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+e Guanxin Suhe pill (GSP), a traditional Chinese medicine, has been widely used to treat angina pectoris (AP) in Chinese
clinical practice. However, research on the bioactive ingredients and underlying mechanisms of GSP in AP remains scarce.
In this study, a system pharmacology approach integrating gastrointestinal absorption (GA) evaluation, drug-likeness (DL)
evaluation, target exploration, protein-protein-interaction analysis, Gene Ontology (GO) enrichment analysis, network
construction, and molecular docking was adopted to explore its potential mechanisms. A total of 481 ingredients from five
herbs were collected, and 242 were qualified based on GA and DL evaluation. Target exploration identified 107 shared targets
between GSP and AP. Protein-protein interaction identified VEGFA (vascular endothelial growth factor A), TNF (tumor
necrosis factor), CCL2 (C-C motif chemokine ligand 2), FN1 (fibronectin 1), MMP9 (matrix metallopeptidase 9), PTGS2
(prostaglandin-endoperoxide synthase 2), IL10 (interleukin 10), CXCL8 (C-X-C motif chemokine ligand 8), IL6 (inter-
leukin 6), and INS (insulin) as hub targets for GSP, which were involved in the inflammatory process, ECM proteolysis,
glucose metabolism, and lipid metabolism. GO enrichment identified top pathways in the biological processes, molecular
functions, and cell components, explaining GSP’s potential AP treatment mechanism. Positive regulation of the nitric oxide
biosynthetic process and the response to hypoxia ranked highest of the biological processes; core targets that GSP can
regulate in these two pathways were PTGS2 and NOS2, respectively. Molecular docking verified the interactions between the
core genes in the pathway and the active ingredients. +e study lays a foundation for further experimental research and
clinical application.

1. Introduction

Angina pectoris (AP) is chest pain or discomfort which often
occurs with stimulating factors, like physical activity or
emotional stress. +ere is accumulating evidence to suggest
that AP is associated with myocardial ischemia and coronary
atherosclerosis [1]. Frequently used antianginal drug therapy
includes organic nitrates, β-blockers, calcium channel
blockers, and nicorandil [2]. +ese medications mainly

control symptoms of myocardial ischemia by reducing
myocardial oxygen demand and increasing coronary blood
flow. However, despite these antianginal drug therapies
being able to effectively control chest pain symptoms and
improve physical exercise tolerance, these drugs have also
been reported to induce receptor tolerance because of their
regular prescription [3].

Traditional Chinese medicine has been reported to ef-
fectively control AP. For instance, Panax notoginseng can
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reduce cardiovascular events, alleviate AP symptoms, and
reduce the attack frequency of AP [4]. Acupuncture can also
safely and effectively improve physical restrictions, emo-
tional distress, and attack frequency in patients with stable
AP [5]. In addition, Suxiao JiuxinWan is effective in treating
AP with no severe side effects identified to date [6].

+e Guanxin Suhe pill (GSP) is a traditional Chinese
medicine formula for AP in Chinese Pharmacopoeia. It
includes five herb components: Styrax (Storax, Suhexiang),
Borneolum Syntheticum (Borneol, Bingpian), Resi oliani
(Frankincense, Ruxiang), Lignum Santali Albi (Sandalwood,
Tanxiang), and Inula helenium (Elecampane Inula,
Tumuxiang).+e GSP and its components have been proved
to have an antianginal effect [7]. A clinical trial on 120
patients with cold obstruction causing “qi stagnation”
syndrome was conducted to determine whether GSP in-
creases the effect of isosorbide mononitrate.+e result found
that GSP can significantly relieve the symptoms of AP,
including the frequency and duration of angina attacks [8].
However, the mechanism of GSP on AP has not been
thoroughly investigated.

Network pharmacology is becoming a cutting-edge re-
search field in drug discovery and development [9]. By
integrating reductionist and systems approaches and com-
putational and experimental methods, network pharma-
cology studies emphasize the paradigm shift from “one
target, one drug” to “network target, multicomponent
therapeutics” [10]. +e multi-ingredient and multitarget
nature of Chinese medicine makes it an ideal field for
network pharmacology [11].

