-2-methoxy-phenol     50.75514     0.3948       MOL013276     Poncirin     36.54601     0.74202       MOL013279     5,7,4'-Trimethylapigenin     39.83272     0.29636       MOL013428     Isosiaensetin     51.15169     0.44149       MOL013430     Prangenin     43.28625     0.76724       MOL013433     Prangenin hydrate     72.63401     0.28863       MOL013433     Prangenin hydrate     72.63401     0.28863       MOL013434     Isoponcimarin     63.2276     0.31316       MOL013437     6-Methoxy aurapten     31.23777     0.3008       MOL0134340     Gitrusin B     40.70717     0.71331                                                                                                                                                                                    |      | MOL002914   | Eriodyctiol (flavanone)                                                                | 41.35043             | 0.2436      |
| MOL005100     5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one     47.73644     0.27226       MOL005828     Nobiletin     61.66944     0.51652       MOL005849     Didymin     38.55139     0.23908       MOL007879     Tetramethoxyluteolin     43.68476     0.37009       ZS     MOL009053     4-[(2S,3R)-5-[(E)-3-Hydroxyprop-1-enyl]-7-methoxy-3-methylol-2,3-dihydrobenzofuran-2yl]-2-methoxy-phenol     50.75514     0.3948       MOL013276     Poncirin     36.54601     0.74202       MOL013277     Isosinensetin     51.15169     0.44149       MOL013279     5,7,4'-Trimethylapigenin     39.83272     0.29636       MOL013428     Isosakuranetin-7-rutinoside     41.24013     0.71616       MOL013430     Prangenin     43.59734     0.29428       MOL013433     Prangenin hydrate     72.63401     0.28863       MOL013435     Poncimarin     63.62093     0.34942       MOL013436     Isoponcimarin     63.62093     0.34942       MOL013436     Isoponcimarin     63.62093     0.34942       MOL013440     Girrusin B     6.27777<                                                                                                                     |      | MOL004328   | Naringenin                                                                             | 59.2939              | 0.21128     |
| MOL005828   Nobiletin   61.66944   0.51652     MOL005849   Didymin   38.55139   0.23908     MOL007879   Tetramethoxyluteolin   43.68476   0.37009     ZS   MOL009053   4-[(2S,3R)-5-[(E)-3-Hydroxyprop-1-enyl]-7-methoxy-3-methylol-2,3-dihydrobenzofuran-2-<br>yl]-2-methoxy-phenol   50.75514   0.3948     MOL013276   Poncirin   36.54601   0.74202     MOL013277   Isosinensetin   51.15169   0.44149     MOL013279   5,7,4'-Trimethylapigenin   39.83272   0.29636     MOL013428   Isosakuranetin-7-rutinoside   41.24013   0.71616     MOL013430   Prangenin hydrate   72.63401   0.28483     MOL013433   Prangenin hydrate   72.63401   0.28483     MOL013435   Poncimarin   63.62093   0.34942     MOL013436   Isoponcimarin   63.2776   0.31316     MOL013437   6-Methoxy aurapten   31.23777   0.3008     MOL013437   G-Methoxy aurapten   31.23777   0.3018     MOL013436   Isoponcimarin   63.02709   0.31316     MOL013440   Citrursin B   40.79717                                                                                                                                                                                                               |      | MOL005100   | 5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one                              | 47.73644             | 0.27226     |
| MOL005849     Didymin     38.55139     0.23908       MOL007879     Tetramethoxyluteolin     43.68476     0.37009       XS     MOL009053     4-[(2S,3R)-5-[(E)-3-Hydroxyprop-1-enyl]-7-methoxy-3-methylol-2,3-dihydrobenzofuran-2-<br>yl]-2-methoxy-phenol     50.75514     0.3948       MOL013276     Poncirin     36.54601     0.74202       MOL013277     Isosinensetin     51.15169     0.44149       MOL013279     5,7,4'-Trimethylapigenin     39.83272     0.29636       MOL013428     Isosakuranetin-7-rutinoside     41.24013     0.71616       MOL013430     Prangenin     43.59734     0.29428       MOL013433     Prangenin hydrate     72.63401     0.28863       MOL013435     Poncimarin     63.62093     0.34942       MOL013436     Isoponcimarin     63.2776     0.31316       MOL013437     6-Methoxy aurapten     31.23777     0.3008                                                                                                                                                                                                                                                                                                                       |      | MOL005828   | Nobiletin                                                                              | 61.66944             | 0.51652     |
| MOL007879     Tetramethoxyluteolin     43.68476     0.37009       2S     MOL009053     4-[(2S,3R)-5-[(E)-3-Hydroxyprop-1-enyl]-7-methoxy-3-methylol-2,3-dihydrobenzofuran-2-<br>yl]-2-methoxy-phenol     50.75514     0.3948       MOL013276     Poncirin     36.54601     0.74202       MOL013277     Isosinensetin     51.15169     0.44149       MOL013279     5,7,4'-Trimethylapigenin     39.83272     0.29636       MOL013428     Isosakuranetin-7-rutinoside     41.24013     0.71616       MOL013430     Prangenin     43.59734     0.29428       MOL013435     Prangenin hydrate     72.63401     0.28863       MOL013436     Isoponcimarin     63.2079     0.31316       MOL013437     6-Methoxy aurapten     31.23777     0.3008                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | MOL005849   | Didymin                                                                                | 38.55139             | 0.23908     |
| MOL009053   4-[(2S,3R)-5-[(E)-3-Hydroxyprop-1-enyl]-7-methoxy-3-methylol-2,3-dihydrobenzofuran-2-<br>yl]-2-methoxy-phenol   50.75514   0.3948     MOL013276   Poncirin   36.54601   0.74202     MOL013277   Isosinensetin   51.15169   0.44149     MOL013279   5,7,4'-Trimethylapigenin   39.83272   0.29636     MOL013428   Obacunone   43.28625   0.76724     MOL013430   Prangenin   43.59734   0.29428     MOL013433   Prangenin hydrate   72.63401   0.28863     MOL013435   Poncimarin   63.62093   0.34942     MOL013436   Isoponcimarin   63.2776   0.31316     MOL013437   6-Methoxy aurapten   31.23777   0.3008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | MOL007879   | Tetramethoxyluteolin                                                                   | 43.68476             | 0.37009     |
