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Herbal medicines have drawn considerable attention with regard to their potential applications in breast cancer (BC) treatment, a
frequently diagnosed malignant disease, considering their anticancer efficacy with relatively less adverse effects. However, their
mechanisms of systemic action have not been understood comprehensively. Based on network pharmacology approaches, we
attempted to unveil the mechanisms of FDY003, an herbal drug comprised of Lonicera japonica ,unberg, Artemisia capillaris
,unberg, and Cordyceps militaris, against BC at a systemic level. We found that FDY003 exhibited pharmacological effects on
human BC cells. Subsequently, detailed data regarding the biochemical components contained in FDY003 were obtained from
comprehensive herbal medicine-related databases, including TCMSP and CancerHSP. By evaluating their pharmacokinetic
properties, 18 chemical compounds in FDY003 were shown to be potentially active constituents interacting with 140 BC-as-
sociated therapeutic targets to produce the pharmacological activity. Gene ontology enrichment analysis using g:Profiler indicated
that the FDY003 targets were involved in the modulation of cellular processes, involving the cell proliferation, cell cycle process,
and cell apoptosis. Based on a KEGG pathway enrichment analysis, we further revealed that a variety of oncogenic pathways that
play key roles in the pathology of BC were significantly enriched with the therapeutic targets of FDY003; these included PI3K-Akt,
MAPK, focal adhesion, FoxO, TNF, and estrogen signaling pathways. Here, we present a network-perspective of the molecular
mechanisms via which herbal drugs treat BC.

1. Introduction

Breast cancer (BC) is a common female malignancy and a
cause of mortality globally [1]. ,e genetic and epigenetic
dysregulations in multiple cancer-associated genes and their
key oncogenic signalings are implicated in the pathology of
BC; these include the phosphoinositide 3-kinase- (PI3K-)
Akt, tumor necrosis factor (TNF), forkhead box O (FoxO),
erythroblastic leukemia viral oncogene homolog (ErbB),
vascular endothelial growth factor (VEGF), hypoxia-in-
ducible factor- (HIF-) 1, estrogen, p53, focal adhesion, and
mitogen-activated protein kinase (MAPK) pathways [2–4].
Currently, chemotherapy, molecular-targeted therapy, and
endocrine therapy are the major pharmacological

approaches for BC treatment [5–10]. However, the long-
term and frequent use of the aforementioned therapeutic
drugs may induce toxic events that deteriorate quality of life
of cancer patients, including gastrointestinal dysfunction,
fatigue, peripheral neuropathy, immunosuppression and
myelosuppression, cardiotoxicity, and osteoporosis [11–18].
In addition, the pharmacological efficacy of most molecular-
targeted agents often falls short of expectations because of
their limited capacity to therapeutically modulate the can-
cerous activities of various oncogenic cellular components
[19]. ,ese issues emphasize the need for anticancer agents
that can pharmacologically regulate multiple oncogenes and
pathways with safety. Herbal drugs are multicomponent
therapeutics that elicit their pharmacological effects via
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multiple chemical compounds that target diverse disease-
related genes, proteins, and pathways [20, 21]. Herbal
medicines have attracted much attention due to their
promising anticancer effects, reduced toxicities, and lower
side effects [20, 21]. Previous clinical research studies have
further shown that the use of herbal drugs can improve the
tumor response, survival, health status, and quality of life of
patients undergoing cancer therapy [22, 23].

FDY003 is an herbal formula composed of three herbal
medicines [24, 25], namely, Lonicera japonica ,unberg
(LjT), Artemisia capillaris ,unberg (AcT), and Cordyceps
militaris (Cm), that have been reported to exert prominent
anticancer effects in various cancer types [26–35]. It has been
shown that FDY003 is a potent inhibitor of proliferation
while promoting the apoptotic death of cancer cells and
tumors [24, 25]. ,ese activities involve regulation of key
modulators of cell cycle and apoptosis, such as p53, p21,
caspase-3, and Bcl-2-associated X protein (Bax) [24].
However, the molecular mechanisms of FDY003 against BC
at the systemic level remain unclear.