Molecular docking can predict ligand-target interaction
at a molecular level [12]. As an established structure-based
in silico simulation assay, molecular docking has been
widely used in the drug discovery field [13]. +e experi-
mental screening of large libraries of compounds against
molecular target panels, that is, high-throughput screening
(HTS), has been recognized as the gold standard in biology
discovery. However, the high cost of the experimental
screening remains a drawback. Docking enables re-
searchers to virtually screen databases of approved drugs,
natural products, or synthesized compounds into a group
of biological targets of interest within a reasonable time
[14]. Virtual screening and target profiling have made
molecular docking a novel approach for active ingredient
screening and mechanism deciphering in Chinese medi-
cine research.

Here, we took advantage of the most comprehensive
traditional Chinese medicine (TCM) database to date, the
HERB database (a high-throughput experiment- and ref-
erence-guided database of TCM), to explore the core in-
gredients and targets of GSP in treating AP. Next, a
systematic pharmacological method integrating ADME
(absorption, distribution, metabolism, and excretion)
screening, network pharmacology, and molecular docking
was used to elucidate the underlyingmechanism of the active
ingredients in GSP for AP treatment. It is anticipated that
the study will promote future studies in TCM, with the
concomitant development of more effective therapeutic
remedies for AP.

2. Materials and Methods

2.1. Identification of Chemical Ingredients in GSP.
According to the 2015 edition of Chinese Pharmacopoeia,
GSP included five herbs: Styrax (Storax, Suhexiang), Bor-
neolum Syntheticum (Borneol, Bingpian), Resi oliani
(Frankincense, Ruxiang), Lignum Santali Albi (Sandalwood,
Tanxiang), and Inula helenium (Elecampane Inula,
Tumuxiang) (Table 1). We searched the HERB database (a
high-throughput experiment- and reference-guided data-
base of TCM) (http://herb.ac.cn.) for the ingredients of the
five herbs in GSP. HERB integrates multiple TCM databases
to construct a list of TCM herbs and ingredients [15]. Several
widely used TCM databases such as SymMap, TCMID 2.0,
TCMSP 2.3, and HIT were included [16–19]. To date, the
HERB database is the most comprehensive database for
Chinese medicine ingredients. +is database was interro-
gated to get a complete view of the known chemical in-
gredients of GSP. Chemical features of the ingredients were
downloaded for the next step in the analysis.

2.2. ADME Screened Ingredients with Gastrointestinal Ab-
sorption (GA) and Drug-Likeness (DL) Prediction.
Pharmacokinetic parameters like bioavailability and DL are
as crucial in a small molecule as an effective ingredient. Since
GSP is orally administered, we considered GA a necessary
pharmacokinetic behavior for active ingredient evaluation.
+e BOILED-Egg model (the Brain or Intestinal Estimate D
permeation method) was applied to determine GA [20].

DL, which is established from structural or physico-
chemical inspections of oral drug-candidate compounds,
assesses qualitatively the chance for an ingredient to become
an oral drug according to bioavailability [21]. Five methods
were applied as filters for DL evaluation, that is, the Lipinski
(Pfizer), Ghose (Amgen), Veber (GSK), Egan (Pharmacia),
and Muegge (Bayer) methods [22–26]. All the above
methods are integrated into an online tool named Swis-
sADME (http://www.swissadme.ch/) [27]. According to the
PubChem identification of ingredients provided by HERB,
we searched the simplified molecular-input line-entry sys-
tem (SMILES) in PubChem (https://pubchem.ncbi.nlm.nih.
gov/) and uploaded the SMILES onto the SwissADME
website. Chemicals were screened by the following criteria: if
the prediction results of the component were both “high”
GA and “yes” in more than two of the five filters in the DL
prediction, it met our inclusion criteria and progressed to
the next screening step.