| ZS     yl]-2-methoxy-phenol       MOL013276     Poncirin     36.54601     0.74202       MOL013277     Isosinensetin     51.15169     0.44149       MOL013279     5,7,4'-Trimethylapigenin     39.83272     0.29636       MOL01352     Obacunone     43.28625     0.76724       MOL013428     Isosakuranetin-7-rutinoside     41.24013     0.71616       MOL013430     Prangenin     43.59734     0.29428       MOL013433     Prangenin hydrate     72.63401     0.28863       MOL013435     Poncimarin     63.62093     0.34942       MOL013436     Isoponcimarin     63.2776     0.31316       MOL013437     6-Methoxy aurapten     31.23777     0.3008       MOL013440     Citrusin B     40.79717     0.71331                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20   | MOL009053   | 4-[(2\$,3R)-5-[(E)-3-Hydroxyprop-1-enyl]-7-methoxy-3-methylol-2,3-dihydrobenzofuran-2- | 50.75514             | 0.3948      |
| MOL013276   Poncirin   36.34001   0.74202     MOL013277   Isosinensetin   51.15169   0.44149     MOL013279   5,7,4'-Trimethylapigenin   39.83272   0.29636     MOL013352   Obacunone   43.28625   0.76724     MOL013428   Isosakuranetin-7-rutinoside   41.24013   0.71616     MOL013430   Prangenin   43.59734   0.29428     MOL013433   Prangenin hydrate   72.63401   0.28863     MOL013435   Poncimarin   63.62093   0.34942     MOL013436   Isoponcimarin   63.2776   0.31316     MOL013437   6-Methoxy aurapten   31.23777   0.3008     MOL013440   Citrusin B   40.79717   0.71331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ZS   | MOI 012276  | yl]-2-methoxy-phenol                                                                   | 26 54601             | 0 7 4 2 0 2 |
| MOL013277   Isosniensetin   51.15169   0.44149     MOL013279   5,7,4'-Trimethylapigenin   39.83272   0.29636     MOL013352   Obacunone   43.28625   0.76724     MOL013428   Isosakuranetin-7-rutinoside   41.24013   0.71616     MOL013430   Prangenin   43.59734   0.29428     MOL013433   Prangenin hydrate   72.63401   0.28863     MOL013435   Poncimarin   63.62093   0.34942     MOL013436   Isoponcimarin   63.2776   0.31316     MOL013437   6-Methoxy aurapten   31.23777   0.3008     MOL013440   Citrusin B   40.79717   0.71331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | MOL013276   | Poncirin                                                                               | 50.54001             | 0.74202     |
| MOL013279   3,7,4 - Hintertiylapigenin   39.3272   0.29030     MOL013352   Obacunone   43.28625   0.76724     MOL013428   Isosakuranetin-7-rutinoside   41.24013   0.71616     MOL013430   Prangenin   43.59734   0.29428     MOL013433   Prangenin hydrate   72.63401   0.28863     MOL013435   Poncimarin   63.62093   0.34942     MOL013436   Isoponcimarin   63.2776   0.31316     MOL013437   6-Methoxy aurapten   31.23777   0.3008     MOL013440   Citrusin B   40.79717   0.71331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | MOL013277   | 505 Isosinensetin                                                                      | 20 02272             | 0.44149     |
| MOL01332   Goacunone   43.28025   0.76724     MOL013428   Isosakuranetin-7-rutinoside   41.24013   0.71616     MOL013430   Prangenin   43.59734   0.29428     MOL013433   Prangenin hydrate   72.63401   0.28863     MOL013435   Poncimarin   63.62093   0.34942     MOL013436   Isoponcimarin   63.2776   0.31316     MOL013437   6-Methoxy aurapten   31.23777   0.3008     MOL013440   Citrusin B   40.79717   0.71331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | MOL012252   | Obacinona                                                                              | 27.032/2<br>13.09675 | 0.29030     |
| MOL013420 Isosakurarietin-/-rutinoside 41.24013 0.71616   MOL013430 Prangenin 43.59734 0.29428   MOL013433 Prangenin hydrate 72.63401 0.28863   MOL013435 Poncimarin 63.62093 0.34942   MOL013436 Isoponcimarin 63.2776 0.31316   MOL013437 6-Methoxy aurapten 31.23777 0.3008   MOL013440 Citrusin B 40.79717 0.71331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | MOL012429   | Upacullone<br>Icosalguranatin 7 mitinasida                                             | 43.20023             | 0.70/24     |
| MOL013430   Prangenin   45.59/34   0.29428     MOL013433   Prangenin hydrate   72.63401   0.28863     MOL013435   Poncimarin   63.62093   0.34942     MOL013436   Isoponcimarin   63.2776   0.31316     MOL013437   6-Methoxy aurapten   31.23777   0.3008     MOL013440   Citrusin B   40.79717   0.71331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | MOL012428   | Drangenin                                                                              | 41.24013             | 0.71010     |
| MOL013435   Pringenin hydrate   72.63401   0.28863     MOL013435   Poncimarin   63.62093   0.34942     MOL013436   Isoponcimarin   63.2776   0.31316     MOL013437   6-Methoxy aurapten   31.23777   0.3008     MOL013440   Citrusin B   40.79717   0.71331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | MOL012422   | Prangonin hydroto                                                                      | 43.39/34             | 0.29428     |
| MOL013436     Foncimarin     65.62093     0.34942       MOL013436     Isoponcimarin     63.2776     0.31316       MOL013437     6-Methoxy aurapten     31.23777     0.3008       MOL013440     Citrusin B     40.79717     0.71331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | MOL012425   | Prangenni nyurate<br>Donoimerin                                                        | 12.03401             | 0.20003     |
| MOL013430     Isoponciniarin     65.2776     0.31316       MOL013437     6-Methoxy aurapten     31.23777     0.3008       MOL013440     Citrusin B     40.79717     0.71331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | MOL012422   | roncimarin                                                                             | 62 02093             | 0.34942     |
| MOL013440 Citrusin R 40 70717 0.3008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | MOI 01 2427 | 6 Methovy autonton                                                                     | 31 22777             | 0.31310     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | MOL013440   | Citrusin B                                                                             | 40.79717             | 0.71331     |