Network pharmacology is a multidisciplinary research
approach that uncovers complex disease mechanisms and
can be used to formulate promising treatment strategies
based on a systems perspective [36–39]. ,e interdisci-
plinary methodology integrates diverse scientific fields, such
as medicine, pharmacology, network biology, systems bi-
ology, and computer science [36–39]. Network pharma-
cology has been demonstrated to be an efficient tool for the
acquisition of comprehensive and systematic insights into
the “multicompound, multitarget, multipathway” poly-
pharmacological properties of herbal medicines, and it is
extensively used to explore the active chemical compounds
of herbal drugs and their therapeutic targets responsible for
their pharmacological activities [36–39]. Network phar-
macology investigates how associated systematic mecha-
nisms are regulated through interactions among various key
components and targets [36–39]. Here, we attempted to
unravel the molecular mechanisms of anti-BC effects of
FDY003 based on network pharmacology approaches.

2. Materials and Methods

2.1. Cell Culture. ,e MCF-7, MDA-MB-453, and MDA-
MB-231 human BC cell lines were purchased from the
Korean Cell Line Bank (Seoul, Korea). ,e cells were cul-
tured in Dulbecco’s Modified Eagle’s Medium (DMEM,
WELGENE Inc., Daegu, Korea) supplemented with 10%
fetal bovine serum, 100U/mL penicillin, and 100 μg/mL
streptomycin (,ermo Fisher Scientific Inc., Waltham, MA,
USA). ,e cultured cells were maintained in a humidified
atmosphere with 5% CO2 at 37°C.

2.2.PreparationofFDY003HerbalFormula. ,epreparation
of FDY003 was conducted as previously described [25]. In
brief, the raw herbal constituents of FDY003 were obtained
from Green Myeong-Poom Pharm. Co., Ltd. (Namyangju,
Korea). ,e dried plant materials of LjT (4.16 g), AcT
(6.25 g), and Cm (6.25 g) were ground, added to 70% ethanol

(500mL), and subjected to reflux extraction at 80°C for 3 h.
,en, the herbal extract was filtered through a 1 μm pore
filter (Hyundai Micro, Seoul, Korea) and successively pu-
rified with 80% and 90% ethanol. ,e resulting solution was
lyophilized at −80°C. ,e samples were stored at −20°C and
then dissolved in distilled water before the experiments.

2.3. Cell Viability Assay. ,e cell viability assay was per-
formed following the previous procedures [25]. 3-(4,5-Di-
methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) was obtained from Sigma-Aldrich Inc. (St. Louis,
MO, USA). Cell viability was measured using theMTTassay.
,e cells were seeded in 96-well plates (5.0×104 cells per
well) and then treated with the indicated drugs for 72 h in a
5% CO2 incubator at 37°C. Subsequently, MTT solution
(200 μL) was added to each well, and the cells were further
incubated for 2 h. ,ereafter, the resulting formazan crystals
were dissolved in dimethyl sulfoxide, and the absorbance
was read with an Epoch 2 Microplate Spectrophotometer at
550 nm (BioTek, Winooski, VT, USA).

2.4. Exploration of Active Chemical Compounds.
Comprehensive information on the phytochemical com-
ponents of FDY003 was integrated from traditional Chinese
medicine systems pharmacology (TCMSP) and anticancer
herbs database of systems pharmacology (CancerHSP) da-
tabases [40, 41]. To determine the bioactive compounds of
FDY003, we assessed the key absorption, distribution,
metabolism, and excretion (ADME) pharmacokinetic pa-
rameters (i.e., oral bioavailability (OB), drug-likeness (DL),
and Caco-2 permeability) of chemical constituents obtained
from the TCMSP database [40]. OB, a pivotal consideration
in drug development, is a measurement of the rate, fraction,
and extent of an orally administered drug that reaches the
expected site of drug action [40, 42]. Caco-2 permeability is a
parameter widely used for the evaluation of the intestinal
absorption rate and extent of a given substance using Caco-2
human intestinal epithelial cells [40, 43–45]. In general, drug
molecules with a Caco-2 permeability less than −0.4 are
considered not permeable across the epithelium of intestines
[40, 46, 47]. DL is an indicator that is used to assess whether
a compound has the potential to be developed into a drug
with respect to its physical and chemical properties; it is
calculated based on the Tanimoto coefficient and relevant
molecular descriptors [40, 48]. A chemical compound is
considered active if it meets the following criteria: OB≥ 30%,
Caco-2 permeability≥−0.4, and DL≥ 0.18 [37, 40, 49, 50].