2.3. Common Targets of GSP Ingredients in AP

2.3.1. Potential(erapeutic Targets of GSP Active Ingredients.
+e HERB database was used to acquire potential thera-
peutic targets of GSP active ingredients. Apart from da-
tabase mining targets in the TCM databases such as
TCMSP, SymMap, HIT, and TCMID, as mentioned above,
HERB also integrates the functional module named “ref-
erence mining,” which contains target information from
manually curated reference data from 17886 references.
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HERB identities of active ingredients were uploaded to the
database to retrieve them according to potential thera-
peutic targets.

2.3.2. Prediction of Known (erapeutic Targets for AP.
To establish a known therapeutic target dataset of AP,
several disease target databases were utilized, including
DisGeNET (https://www.disgenet.org/), GeneCards
(https://www.genecards.org/), OMIM (https://www.
omim.org/), PharmGKB (https://www.pharmgkb.org/),
and +erapeutic Target Database (http://db.idrblab.net/
ttd/) [28–32]. +e keyword “angina pectoris” was used to
search the candidate targets. Since GeneCards is a data-
base with enormous web-based, deep-linked cards for
each of the >73000 human gene entries, its disease target
prediction result contains thousands of low-relevance
targets. To eliminate the native effect of low-relevance
targets, targets from GeneCards with relevance scores <10
were excluded. Disease targets from all other databases
were applied with no exclusion. Targets recruited from
GeneCards, along with all the targets from the other four
databases, were pooled and deduplicated to establish a
disease target list.

2.3.3. Identification of Intersection Target of Ingredients and
AP. Potential therapeutic targets of GSP ingredients and
recruited known therapeutic targets for AP were uploaded to
Gene Venn (http://genevenn.sourceforge.net/) [33]. +is
online tool was used to find out the overlap targets of the
HERB and disease-related targets. +e protein names of
ingredient and disease targets were entered in the text areas
on the initial welcome page and processed. +e server
processed the target lists and created a Venn diagram, which
showed the intersection target list of two groups and the
unique targets of each group.

2.4. Gene Ontology (GO) Pathway Enrichment. +e GO
project provides an ontology of defined terms representing
gene product properties. GO covers three domains: cellular
components, molecular function, and biological processes.
Intersection targets of ingredients and disease were uploaded
to DAVID (https://david.ncifcrf.gov/) for functional

annotation of the herbs’ targets [34]. In addition, GO
pathway enrichment was performed for the biological
processes, cell components, and molecular functions.

2.5. Network Construction. +e possible protein-protein
interactions (PPIs) were acquired from the STRING data-
base (https://string-db.org/), which covered almost all the
known functional interactions between the expressed pro-
teins [35]. Moreover, PPI network pairs with overall com-
bined scores above 0.4 were included. +e combined results
of PPIs were imported to CytoSpace software (version 3.7.1,
Boston, MA, USA), and the PPI network was reconstructed
with the “CytoHubba” plugin. +e degrees of freedom in a
topology network reflect the strength of a node’s connection
with other nodes in the network. A high degree value in the
PPI network indicates a high number of node edges. +us,
high targets with high degree values are more likely to play
an essential role in regulation. Ten targets with the highest
degree value were identified as hub targets and used to
construct a hub-target network. +e interactions of herb-
ingredient-target networks for top-10 hub targets and two
top-ranked biological process pathways were visualized
using CytoSpace software.

2.6. Molecular Docking of Most Targeted Proteins in the Top
Pathways. In the herb-ingredient-target network of the
specific, enriched pathway, the target with the most con-
nected ingredients was identified as the core target in the
pathway. Molecular docking was used to assess interactions
between ingredients and core targets in the top-ranked
biological process pathways. +e three-dimensional (3D)
structures of chemicals were downloaded from TCMSP
(https://tcmspw.com/tcmsp.php) [18]. Protein 3D crystal
structures were downloaded from the RCSB Protein Data
Bank (http://www.rcsb.org) [36].