TABLE 1: Effective components of Zhishi Xiebai Guizhi Decoction that meet the demands of both  $OB \ge 30\%$  and  $DL \ge 0.18$  were obtained from TCMSP.

response, blood circulation, cellular response to lipid, cellular response to peptide, response to hormone, negative regulation of apoptotic process, regulation of immune response, regulation of acute inflammatory response, regulation of cytokine production involved in inflammatory response, and positive regulation of acute inflammatory response (Figure 6). The results showed that Zhishi Xiebai Guizhi Decoction is closely related to inflammatory reaction in the treatment of CHD.

According to the *P* value, a total of 29 pathways were screened by KEGG analysis, including pathways in cancer, adrenergic signaling in cardiomyocytes, IL-17 signaling



FIGURE 2: The network diagram of the compound and the target protein.



FIGURE 3: Venn diagram of targets of Zhishi Xiebai Guizhi Decoction in treating coronary heart disease.



FIGURE 4: Network diagram of intersection targets of Zhishi Xiebai Guizhi Decoction in the treatment of coronary heart disease.

pathway, T cell receptor signaling pathway, PI3K-Akt signaling pathway, and AMPK signaling pathway (Figure 7).

3.4. Clinical Trial Results. The CRP of the two groups of patients before and after treatment showed a skewed distribution, so the median (interquartile range) was used to describe the difference, and nonparametric tests were used to compare the differences (Figure 8). The comparison of CRP in the two groups before and after treatment was statistically significant (P < 0.05), and the CRP levels in both the test group and the control group decreased after treatment. After rank sum test, there was no statistically significant difference between the two groups before treatment (P > 0.05), and there was no significant difference in CRP between the two groups after treatment (P > 0.05) (Table 3).

Teseb = before treatment in the test group; Testa = after treatment in the test group

Controlb = before treatment in the control group; Controla = after treatment in the control group.