2.5. Target Identification for the Active Compounds.
Molecular targets of the bioactive compounds of FDY003
were determined using comprehensive information re-
garding chemical-protein interactions obtained from vari-
ous relevant databases, including Search Tool for
Interactions of Chemicals (STITCH) 5 [51], Swis-
sTargetPrediction [52, 53], PharmMapper [54], and Simi-
larity Ensemble Approach (SEA) [55]. We also used in silico
models, such as systematic drug targeting tool (SysDT) [56]
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and weighted ensemble similarity (WES) algorithm [57], for
target identification according to previously described
procedures [58–63]. Human genes/proteins related to the
pathology of BCwere obtained from the following databases:
,erapeutic Target Database (TTD) [64], GeneCards [65],
Comparative Toxicogenomics Database (CTD) [66], Dis-
GeNET [67], Human Genome Epidemiology (HuGE)
Navigator [68], Online Mendelian Inheritance in Man
(OMIM) [69], Pharmacogenomics Knowledgebase
(PharmGKB) [70], and DrugBank [71].

2.6. Network Construction. The herbal medicine-bioactive
compound (H-C) and bioactive compound-target (C-T)
networks were generated by connecting the three herbal
constituents of FDY003 with the bioactive compounds and
the bioactive compounds with the targets. ,e target-
pathway (T-P) network was generated by connecting the
targets with relevant biological pathways. ,e protein-
protein interaction (PPI) network was generated based on
the interactions between the targets (confidence score-
≥ 0.9) using the STRING database [72]. Network visual-
ization and analysis were performed with Cytoscape [73].
In the presented data, nodes indicate the herbal constit-
uents, active chemical constituents, targets, or pathways,
and edges (or links) indicate their interactions [74]. ,e
degree indicates the number of edges of a node in a
network [74].

2.7. Contribution Index Analysis. ,e contribution of
chemical compounds to the pharmacological activity of
FDY003 was analyzed using a contribution index (CI) [50]
that can be calculated using the following formula:

NE(j) � 
n

i�1
di,

CI(j) �
cj × NE(j)


m
i�1 ci × NE(i)

× 100%,

(1)

twhere NE indicates the network-based efficacy, n indi-
cates the number of targets of chemical component j, di
indicates the number of links of target i of chemical
component j, m indicates the number of chemical com-
ponents, and ci (or cj) indicates the number of previous
literatures containing the terms “breast cancer” and the
common name of chemical component i (or j) in their title
or abstract that were retrieved from the PubMed (https://
pubmed.ncbi.nlm.nih.gov/). If the sum of the highest CIs
is greater than 85%, the compounds with those CIs are
considered the major contributors, as previously sug-
gested [50].

2.8. Functional Enrichment Analysis. Gene ontology (GO)
enrichment analysis was performed using g:Profiler [75],
and pathway enrichment analysis was carried out with Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases
[76].

3. Results

3.1. Anticancer Properties of FDY003 against Breast Cancer.
To investigate whether FDY003 exerts therapeutic effects on BC
cells, we treated MCF-7 (an estrogen receptor-positive human
BC cell line),MDA-MB-453 (a human epidermal growth factor
receptor 2- (HER2-) positive human BC cell line), and MDA-
MB-231 (a triple-negative human BC cell line) cells with
FDY003 for 72h and observed their responses. We found that
FDY003 repressed the viability of MCF-7 (IC50� 242.90μg/
mL),MDA-MB-453 (IC50�156.01μg/mL), andMDA-MB-231
(IC50�197.56μg/mL) cells (Supplementary Figure S1), sug-
gesting that the herbal medicine possesses anti-BC properties.

3.2. Chemical Components of FDY003. ,e chemical com-
pounds that are present in FDY003 were obtained from the
comprehensive databases associated with herbal medicine
such as TCMSP and CancerHSP [40, 41]. Accordingly, 323
compounds were retrieved for FDY003 after removing
duplicates (Supplementary Table S1).

3.3. Active Chemical Compounds in FDY003. Compounds
whose pharmacokinetic parameters met the following cri-
teria were considered active as described in Section 2.4:
OB≥ 30%, Caco-2 permeability≥−0.4, and DL≥ 0.18
[49, 50]. A number of compounds not satisfying the
aforementioned criteria were also considered bioactive be-
cause they were present in large amounts in herbal medi-
cines and were known to have potent pharmacological
efficacy. As a result, we obtained 20 active compounds for
FDY003 (Supplementary Table S2).