AutoDock Tools v1.5.6 was used to open the structure,
add the nonpolar hydrogen, calculate Gasteiger charges of
themolecule, and add the nonpolar hydrogen for each ligand
[37]. +e exhaustiveness was set as 20. All the other pa-
rameters were set as default. AutoDock Vina 1.1.2 was used
to conduct semiflexible docking [38]. +e docking confor-
mation with the strongest affinity was adopted as the final

Table 1: Information of herbs in GSP.

No.
Name

Use part Properties
Number

Abbreviation
Latin English Chinese

pinyin Components Candidate
compounds

1 Styrax Storax Suhexiang Balsam from
trunk Warm; pungent 123 52 SHX

2 Borneolum
Syntheticum Borneol Bingpian Resin Minor cold;

pungent; bitter 75 30 BP

3 Resi oliani Frankincense Ruxiang Balsam Warm; pungent;
bitter 170 85 RX

4 Lignum Santali
Albi Sandalwood Tanxiang Heartwood Warm; pungent 134 80 TX

5 Inula helenium Elecampane
Inula Tumuxiang Root Warm; pungent;

bitter 14 7 TMX
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docking conformation. Docking conformation with the
lowest binding energy was used for analysis. +e top-five
ingredients with strong binding to each target were selected.
PyMol was used to draw the binding graphs [37].

3. Results

3.1.Workflow. +e specific workflow is depicted in Figure 1.
Firstly, the chemical ingredients of the five components in
GSP were searched for in the database, and the active in-
gredients were screened out by pharmacokinetics, including
GA and DL. Next, the targets of active ingredients from GSP
and the targets of AP were retrieved frommultiple databases.
Overlap targets were acquired from Gene Venn diagrams.
Subsequently, common targets of ingredient and disease
targets were uploaded for possible PPIs and GO analyses.
PPI network and herb-ingredient-target networks were
constructed. Core targets of top pathways were applied for
molecular docking screens with interacted ingredients.
PyMol software was used to conduct interaction simulations
of core targets and high-ranked ingredients.

3.2. Candidate Active Ingredients in GSP. After searching
HERB, a total of 481 compounds were collected, including
123, 75, 170, 134, and 14 compounds in Styrax (Storax,
Suhexiang), Borneolum Syntheticum (Borneol, Bingpian),
Resi oliani (Frankincense, Ruxiang), Lignum Santali Albi
(Sandalwood, Tanxiang), and Inula helenium (Elecampane
Inula, Tumuxiang), respectively (Supplementary Table 1).
According to the PubChem identification provided by the
HERB database, the SMILE structure of every component
was collected from PubChem.

3.3. Ingredient Screening for High GA and Good DL. +e
SMILE structure of ingredients was then uploaded to
SwissADME, and the ingredients were screened according to
the GA and DL by the criteria mentioned in the methods.
After deduplication, 242 components were qualified, in-
cluding 52, 30, 85, 80, and 7 in Styrax (Storax, Suhexiang),
Borneolum Syntheticum (Borneol, Bingpian), Resi oliani
(Frankincense, Ruxiang), Lignum Santali Albi (Sandalwood,
Tanxiang), and Inula helenium (Elecampane Inula,
Tumuxiang), respectively (Supplementary Table 1). Several
qualified components were presented inmore than one herb.
All ingredients qualified by GA and DL were adopted to
screen intersection targets with AP.

3.4. Intersection Targets of GSP Ingredients and AP. After
deduplication, 699 related targets of GSP were collected
from HERB. Meanwhile, 393 AP-related targets were col-
lected from OMIM, DisGeNET, GeneCards, OMIM,
PharmGKB, and TTD. Among the intersection of GSP and
AP targets, there were 107 shared targets adopted for PPI
analysis in STRING (Figure 2(a)). To provide a general view
of interactions between herbs, ingredients, and AP-related
targets, an herb-ingredient-target network was constructed
for these 107 intersection targets (Figure 3).