The NLR of the two groups of patients before and after treatment showed a skewed distribution, so the median (interquartile range) was used to describe the difference, and the difference was compared with nonparametric tests (Table 4). The comparison of NLR in the two groups before and after treatment was statistically significant (P < 0.05), and the NLR levels in both the test group and the control

| UniP-ID | Protein names                                                                            | Degree |
|---------|------------------------------------------------------------------------------------------|--------|
| P03372  | Estrogen receptor (ESR1)                                                                 | 41     |
| P10275  | Androgen receptor (AR)                                                                   | 40     |
| P35354  | Prostaglandin G/H synthase 2 (PTGS2)                                                     | 35     |
| P37231  | Peroxisome proliferator activated receptor gamma (PPARG)                                 | 32     |
| P27487  | Dipeptidyl peptidase IV (DPP4)                                                           | 32     |
| P35228  | Nitric oxide synthase, inducible (NOS2)                                                  | 30     |
| P23219  | Prostaglandin G/H synthase 1 (PTGS1)                                                     | 28     |
| P49841  | Glycogen synthase kinase-3 beta (GSK3B)                                                  | 28     |
| Q16539  | Mitogen-activated protein kinase 14 (MAPK14)                                             | 27     |
| P24941  | Cell division protein kinase 2 (CDK2)                                                    | 27     |
| P20248  | Cyclin-A2 (CCNA2)                                                                        | 26     |
| P00918  | Carbonic anhydrase II (CA2)                                                              | 26     |
| P18031  | mRNA of protein-tyrosine phosphatase, nonreceptor type 1 (PTPN1)                         | 23     |
| P11309  | Protooncogene serine/threonine-protein kinase Pim-1 (PIM1)                               | 23     |
| P00734  | Thrombin (F2)                                                                            | 22     |
| P0DP23  | Calmodulin (CALM1)                                                                       | 17     |
| P48736  | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit, gamma isoform (PIK3CG) | 15     |
| Q14524  | Sodium channel protein type 5 subunit alpha (SCN5A)                                      | 14     |
| P07550  | Beta-2 adrenergic receptor (ADRB2)                                                       | 14     |
| P00742  | Coagulation factor Xa (F10)                                                              | 9      |

TABLE 2: Top 20 targets of Zhishi Xiebai Guizhi Decoction in the treatment of coronary heart disease.



FIGURE 5: The protein-protein interaction network of Zhishi Xiebai Guizhi Decoction in the treatment of coronary heart disease.

group decreased after treatment. After the rank sum test, there was no statistical difference between the two groups before treatment (P > 0.05), and the difference in NLR between the two groups after treatment was statistically significant (P < 0.05).

The MLR of the two groups of patients before and after treatment showed a skewed distribution, so the median (interquartile range) was used to describe the difference, and the difference was compared with nonparametric tests (Table 5). The comparison of MLR in the two groups before and after treatment was statistically significant (P < 0.05), and the MLR levels in both the test group and the control group decreased after treatment. After the rank sum test, there was no statistical difference between the two groups before treatment (P > 0.05), and the difference in MLR between the two groups after treatment was statistically significant (P < 0.05).

The MHR of the two groups of patients before and after treatment showed a skewed distribution, so the median

(interquartile range) was used to describe the difference, and the difference was compared with nonparametric tests (Table 6). The comparison of MHR in the two groups before and after treatment was statistically significant (P < 0.05), and the MHR levels in both the test group and the control group decreased after treatment. After the rank sum test, there was no statistical difference between the two groups before treatment (P > 0.05), and the difference in MHR between the two groups after treatment was statistically significant (P < 0.05).

#### 4. Discussion

4.1. Summary of Findings. Coronary heart disease is a common cardiovascular disease, caused by coronary atherosclerosis. If not taken seriously, it will cause serious consequences such as myocardial infarction and heart failure [26]. In our study, Zhishi Xiebai Guizhi Decoction was used to treat coronary heart disease. However, illuminating the complex mechanisms of Zhishi Xiebai Guizhi Decoction in the treatment of CHD using traditional methods is challenging. Therefore, the integration of network pharmacology is essential sense based on big data bioinformatics into the study of the molecular mechanisms of TCM in the treatment of diseases [27, 28]. In the present study, network pharmacology was used to explore the material basis and molecular mechanism of Zhishi Xiebai Guizhi Decoction for treatment of CHD.

From the network of herbs, natural compounds, and targets, we found the core compounds of this prescription were quercetin, naringenin, luteolin, (+)-catechin, hesperetin, etc. Quercetin, a flavonoid, is one of the polyphenols characterized as the compounds containing large multiples of phenol structural units [29]. It can reduce blood pressure and promote angiogenesis through antiinflammatory, antioxidant, immune, and other ways [30]. It is a potential protector of coronary heart disease,



| ¢  | positive regulation of acute inflammatory |
|----|-------------------------------------------|
| 申  | regulation of cytokine production involve |
| 申  | regulation of acute inflammatory response |
| ¢  | cellular response to peptide              |
| ¢  | negative regulation of apoptotic process  |
|    | regulation of blood pressure              |
| ¢. | regulation of immune response             |
| ÷. | blood circulation                         |
| ¢. | cellular response to lipid                |
| 白  | regulation of inflammatory response       |
| ¢  | response to hormone                       |
|    |                                           |

FIGURE 6: GO biological process enrichment analysis.

cancers, and inflammatory bowel disease [31]. It exhibits significant heart related benefits as inhibition of LDL oxidation, endothelium-independent vasodilator effects, and other inflammatory effects [32]. Naringenin has the functions of lowering lipid, anti-inflammatory, antiallergic, antithrombotic effects, and promoting atherosclerosis regression [33–35]. Luteolin administration improved cardiac function, attenuated the inflammatory response, alleviated mitochondrial injury, decreased oxidative stress, inhibited cardiac apoptosis, and enhanced autophagy [36, 37]. Studies have shown that it can attenuate isoproterenol-induced myocardial injury and fibrosis in mice [38].