3.4. Targets of Active Chemical Compounds in FDY003.
We used comprehensive chemical-protein interaction data
obtained from various relevant databases, including
STITCH [51], SEA [55], SwissTargetPrediction [52, 53], and
PharmMapper [54] to explore the molecular targets for the
bioactive chemical components in FDY003. In addition, in
silico models, such as SysDT [56] and WES algorithms [57],
were used for the target exploration based on previously
described procedures [58–63]. Consequently, we obtained
196 targets for the 18 active compounds (i.e., 4′-methyl-
capillarisin, arcapillin, artepillin A, capillarisin, chrysoeriol,
cirsimaritin, cordycepin, corymbosin, eriodyctiol (flava-
none), eupalitin, eupatolitin, genkwanin, isoarcapillin, iso-
rhamnetin, kaempferol, luteolin, quercetin, and β-sitosterol)
in FDY003 (Figure 1 and Supplementary Table S3). No
interacting targets were retrieved for the compounds
“loniceracetalides B_qt” and “demethoxycapillarisin.”

3.5. Network Pharmacology Study on the Molecular Mecha-
nisms of FDY003. To conduct network pharmacology
analysis of the molecular mechanisms of FDY003 against
BC, we first generated an herbal medicine-bioactive com-
pound-target (H-C-T) network of the herbal formula by
linking the herbal medicines with their bioactive chemical
components and the components with the targets (Figure 2).

Evidence-Based Complementary and Alternative Medicine 3

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/


,e resulting H-C-T network contained 217 nodes (3
herbal medicines, 18 active chemical components, and 196
targets) and 354 edges (Figure 2). In addition, to obtain
insight into the BC-associated pharmacological features of
FDY003, we constructed a C-T network (158 nodes with
254 edges) by connecting the bioactive chemical com-
ponents with the BC-associated targets (Figure 3 and
Supplementary Table S3). ,e quercetin, luteolin,

kaempferol, cordycepin, eriodyctiol (flavanone), iso-
rhamnetin, and β-sitosterol exhibited the highest degrees
(Figure 3 and Supplementary Table S3), implying that they
are essential for the mediation of the anticancer effects of
FDY003 against BC. Furthermore, 42 BC-associated
targets interacted with two or more compounds (Figure 3
and Supplementary Table S3), supporting the poly-
pharmacological characteristics of FDY003.

1. 4′-Methylcapillarisin 2. Arcapillin 3. Artepillin A 4. Capillarisin 5. Chrysoeriol 6. Cirsimaritin

7. Cordycepin 8. Corymbosin 9. Eriodyctiol (flavanone) 10. Eupalitin 11. Eupatolitin 12. Genkwanin

13. Isoarcapillin 14. Isorhamnetin 15. Kaempferol 16. Luteolin 17. Quercetin 18. β-Sitosterol

Figure 1: ,e active chemical compounds of FDY003.
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Figure 2: Herbal medicine-active chemical compound-target network of FDY003. Green hexagons, herbal medicines; red rectangles, active
chemical compounds; blue ellipses, BC-associated targets; purple ellipses, non-BC-associated targets.
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To investigate the interactive associations among the
targets, we built a PPI network (106 nodes and 315 edges)
consisting of the BC-associated therapeutic targets of
FDY003 (Figure 4). Subsequently, we explored the existence
of hubs (i.e., nodes with relatively high degrees that tend to
play prominent roles in the cellular processes in a network)
[77, 78]. In the analysis, we defined hubs as nodes with
degrees equal to or greater than twice the mean node degree
[79, 80]. Among the BC-associated targets of FDY003, TP53,
SRC, PIK3R1, VEGFA, AKT1, EGFR, CYP1A1, CYP3A4,
JUN, CDK1, and ESR1 were hub nodes (Figure 4), sug-
gesting that the nodes act as important targets mediating the
therapeutic effects of FDY003 against BC cells. Loss of
function of p53 (encoded by TP53) due to genetic alterations
has been shown to drive the tumorigenesis, progression, and
metastasis of BC; p53 expression has been reported to be a
potential prognostic indicator for BC patients [81–89]. ,e
dysregulation and elevated activity of the kinase Src
(encoded by SRC) is frequently observed in multiple human
malignancies, including BC, and it promotes the invasion,
metastasis, migration, and proliferation of BC cells [90–94].
,e expression and activity of SRC or PIK3R1 are highly
upregulated in malignant breast tumor tissues and have been
correlated with decreased survival of BC patients [95–97].
VEGF-A (encoded by VEGFA) is a crucial regulator in the
proliferation, angiogenesis, and metastatic behavior of BC
cells, and it confers resistance against chemotherapy
[98–101]. ,e overexpression or hyperactivation of AKT
(encoded by AKT1), epidermal growth factor receptor
(EGFR; encoded by EGFR), or c-Jun (encoded by JUN)
promotes various cancerous processes, including prolifer-
ation, growth, survival, invasion, and migration of BC cells