3.5. PPIs and Pathway Functional Enrichment

3.5.1. Possible PPIs in Intersection Targets. +e PPI results of
107 intersection targets derived from STRING were im-
ported to CytoSpace to construct a topology network with
the “CytoHubba” plugin (Figure 2(b)). +e intersection
targets were ranked according to the degree value of the
topology network. Among them, ten targets including
VEGFA (vascular endothelial growth factor A), TNF (tumor
necrosis factor), CCL2 (C-Cmotif chemokine ligand 2), FN1
(fibronectin 1), MMP9 (matrix metallopeptidase 9), PTGS2
(prostaglandin-endoperoxide synthase 2), IL10 (interleukin
10), CXCL8 (C-X-C motif chemokine ligand 8), IL6 (in-
terleukin 6), and INS (insulin) were ranked highest using
Maximal Clique Centrality. +ese ten targets were recog-
nized as hub targets. CytoSpace software was used to con-
struct the PPI networks and herb-ingredient-target networks
(Figures 2(c) and 2(d)).

3.5.2. GO Pathway Enrichment. +e GO enrichment anal-
ysis of the 107 common targets was analyzed with DAVID.
All the biological processes (BP), molecular functions (MF),
and cell component (CC) pathways obtained by GO en-
richment were ranked using −LogP (Figure 4). In the bio-
logical process GO enrichment, several AP and coronary
atherosclerosis-related pathways, such as the positive reg-
ulation of nitric oxide biosynthetic process, ranked top
according to the −LogP value. +e herb-ingredient-target
network of the two pathways ranked highest in the biological
process as shown in Figure 5. +e positive regulation of gene
expression ranked second in the biological processes. Since
this process is very general and does not clearly provide an
insight into the mechanism of the disease, this pathway was
omitted in further analyses.

3.6.MolecularDockingof theMostTargetedProteins in theTop
Pathways. According to the GO pathway enrichment, the
positive regulation of nitric oxide biosynthetic process and
the response to hypoxia ranked highest in the biological
process pathways. PTGS2 in NO and NOS2 in hypoxia
demonstrated 54 and 11 compound interactions, respec-
tively, ranking the highest in these two pathways (Supple-
mentary Table 2). +us, PTGS2 and NOS2 were identified as
core targets in these two pathways. We then conducted
molecular docking between PTGS2, NOS2, and the corre-
sponding compounds. Interaction scores are shown in
Supplementary Tables 3 and 4. +e molecular interaction
graphs for the top-five ingredients of each component were
then constructed using PyMol (Figures 6 and 7). All ten
ingredients interacted with corresponding targets mainly
through a hydrogen bond. Residual interaction information
is shown in Tables 2 and 3.

4. Discussion

According to the topology network’s degree value, the top-
10 hub genes in the PPI network were identified. +ey were
VEGFA, TNF, CCL2, FN1, MMP9, PTGS2, IL10, CXCL8,
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Figure 1: Workflow diagram of the present study.
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IL6, and INS. VEGFA is a member of the PDGF/VEGF
growth factor family. It induces proliferation and migration
of vascular endothelial cells [39]. VEGFA has also been
proved to be essential for both physiological and patho-
logical angiogenesis [40]. TNF, CCL2, IL10, and IL6 belong
to the cytokine family and are involved in inflammatory
processes [41]. FN1 and MMP9 are proteins in the extra-
cellular matrix and are involved in ECM proteolysis [42].
Research has proved that AP shows an imbalanced collagen
turnover even without significant obstructive coronary ar-
tery disease [43]. PTGS2 is an inducible isozyme responsible
for prostanoid biosynthesis and involved in inflammation
and mitogenesis [44]. CXCL8, also known as IL-8, is a
member of the CXC chemokine family and is a significant
mediator of the inflammatory response [45]. INS is a peptide

hormone that plays a vital role in the regulation of carbo-
hydrate and lipid metabolism [46].