85 common targets were found for drugs and diseases, which might be targets for this prescription when treating CHD. Based on the topological analysis, we further found the 20 critical targets from the 85 common targets for subsequent study, including estrogen receptor (ESR1), androgen receptor (AR), prostaglandin G/H synthase 2(PTGS2), and peroxisome proliferator activated receptor gamma (PPARG). A number of studies also provide evidence for an inhibitory role of PPAR $\gamma$  in atherosclerosis and that it may exert atheroprotective effects [39]. The human PPAR $\gamma$  gene is located on chromosome 3 at



FIGURE 7: KEGG enrichment analysis.

position 3p25 and gives rise to three different mRNAs isoforms, y1, y2, and y3. Among them, PPARy3 is predominantly expressed in macrophages, the large intestine, and adipose tissue [40]. The pleiotropic effects of PPARs show the potential of this drug class in terms of treating atherosclerotic disease in the future [41-43], including their ability to decrease thrombosis, cell recruitment, cell activation, foam cell formation, and inflammatory responses, and their concurrent ability to improve plaque stability, endothelial function, endothelial progenitor cell biology, and C efflux. In human atherosclerotic lesions, PPARy activation has been reported to promote differentiation of proatherogenic M1 macrophages into an alternative antiinflammatory phenotype, M2, which could protect against the development of atherosclerosis. There is accumulating evidence suggesting that activated PPAR has powerful antiatherosclerotic properties, which not only directly affects the blood vessel wall but also indirectly affects systemic inflammation [42]. A combination of our GO analysis, clinical trials, and other modern studies has confirmed the important role of inflammation in CHD. KEGG enrichment analysis shows the important position of AMPK, TNF, and PI3K-Akt signaling pathway in CHD [44–46]. PPARy plays a vital role in these pathways.



TABLE 3: Comparison of CRP between two groups (median (interquartile)).

| CRP              | Before<br>treatment | After<br>treatment | Z value | P value |
|------------------|---------------------|--------------------|---------|---------|
| Test group       | 1.3 (2.65)          | 1.3 (1.05)         | -2.979  | 0.003   |
| Control<br>group | 1 (1.7)             | 1.5 (1.1)          | -3.498  | ≤0.001  |
| Z value          | -1.447              | -1.590             |         |         |
| P value          | 0.148               | 0.112              |         |         |

TABLE 4: Comparison of NLR between two groups (median (interquartile)).

| NI D             | Before      | After       | 7 valua | Druslara     |  |
|------------------|-------------|-------------|---------|--------------|--|
| INLK             | treatment   | treatment   | Z value | P value      |  |
| Test group       | 2.02 (1.19) | 1.27 (0.4)  | -7.751  | $\leq 0.001$ |  |
| Control<br>group | 2.26 (1.14) | 1.76 (0.89) | -6.151  | ≤0.001       |  |
| Z value          | -1.603      | -6.844      |         |              |  |
| P value          | 0.109       | ≤0.001      |         |              |  |

TABLE 5: Comparison of MLR between two groups (median (interquartile)).

| MID              | Before      | After       | 7 value | Drealers |  |
|------------------|-------------|-------------|---------|----------|--|
| MLK              | treatment   | treatment   | Z value | P value  |  |
| Test group       | 0.18 (0.09) | 0.13 (0.05) | -7.568  | ≤0.001   |  |
| Control<br>group | 0.19 (0.14) | 0.17 (0.10) | -2.935  | 0.003    |  |
| Z value          | -0.59       | -5.061      |         |          |  |
| P value          | 0.555       | ≤0.001      |         |          |  |

TABLE 6: Comparison of MHR between two groups (median (interquartile)).

| мнр        | Before      | After       | 7 valua | Duralua      |  |
|------------|-------------|-------------|---------|--------------|--|
| WIIIK      | treatment   | treatment   | Z value | r value      |  |
| Test group | 0.32 (0.19) | 0.23 (0.14) | -6.796  | $\leq 0.001$ |  |
| Control    | 0.31 (0.25) | 0.25 (0.12) | -4.066  | ≤0.001       |  |
| group      | 0.020       | 0.000       |         |              |  |
| Z value    | -0.039      | -2.686      |         |              |  |
| P value    | 0.969       | 0.007       |         |              |  |

4.2. Implication for Clinical Trial. As we all know, inflammatory is of great essence in the pathogenesis of

CHD [2]. Among the various inflammatory factors, besides the CRP that has been widely used in clinical practice, it has been generally recognized. In addition, clinical studies have confirmed that white blood cells and their subtypes are closely related to cardiovascular disease caused by atherosclerosis [47]. White blood cells are an important marker of inflammation. In recent years, experts have integrated various subtypes and recently proposed three indicators: Monocyte to lymphocyte ratio (MLR), Neutrophil to lymphocyte ratio (NLR), and Monocyte to high-density lipoprotein ratio (MHR) [48-52]. They can all be regarded as a kind of inflammatory markers and are related to coronary heart disease [53]. Almost all the compounds in Zhishi Xiebai Guizhi Decoction have anti-inflammatory effects, so we speculate that Zhishi Xiebai Guizhi Decoction treats CHD through inflammation.