and is further related to the poorer clinical outcomes of BC
patients [102–127]. Such targets have been implicated in re-
duced drug sensitivity of cancer cells to chemotherapeutics;
therefore, targeting them could improve the therapeutic effi-
cacy of chemotherapy and radiotherapy in BC
[104–106, 109, 111–113, 117, 119, 123, 125, 126, 128–131].
Cytochrome P450 1A1 (encoded by CYP1A1) and cytochrome
P450 3A4 (encoded by CYP3A4) are modulators of estrogen
metabolism, and their activities are involved in the cancerous
processes of BC cells [132–139]. Genetic polymorphism and
expression of CYP3A1 or CYP3A4 in breast tumor tissues have
been reported to be potentially useful factors for the prediction
of treatment responses to chemotherapy [140, 141]. CDK1
(encoded by CDK1) functions as a crucial regulator in cell cycle
progression, and its dysregulation leads to aberrant prolifer-
ation of BC cells [142]. Previous studies have indicated that
CDK1 activity may act as a prognostic indicator in BC, and
CDK1 targeting can increase chemotherapeutic efficacy
[143–147]. Abnormal activity of estrogen receptor α (encoded
by ESR1) is considered primarily responsible for tumorigenesis
and progression of BC, and the receptor is the most promising
therapeutic target [134–139].

To assess the contribution of the chemical components
to the pharmacological effects of FDY003, we calculated CIs
for the individual active compounds (Section 2.7) [50, 148].
As a result, quercetin and luteolin had the highest CIs with a
sum of 91.83% (Supplementary Figure S2), which suggests
that the two active components are key factors contributing
to the FDY003 anticancer properties in BC treatment.

Overall, the results of the analyses above facilitate the
identification of the polypharmacological mechanisms of
FDY003 activity against BC.
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Figure 3: Active chemical component-target network of FDY003. Red rectangles, bioactive chemical components; blue ellipses, breast
cancer-associated targets.
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3.6. Functional Enrichment Analysis for the FDY003Network.
To investigate the biological roles of the BC-related targets of
FDY003, we carried out GO enrichment analysis for the
targets. ,ese targets were enriched in GO terms for the
modulation of biological processes, involving cell prolifer-
ation, cell cycle progression, and cell apoptosis (Supple-
mentary Figure S3), highlighting the molecular properties of
FDY003 activity.

,e aberrant activities of oncogenic cellular signalings
are known to be responsible for cancer development and
progression [149]. To this end, we next carried out pathway
enrichment analysis for its BC-related targets (Figure 5 and
Supplementary Figure S3). We found that the following
diverse pathways, which importantly function in the tu-
morigenesis and progression of BC, were significantly
enriched with the FDY003 targets: “Pathways in cancer,”
“PI3K-Akt signaling pathway,” “Endocrine resistance,”
“MAPK signaling pathway,” “Focal adhesion,” “Cellular
senescence,” “FoxO signaling pathway,” “TNF signaling
pathway,” “EGFR tyrosine kinase inhibitor resistance,”
“Estrogen signaling pathway,” “Ras signaling pathway,”
“Steroid hormone biosynthesis,” “Apoptosis,” “Breast can-
cer,” “HIF-1 signaling pathway,” “PD-L1 expression and
PD-1 checkpoint pathway in cancer,” “Cell cycle,” “ErbB
signaling pathway,” “Wnt signaling pathway,” “p53 signal-
ing pathway,” “VEGF signaling pathway,” and “Platinum
drug resistance” (Figure 5 and Supplementary Figure S3).
,e dysregulation of PI3K-Akt, MAPK, focal adhesion, and
Ras signaling pathways promotes diverse cancerous cell
processes, including the uncontrolled cell proliferation,
invasion, migration, survival, metastasis, and angiogenesis of