+e function of hub targets mainly focuses on the
regulation of inflammation, ECM regulation, and regulation
of metabolism. +ese are vital processes in the pathology of
coronary atherosclerosis. Inflammation is an essential
pathological process of coronary atherosclerosis, which is
the major underlying cause of AP. A critical aspect in
managing patients with stable angina is treating underlying
coronary atherosclerotic disease and reducing the overall
risk burden to prevent future cardiac events and progression
of coronary disease. GSP might exert a protective effect on
AP through these processes.

In the biological process GO enrichment, several AP and
coronary atherosclerotic related pathways ranked top

Herb target

Disease target

Intersection target

107592 286

(a)

APP

BDNF

FN1

PPARG

TNFRSF1A

NR3C2

HMGCR

HMOX1

PTGS2

MMP2

CD40LG

NOS3

GSR

PTPN1

IGF1

TGFB1

PTEN

CXCL8

SERPINE1

CD40

OLR1

IL2

PLAU

LPL

CCND1

AR

LEP

IFNG

G6PD

NR1I2

IL4

CYP19A1

MMP9

MAPK8IP1

ESR1

TLR4

CAT

CEBPA

IL10

KRAS

HIF1A

AKT1

NOTCH3

SOD2

IL6

KDR

PECAM1INS

333333
PIK3CA

VEGFATNF

FGF2

HBA1

LDLR

TP53

PLAT

PPARA

AAASOD1

HFE

ADRB1

IL18

ECE1

ABCA1

SLC6A2

CSF2

TTN

CETP

ADRB2

MMP3
PPBP

PON1

SLC2A4

CYCS

LTA

MPO

ADRB3

PLG

THBD
CCL2

NOS1

TERT

IL1A

APOB

EDN1

CASP3

HBB

APOE

GCG

MMP1

GLB1

CRP

EGFR

HSPA5

KCNH2
IL1B

INSR

NOS2

TNNT2

LCAT

PRKCD

SELE

SCN5A
ICAM1

SRC

F3

PLB1

Degree

0 100

(b)

MCC

Low High

TNF

CCL2

FN1

MMP9

PTGS2

IL10

CXCL8

IL6

INS

VEGFA

(c)

IL10

HBIN040358 HBIN030840

CCL2

HBIN038058
HBIN022965

TNF
HBIN037713

HBIN020653

CXCL8

HBIN032812
HBIN018781

PTGS2

HBIN0328077HBIN017771

HBIN015037

HBIN0327544
HBIN009471

Tumuxiang

HBIN031753

Suhexiang

HBIN048952

HHHHBHBHHBIN030821

HBIN048757

HHHHHHHHHHHBIN022577

HBIN048744

HBIN020921

HBIN046359

HBIN020789

HBIN043061

HBIN019208

HBIN040811

HBIN015704 HBIN039150

Ruxiang

HBIN038026

HBIN038627

HBIN033890

HBIN033267

HBIN033803

HBIN031211

HBIN032605

HBIN030497

HBIN031378

HBIN025445

HBIN028546

HBIN019918

HBIN028125

HBIN018729

HBIN028076

HBIN017508

HBIN024535

HBIN017057

HBIN020782

Bingpian

HBIN017908

HBIN047751

HBIN016408

HBIN047747

HBIN010477

7
HBIN045031

INSTanxiang

313033313003HBIN042339

FN1

HBIN047744

39333933333HBIN040854

IL6

HBIN047613

545858554588HBIN038680

MMP9

HBIN042501

0
HBIN035142

VEGFA

5357575

H
HBIN041495

HBIN032583

Herb

Target

Ingredient

(d)

Figure 2: Intersection target genes and protein-protein interactions (PPIs) network of top-10 hub targets. (a) Intersecting target genes
between targets of GSP and AP; (b) PPIs network of intersecting targets; (c) PPI network of top-10 hub targets; (d) herb-ingredient-target
network of top-10 targets.
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according to the P value and gene counts. Positive regulation
of the nitric oxide biosynthetic process, response to hypoxia,
positive regulation of smooth muscle proliferation, choles-
terol metabolic process, negative regulation of the apoptotic
process, inflammatory response, and angiogenesis were
marked as essential pathways involved in the therapeutic
mechanisms of GSP.