4.3. Limitations. The key targets and/or pathways found in network pharmacology have not been verified in clinical trials, but NLR, NHR, and MHR can all be regarded as a kind of inflammatory markers and are related to coronary heart disease. The key targets and pathways also play an important role in inflammation. In the future, we need to verify our conjecture through animal experiments.

#### 5. Conclusions

This study combined network pharmacology and clinical trials to explore the mechanism of Zhishi Xiebai Guizhi Decoction in the treatment of CHD. The results showed that Zhishi Xiebai Guizhi Decoction may exert antiatherosclerosis effect through PPARy. In addition, TNF, AMPK, and PI3K-Akt signaling pathway may also be its potential mechanisms. We hope that computer biology can provide a method for the modern research of Chinese medicine, and Zhishi Xiebai Guizhi Decoction can be recognized as a complementary or alternative treatment for CHD.

#### **Data Availability**

The data used to support the findings of this study are available from the corresponding author upon request.

#### **Ethical Approval**

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All human experiments were approved by the Ethics Committee of Wuxi Hospital of Traditional Chinese Medicine and registered in the Chinese Clinical Trial Registration Center (ethics number: 2018022736, registration number: ChiCTR1800019814).

#### Disclosure

J. Gao and Y.-J. Pan are the co-first authors.

#### **Conflicts of Interest**

The authors have no conflicts of interest to declare.

#### **Authors' Contributions**

H. Chen contributed to conception and design and administrative support. X.-D. Tan contributed to the provision of study materials or patients. J. Gao and Y.-J. Pan contributed to the collection and assembly of data and data analysis and interpretation. All authors contributed to manuscript writing and final approval of the manuscript. All authors contributed equally to this work.

#### Acknowledgments

The authors sincerely thank Dr. Tiefeng Sun (Shandong Academy of Chinese Medicine) for his assistance in designing the study and experiments. The authors acknowledge Science and Education Strengthening Health Project of the Young Medical Talent Project of Wuxi Municipal Health Commission (QNRC085) and Scientific Research Project of Wuxi Municipal Health Commission (Q202045).

#### References

- G. Riccioni and V. Sblendorio, "Atherosclerosis: from biology to pharmacological treatment," *Journal of geriatric cardiology*, vol. 9, no. 3, pp. 305–317, 2012.
- [2] H. Li, K. Sun, R. Zhao et al., "Inflammatory biomarkers of coronary heart disease," *Frontiers in Bioscience*, vol. 10, pp. 185–196, 2018.
- [3] N. D. Wong, "Epidemiological studies of CHD and the evolution of preventive cardiology," *Nature Reviews Cardiology*, vol. 11, no. 5, pp. 276–289, 2014.
- [4] GBD 2013 Mortality and Causes of Death Collaborators, "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013," *Lancet (London, England)*, vol. 385, no. 9963, pp. 117–171, 2015.
- [5] S. Negi and A. Anand, "Atherosclerotic coronary heart disease-epidemiology, classification and management," *Cardio*vascular & Haematological Disorders-Drug Targets, vol. 10, no. 4, pp. 257–261, 2010.