BC cells [3, 126, 150–154]. Abnormalities of crucial cellular
function, such as senescence, apoptosis, and cell cycle, are
the important pathological processes of BC [155–160]. ,e
TNF signaling pathway is a mediator of the inflammatory
process, and its activity is closely linked with the progres-
sion, metastasis, and poor prognosis of BC [161, 162]. ,e
estrogen signaling pathway functions as the most critical
regulator of tumor initiation and malignant progression in
BC, and therapeutic modulation of its activity serves as a
primary treatment strategy [163–167]. Previous studies have
suggested that expression of programmed death-ligand 1
(PD-L1) serves as a prognostic factor for the survival of
patients with BC and that inhibition of the programmed cell
death protein 1 (PD-1)/PD-L1 pathway can enhance anti-
tumor responses [168–172]. ,e HIF-1 and Wnt signaling
regulate various cellular behaviors, involving cell prolifer-
ation, metastasis, and stem cell-like characteristics in BC
cells [173–180]. ,e p53 signaling pathway exerts tumor-
suppressive activity associated with cell cycle arrest, apo-
ptosis, and cellular senescence, and loss of function of its key
pathway components has been implicated in the carcino-
genesis of BC and is a negative prognostic factor for patient
survival [85, 181]. ,e VEGF signaling pathway plays a
protumoral role by increasing angiogenesis, thus promoting
the survival, migration, and invasion of BC cells [101, 182].
In addition, resistance to platinum-based drugs, endocrine
therapy, and EGFR signaling inhibitors are major obstacles
in BC treatment [183–189].

We further analyzed the functional associations among
FDY003 targets using GeneMANIA [190], an algorithm
useful for the analysis of biological functions of cellular
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components based on extensive network integration.
Among the BC-associated targets of FDY003, 38.32% and
33.65% of them tended to be coexpressed and physically
interacting, respectively (Supplementary Figure S4), sug-
gesting that they have similar biological roles and functions.

Together, the results above suggest that FDY003 exerts
the pharmacological activity by targeting diverse BC-asso-
ciated oncogenic signaling pathways and the modulation of
relevant biological functions.

4. Discussion

BC is a common cancer type and ranks as the leading cause
of death among women globally [1]. Herbal medicines are
attracting considerable attention for potential applications
in cancer treatment owing to their high anticancer activities,
reduced toxicity, and minimal adverse effects [21]. Based on
a network pharmacology analysis, we explored themolecular
mechanisms of the therapeutic effects of FDY003 for BC. (i)
FDY003 exhibited anticancer effects on human BC cells
(Supplementary Figure 1). (ii) Eighteen potentially active
compounds (i.e., 4′-methylcapillarisin, arcapillin, artepillin
A, capillarisin, chrysoeriol, cirsimaritin, cordycepin, cor-
ymbosin, eriodyctiol (flavanone), eupalitin, eupatolitin,
genkwanin, isoarcapillin, isorhamnetin, kaempferol, luteo-
lin, quercetin, and β-sitosterol) present in FDY003 may
interact with 140 BC-associated therapeutic targets and
induce the pharmacological activity of the herbal drug
(Figures 1–4). (iii) GO terms for the modulation of cellular
processes were significantly enriched for the FDY003 targets,
including cell proliferation, cell cycle process, and cell ap-
optosis (Supplementary Figure 3). In addition, (iv) diverse
pathways that play key roles in BC pathology were enriched

for the targets that included PI3K-Akt, MAPK, focal ad-
hesion, FoxO, TNF, and estrogen signaling pathways (Fig-
ure 5 and Supplementary Figure 3).