Positive regulation of the nitric oxide biosynthetic
process ranked highest. Nitric oxide is a vasodilator pro-
duced by several cell types [47]. +e function of nitric oxide
in vessel health is double-edged. On the one hand, endo-
thelial nitric oxide synthase (NOS) produces nitric oxide to
maintain the physiological level of NO, which is crucial for
vascular endothelial homeostasis, while on the other, dif-
ferent stress-stimulating factors can induce the activation of
inducible nitric oxide synthase (iNOS) [48]. NO overpro-
duction induced by the activation of iNOS can lead to
endothelial dysfunction and the development of athero-
sclerosis in the late stages [49]. According to the target
prediction of GSP, ingredients in GSP can bind to iNOS and
COX2 (PTGS2) to inhibit the overproduction of NO. +e

inhibition of overproduced NO also can alleviate the in-
flammation induced by NO.

Nitric oxide can cause vasodilation via its effect on
vascular smooth muscle cells. However, the overproduction
of NO, which is proinflammatory, is detrimental to car-
diovascular disease [50]. PTGS2 has been identified as the
core target gene involved in this pathway. PTGS2, also
known as COX2, is an important factor in the inflammatory
pathway. Research has proved that COX2 also influences the
positive regulation of the nitric oxide biosynthetic process
[51]. A low dose of COX2 inhibitor has been proved to have
a protective effect; the mechanism is based on what is known
about the complex biology of cyclooxygenase in different
tissue compartments, including the vascular endothelium,
myocardium, and atherosclerotic plaques. Ursolic acid,
apigenin, daidzein, baicalein, and dehydroabietic acid are
the top-five ingredients according to the binding score.
Ursolic acid contacts with ARG120, which is a major
contributor to both the inhibition and catalysis of PTGS2.
+e PTGS2 inhibitory properties of other contact residues
have also been reported [52].
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Figure 3: Herb-ingredient-target network of GSP for angina pectoris.
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oxide biosynthetic process) related target; (b) herb-ingredient-target network of GO:0001666 (response to hypoxia) related target.

8 Evidence-Based Complementary and Alternative Medicine



(a) (b)

(c) (d)

(e) (f )

Figure 6: Molecular docking between NOS2 and top-five ingredients. (a) Protein structure of NOS2 (PDB ID:4cx7). (b) Molecular
interaction between MOL000006 luteolin and NOS2. (c) Molecular interaction between MOL000098 quercetin and NOS2. (d) Molecular
interaction between MOL000354 isorhamnetin and NOS2. (e) Molecular interaction between MOL000390 daidzein and NOS2.
(f ) Molecular interaction between MOL000422 kaempferol and NOS2.

(a) (b)

Figure 7: Continued.
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(c) (d)

(e) (f )

Figure 7: Molecular docking between PTGS2 and top-five ingredients. (a) Protein structure of PTGS2 (PDB ID: 5fdq). (b) Molecular
interaction between MOL008498 ursolic acid and PTGS2. (c) Molecular interaction between MOL000008 apigenin and PTGS2.
(d) Molecular interaction between MOL000390 daidzein and PTGS2. (e) Molecular interaction between MOL002714 baicalein and PTGS2.
(f ) Molecular interaction between MOL003782 dehydroabietic acid and PTGS2.

Table 2: Molecular binding information of PTGS2 and top-5 ingredients.

Target Compound TCMSP ID Contacting residue Binding distance Score
PTGS2 Ursolic acid MOL008498 ARG120 3.1 −9.6

PTGS2 Apigenin MOL000008 TYR130 3
−9CYS47 2.1

PTGS2 Daidzein MOL000390 GLN461 2.9
−8.4CYS47 3.2

PTGS2 Baicalein MOL002714 THR212 3.2
−7.5ARG222 2.8, 3.1

PTGS2 Dehydroabietic acid MOL003782
SER121 2.7

−7.5LYS532 3.1
GLN372 2.8

Table 3: Molecular binding information of NOS2 and top-5 ingredients.