- [7] C.-Y. Wei, Y.-M. Wang, L. Han et al., "Nitrate esters alleviated coronary atherosclerosis through inhibition of NF-κB-Regulated macrophage polarization shift in epicardial adipose tissue," *Journal of Cardiovascular Pharmacology*, vol. 75, no. 5, pp. 475–482, 2020.
- [8] R. Chen, Y. Xiao, M. Chen et al., "A traditional Chinese medicine therapy for coronary heart disease after percutaneous coronary intervention: a meta-analysis of randomized, double-blind, placebo-controlled trials," *Bioscience Reports*, vol. 38, no. 5, 2018.
- [9] Y. Wang, X. Wang, J. Wang et al., "Tongmai Yangxin intervening in myocardial remodeling after PCI for coronary heart disease: study protocol for a double-blind, randomized controlled trial," *Trials*, vol. 21, no. 1, p. 287, 2020.
- [10] B. Liang, Y. Qu, Q.-F. Zhao, and N. Gu, "Guanxin V for coronary artery disease: a retrospective study," *Biomedicine & Pharmacotherapy*, vol. 128, Article ID 110280, 2020.
- [11] H. Shi, C. Dong, M. Wang et al., "Exploring the mechanism of Yizhi Tongmai decoction in the treatment of vascular dementia through network pharmacology and molecular docking," *Annals of Translational Medicine*, vol. 9, no. 2, p. 164, 2021.
- [12] T.-t. Luo, Y. Lu, S.-k. Yan, X. Xiao, X.-l. Rong, and J. Guo, "Network pharmacology in research of Chinese medicine formula: methodology, application and prospective," *Chinese Journal of Integrative Medicine*, vol. 26, no. 1, pp. 72–80, 2020.
- [13] S. Long, C. Yuan, Y. Wang, J. Zhang, and G. Li, "Network pharmacology analysis of damnacanthus indicus C.F.gaertn in gene-phenotype," *Evidence-based Complementary and Alternative Medicine*, vol. 2019, Article ID 1368371, 2019.
- [14] A. L. Hopkins, "Network pharmacology: the next paradigm in drug discovery," *Nature Chemical Biology*, vol. 4, no. 11, pp. 682–690, 2008.
- [15] R. Zhang, X. Zhu, H. Bai, and K. Ning, "Network pharmacology databases for traditional Chinese medicine: review and assessment," *Frontiers in Pharmacology*, vol. 10, p. 123, 2019.
- [16] B. Boezio, K. Audouze, P. Ducrot, and O. Taboureau, "Network-based approaches in pharmacology," *Molecular Informatics*, vol. 36, no. 10, 2017.
- [17] J. Ru, P. Li, J. Wang et al., "TCMSP: a database of systems pharmacology for drug discovery from herbal medicines," *Journal of Cheminformatics*, vol. 6, no. 1, p. 13, 2014.
- [18] M. Kuhn, D. Szklarczyk, S. Pletscher-Frankild et al., "Stitch 4: integration of protein-chemical interactions with user data," *Nucleic Acids Research*, vol. 42, no. Database issue, pp. D401–D407, 2014.
- [19] J. S. Amberger, C. A. Bocchini, F. Schiettecatte, A. F. Scott, and A. Hamosh, "OMIM.org: online Mendelian Inheritance in Man (OMIM<sup>®</sup>), an online catalog of human genes and genetic disorders," *Nucleic Acids Research*, vol. 43, no. Database issue, pp. D789–D798, 2015.
- [20] J. Piñero, À Bravo, N. Queralt-Rosinach et al., "DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants," *Nucleic Acids Research*, vol. 45, no. D1, pp. D833–d9, 2017.
- [21] J. Li, Y. Huang, S. Zhao et al., "Based on network pharmacology to explore the molecular mechanisms of astragalus membranaceus for treating T2 diabetes mellitus," *Annals of Translational Medicine*, vol. 7, no. 22, p. 633, 2019.
- [22] UniProt Consortium, "UniProt: A worldwide hub of protein knowledge," *Nucleic Acids Research*, vol. 47, no. D1, pp. D506–d15, 2019.

- [23] UniProt Consortium, "UniProt: The universal protein knowledgebase," *Nucleic Acids Research*, vol. 45, no. D1, pp. D158–d69, 2017.
- [24] C. v. Mering, M. Huynen, D. Jaeggi, S. Schmidt, P. Bork, and B. Snel, "STRING: a database of predicted functional associations between proteins," *Nucleic Acids Research*, vol. 31, no. 1, pp. 258–261, 2003.
- [25] G. Montalescot, U. Sechtem, S. Achenbach et al., "2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology," *European Heart Journal*, vol. 34, no. 38, pp. 2949–3003, 2013.
- [26] K. D. Boudoulas, F. Triposkiadis, P. Geleris, and H. Boudoulas, "Coronary atherosclerosis: pathophysiologic basis for diagnosis and management," *Progress in Cardio*vascular Diseases, vol. 58, no. 6, pp. 676–692, 2016.
- [27] S. Sheng, Z.-x. Yang, F.-q. Xu, and Y. Huang, "Network pharmacology-based exploration of synergistic mechanism of guanxin II formula (II) for coronary heart disease," *Chinese Journal of Integrative Medicine*, vol. 27, no. 2, pp. 106–114, 2021.
- [28] J. Tai, J. Zou, X. Zhang et al., "Using network pharmacology to explore potential treatment mechanism for coronary heart disease using chuanxiong and jiangxiang essential oils in jingzhi guanxin prescriptions," *Evidence-based Complementary and Alternative Medicine: eCAM*, vol. 2019, Article ID 7631365, 2019.
- [29] Y. Marunaka, R. Marunaka, H. Sun et al., "Actions of quercetin, a polyphenol, on blood pressure," *Molecules*, vol. 22, no. 2, 2017.
- [30] Y. Li, J. Yao, C. Han et al., "Quercetin, inflammation and immunity," *Nutrients*, vol. 8, no. 3, p. 167, 2016.
- [31] N. A. Al-Shabib, J. M. Khan, A. Malik et al., "A quercetinbased flavanoid (rutin) reverses amyloid fibrillation in  $\beta$ -lactoglobulin at pH 2.0 and 358 K," *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, vol. 214, pp. 40–48, 2019.
- [32] R. V. Patel, B. M. Mistry, S. K. Shinde, R. Syed, V. Singh, and H.-S. Shin, "Therapeutic potential of quercetin as a cardiovascular agent," *European Journal of Medicinal Chemistry*, vol. 155, pp. 889–904, 2018.
- [33] R. Joshi, Y. A. Kulkarni, and S. Wairkar, "Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: an update," *Life Sciences*, vol. 215, pp. 43–56, 2018.
- [34] A. C. Burke, B. G. Sutherland, D. E. Telford et al., "Naringenin enhances the regression of atherosclerosis induced by a chow diet in Ldlr (-/-) mice," *Atherosclerosis*, vol. 286, pp. 60–70, 2019.
- [35] W. Zeng, L. Jin, F. Zhang, C. Zhang, and W. Liang, "Naringenin as a potential immunomodulator in therapeutics," *Pharmacological Research*, vol. 135, pp. 122–126, 2018.
- [36] N. Aziz, M.-Y. Kim, and J. Y. Cho, "Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies," *Journal of Ethnopharmacology*, vol. 225, pp. 342–358, 2018.
- [37] B. Wu, H. Song, M. Fan et al., "Luteolin attenuates sepsisinduced myocardial injury by enhancing autophagy in mice," *International Journal of Molecular Medicine*, vol. 45, no. 5, pp. 1477–1487, 2020.
- [38] B.-b. Ning, Y. Zhang, D.-d. Wu et al., "Luteolin-7-diglucuronide attenuates isoproterenol-induced myocardial injury and fibrosis in mice," *Acta Pharmacologica Sinica*, vol. 38, no. 3, pp. 331–341, 2017.
- [39] R. Marfella, M. D'Amico, K. Esposito et al., "The ubiquitinproteasome system and inflammatory activity in diabetic