,e FDY003 constituents have been reported to exert
inhibitory effects against BC. AcT inhibited the proliferation
but induced the death of BC cells [191]. Cm has been
previously demonstrated to reduce the migratory and
proliferative capacities of BC cells and to stimulate apoptosis
by promoting caspase activation and Akt inactivation
[29, 35, 192, 193]. Cm also has immunomodulatory prop-
erties that can inhibit the growth of breast tumors [194].
Capillarisin exhibits its anticancer effects by attenuating the
invasive and proliferative properties of BC cells [195].
Chrysoeriol treatment has been reported to promote apo-
ptosis and cell cycle arrest and further repress the invasion,
proliferation, and migration of BC cells [196, 197]. Cirsi-
maritin inhibits proliferation and angiogenesis via the
downregulation of VEGF, Akt, and extracellular signal-
regulated kinase (ERK) [198]. Cordycepin is a potent in-
hibitor of the invasion and proliferation of BC cells while
inducing their apoptosis through the regulation of MAPK
and caspase-dependent pathways [199–203]. Cordycepin
has also been shown to function as a radiosensitizer that can
enhance the efficacy of radiotherapy toward BC cells [204].
Genkwanin modulates the activities of CYP1 enzymes and
PI3K/Akt/mammalian target of rapamycin (mTOR) path-
ways, thereby suppressing proliferation and inducing apo-
ptosis of BC cells [205–207]. Isorhamnetin exerts the
anticancer activity against BC cells by inhibiting their
proliferative and invasive abilities [208–210]. β-Sitosterol
activates key apoptotic pathways, including Fas and caspase
signaling pathways, and reduces the viability of BC cells
[211–214]. Furthermore, β-sitosterol has been demonstrated
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to elevate the pharmacological effectiveness of tamoxifen, a
selective estrogen receptor modulator that is extensively
applied in clinical practice [215]. Kaempferol, luteolin, and
quercetin stimulate apoptotic cell death but inhibit cell
processes, including proliferation, cell cycle progression,
angiogenesis, migration, invasion, metastasis, and cancer
stemness; such effects occur via the regulation of important
BC-associated pathways such as the Akt, caspase, EGFR,
estrogen, HER2, MAPK, insulin-like growth factor (IGF)-1,
Notch, and Wnt signaling pathways [216–266]. ,e three
chemical compounds have also been shown to sensitize BC
cells to various anticancer drugs, including cisplatin,
docetaxel, doxorubicin, lapatinib, paclitaxel, rapamycin,
sorafenib, tamoxifen, topotecan, and vincristine [267–286].
For instance, luteolin can synergistically enhance the
growth-suppression and apoptosis-inducing activities of the
anticancer agent celecoxib against BC cells by blocking the
activation of oncogenic Akt and ERK signaling [271, 272].
,e combined treatment of quercetin with kaempferol or
luteolin has synergistic antiproliferative effects that are
greater than those of either treatment exclusively [287, 288].
,e risk of BC incidence showed a tendency to be lower in
women with higher quercetin intakes [289].

Pharmacologic effects of FDY003 in cancer cells have
been previously reported [24, 25]. FDY003 has been re-
ported to exert its anticancer effects through the regulation
of the activities of key mediators of apoptosis and cell cycle
progression; these involved Bax, caspase-3, p21, and p53 that
induce apoptosis while suppressing the proliferative and
survival capacities of cancer cells [24, 25]. Treatment with
the herbal formula further inhibited tumor growth in xe-
nograft mice bearing human cancer cells [24], suggesting in
vivo therapeutic effects against cancer. Contrary to the
treatment with irinotecan, a clinically used cytotoxic che-
motherapeutic agent [290], body weight loss (a parameter
used to evaluate the potential toxicity of drug treatments in
animal experiments) did not occur in FDY003-administered
xenograft mice [24], suggesting tolerability of the herbal
drug as well as its antitumor activity. Future experimental
studies should (i) investigate the pharmacological effects of
FDY003 in diverse types of cancer, (ii) explore the mech-
anisms underlying the anticancer activity of the herbal
formula such as its immunomodulatory effects, and (iii)
evaluate the anticancer effectiveness and safety of FDY003
combined with other widely used therapeutic approaches
(i.e., chemotherapy, endocrine therapy, and targeted mo-
lecular therapy). Such studies would facilitate the develop-
ment of safer and more effective herbal medicine-based
strategies for BC treatment.

5. Conclusions

We explored the systematic mechanisms of FDY003 activity
against BC based on a network pharmacology analysis.
FDY003 elicited anticancer effects on human BC cells.
Eighteen chemical compounds in FDY003 were identified as
potentially bioactive compounds that could target 140 BC-
associated genes/proteins and exhibit therapeutic effects.
,e FDY003 targets were enriched in GO terms associated

with the modulation of cellular processes, involving cell
proliferation, cell cycle progression, and cell apoptosis.
Pathway enrichment analysis of the targets further dem-
onstrated that diverse pathways crucial for the BC pathology
were significantly enriched with the FDY003 targets, in-
volving the PI3K-Akt, MAPK, focal adhesion, FoxO, TNF,
and estrogen signaling pathways. Based on a network per-
spective, our findings offer in-depth insights into the
therapeutic properties of herbal medicines in BC treatment.
Future studies should explore the potential efficacy of the
herbal formula in other cancer types as well as its potential
efficacy and safety profiles in combination with other
therapies.
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