Target Compound TCMSP ID Contacting residue Binding distance Score

NOS2 Luteolin MOL000006
ARG388 2.8

−9.5VAL352 3.1
PHE369 2.8

NOS2 Quercetin MOL000098
ARG388 3

−9.3TYR347 2.3
VAL352 3.2

NOS2 Isorhamnetin MOL000354
VAL352 3.4

−8.9ASP382 2.3
ARG388 2.8

NOS2 Daidzein MOL000390
TYR373 3

−8.9ARG388 3.3, 3.3
ARG266 2.9, 3.4

NOS2 Kaempferol MOL000422 ARG388 2.8 −8.9
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+e response to hypoxia ranked third. AP often involves
coronary artery spasm or stenosis, which leads to the dis-
ruption of oxygen and nutrient transportation via blood flow
[53]. +is hemodynamic disorder can lead to heart tissue
hypoxia. Hypoxia signaling plays a vital role in cardiac and
vascular remodeling in the pathogenesis of cardiovascular
diseases [54]. In a hypoxic environment, HIF-α protein is
stabilized. It binds to the hypoxia-responsive element
(HREs) of each target gene, including glucose metabolism
(pyruvate dehydrogenase kinase (PDK)), angiogenesis
(vascular endothelial growth factor A (VEGFA)), and
erythropoiesis (erythropoietin (EPO)) [55, 56]. +us, the
ingredients of GSP may alleviate the cardiac remodeling
process through the tissue response to hypoxia.

Response to the hypoxia also ranked top in the biological
process analysis. NOS2 is the core target in this pathway.+e
exact mechanism of angina pain remains unclear, but it is
related to a mismatch between myocardial oxygen demand
and supply [57]. It has been shown that, after tissue hypoxia,
iNOS overexpression plays a vital role in tissue injury [58].
Moreover, hypoxia alters the expression of several tran-
scription factors responsible for iNOS expression, and
downregulation of iNOS can limit cell injury caused by
hypoxia [59]. +erefore, iNOS inhibition can be a novel
therapeutic mechanism for protection from hypoxia-in-
duced injury and cell death. Luteolin, quercetin, iso-
rhamnetin, daidzein, and kaempferol rank highest according
to the molecular docking study. +eir contacting residue,
mainly on the H4B binding pocket in the oxygenase domain,
is essential for H4B cofactor binding [60]. +ese ingredients
might contact this domain and thus influence the subse-
quent dimerization and function of the enzyme.

Our results provide a potential binding model for the
top-ranked ingredients of NOS2 and PTGS2. As mentioned
above, NOS2 inhibitors and PTGS2 inhibitors have been
identified for the treatment of cardiovascular disease.
However, the selective inhibitors have vast side effects. +e
multitarget and multi-ingredient nature of Chinese medi-
cine provides another avenue for drug development from
Chinese medicine.

5. Conclusions

+is study identifies the potential bioactive ingredients,
biological targets, and functional pathways of GSP for AP,
which reveals the characteristics of multiple ingredients,
targets, pathways, and mechanisms of GSP. To the best of
our knowledge, it is the first study that integrates network
pharmacology and molecular docking to predict the bio-
active ingredients and mechanisms of GSP in the treatment
of AP. +e study lays a foundation for further experimental
research and clinical application.

However, the current study also possesses limitations.
Although the potential bioactive ingredients and mecha-
nisms of GSP against AP have been expounded by inte-
grating system pharmacology and molecular docking,
further experimental verification for compounds and
mechanisms predicted by the network analysis is lacking and
is a drawback of the present study. To confirm the functional

and pharmacological mechanisms of the major bioactive
ingredients identified, more pharmacological experiments
and in vitro molecular binding assays will be conducted in
the near future.
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