atherosclerotic plaques: effects of rosiglitazone treatment," *Diabetes*, vol. 55, no. 3, pp. 622–632, 2006.

- [40] C. la Lastra, S. Sanchez-Fidalgo, I. Villegas, and V. Motilva, "New pharmacological perspectives and therapeutic potential of PPAR-gamma agonists," *Current Pharmaceutical Design*, vol. 10, no. 28, pp. 3505–3524, 2004.
- [41] L. Han, W.-J. Shen, S. Bittner, F. B. Kraemer, and S. Azhar, "PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ," *Future Cardiology*, vol. 13, no. 3, pp. 279–296, 2017.
- [42] S. Verma and P. E. Szmitko, "The vascular biology of peroxisome proliferator-activated receptors: modulation of atherosclerosis," *Canadian Journal of Cardiology*, vol. 22, no. Suppl B, pp. 12b–7b, 2006.
- [43] S. S. Soskić, B. D. Dobutović, E. M. Sudar et al., "Peroxisome proliferator-activated receptors and atherosclerosis," *Angiology*, vol. 62, no. 7, pp. 523–534, 2011.
- [44] Y. Dong, H. Chen, J. Gao, Y. Liu, J. Li, and J. Wang, "Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease," *Journal of Molecular and Cellular Cardiology*, vol. 136, pp. 27–41, 2019.
- [45] J. M. Li, W. Lu, J. Ye, Y. Han, H. Chen, and L. S. Wang, "Association between expression of AMPK pathway and adiponectin, leptin, and vascular endothelial function in rats with coronary heart disease," *European Review for Medical and Pharmacological Sciences*, vol. 24, no. 2, pp. 905–914, 2020.
- [46] T. Chen, Y. Zhang, Y. Liu et al., "MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling," *Aging*, vol. 11, no. 18, pp. 7510-7524, 2019.
- [47] M. Madjid and O. Fatemi, "Components of the complete blood count as risk predictors for coronary heart disease: indepth review and update," *Texas Heart Institute Journal*, vol. 40, no. 1, pp. 17–29, 2013.
- [48] L. Wang, W. Long, P.-f. Li, Y.-b. Lin, and Y. Liang, "An elevated peripheral blood monocyte-to-lymphocyte ratio predicts poor prognosis in patients with primary pulmonary lymphoepithelioma-like carcinoma," *PLoS One*, vol. 10, no. 5, Article ID e0126269, 2015.
- [49] M. E. Afari and T. Bhat, "Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: an update," *Expert Review* of Cardiovascular Therapy, vol. 14, no. 5, pp. 573–577, 2016.
- [50] T. Bhat, S. Teli, J. Rijal et al., "Neutrophil to lymphocyte ratio and cardiovascular diseases: a review," *Expert Review of Cardiovascular Therapy*, vol. 11, no. 1, pp. 55–59, 2013.
- [51] H. Kundi, E. Kiziltunc, M. Cetin et al., "Association of monocyte/HDL-C ratio with SYNTAX scores in patients with stable coronary artery disease," *Herz*, vol. 41, no. 6, pp. 523–529, 2016.
- [52] P. Forget, C. Khalifa, J.-P. Defour, D. Latinne, M.-C. Van Pel, and M. De Kock, "What is the normal value of the neutrophilto-lymphocyte ratio?" *BMC Research Notes*, vol. 10, no. 1, p. 12, 2017.
- [53] H. Chen, M. Li, L. Liu, X. Dang, D. Zhu, and G. Tian, "Monocyte/lymphocyte ratio is related to the severity of coronary artery disease and clinical outcome in patients with non-ST-elevation myocardial infarction," *Medicine*, vol. 98, no. 26, Article ID e16267, 2019.